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Abstract

In this presentation a multilayer perceptron is used
to classify coloured tracers. In fluid mechanics a non-
intrusive measuring method delivering experimental infor-
mation with a Lagrangian point of view (i.e. following the
flow) would be extremely useful to clarify the origin, birth
and development of vortical structures in technical sys-
tems. For this purpose Particle-Tracking-Velocimetry (PTV)
might be employed.

In PTV small tracers are tracked by a multi camera setup
over time. With the known position of the tracers in at least
two camera images it is possible to compute the 3d position
of a tracer in space. In doing so it is difficult to solve the
temporal and the spatial correspondence problem at high
tracer density. Using coloured tracer particles the problem
becomes much easier because the colour information can
be used to support the correspondence analysis.

To recognise the colour of particles, single chip cameras
with a Bayer-Pattern are used. Because of the small diam-
eter of the employed tracers (<0.1 mm), conventional in-
terpolation methods do not work to reconstruct the colour
information. Therefore, a multilayer perceptron with one
or more hidden layers is employed to assign the tracers to
their colour class. The feature vector of a tracer consists
of the raw black/white-data of the Bayer-sensor as well as
of structural attributes, such as the position of the tracer
in relation to the camera pixel elements. The feature vec-
tor contains finally about 10 elements. In our example we
have 4 colour classes. A training data set for one class has
about 8000 feature vectors. The backpropagation-training
converges in about 250 steps. The computational time of
the recall is negligible. After training, the network is able
to assign correctly about 90% of the tracers in each colour
class.

1. Introduction

The primary aim of this paper is to improve the cor-
respondence analysis in the Particle Tracking Velocimetry
applying coloured tracers. There are two reasons to use ar-
tificial neural networks (ANNs) for classification. In one
respect our group is very experienced with ANNs. Fur-
thermore, the application of neural networks for the recon-
struction of colours, especially in case of digital cameras is
nowadays wide spread ([2], [6]). This paper also opens a
further possibility for employing ANNs.

2. Flow measurements using Particle Tracking
Velocimetry

Figure 1. Typical Tracer distribution in a PTV-
Image of a single camera [11].

Particle Tracking Velocimetry (PTV) is one of the most
versatile techniques among the methods for flow measure-
ments, allowing to determine pathlines and velocity fields.
The method is based on a discrete visualisation of flows,
usually mixing a large number of small (down to several
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times 10µm) and buoyantly neutral particles to the flow.
Pathlines are determined by the evaluation of multi cam-
era image sequences of these particles. The recordings are
carried out with the help of modern digital cameras.

The analysis of the recorded image sequences is based
on the methods of digital image processing and digital pho-
togrammetry. The PTV enables various investigations of
flow phenomena. An overview of the different possible
PTV-implementations is presented in [12].
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Figure 2. A typical schematic experimental
setup.

An exemplary measuring setup is shown in Fig. 2. A
suitable measuring volume is illuminated by convenient
lighting. Images are recorded by several synchronized and
calibrated cameras. Thereby usually a large number of im-
age data is generated.

The first step of the analysis is to identify the particles in
the image (for details see section 4.1). Afterwards a spatial
(finding the mapping of a specific tracer in all images) and
temporal correspondence analysis (flow of a specific tracer)
must be executed. The spatial analysis consists of the es-
tablishment of stereoscopic correspondences using epipolar
constraints ([8], see also Fig.3). Then the 3d coordinates of
a tracer can be calculated with simple geometrical relations
and the image-coordinates in at least two images using the
camera calibration [4]. With this image and 3d informa-
tion the tracking can be carried out (temporal analysis). Of
course, both steps can be connected with each other. This
has been shown in previous publications ([16], [14]).

2.1. Problems during the spatial and tem-
poral correspondence analysis

The establishment of the spatial and temporal correspon-
dence is a significant problem during the analysis of PTV-

recordings ([7], see also Fig. 4).
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Figure 3. Left: Epipolar Geometry. The cor-
responding points can only lie on the epipo-
lar line. Right: Temporal analysis in image
space.

The ambiguity appears increasingly during the spatial
correspondence analysis because of the high number of par-
ticles. The correlation of the particles in a time step is
mainly based on geometrical conditions such as the epipo-
lar geometry. The intersection between the image plane and
a plane formed by the object point and the perspective cen-
tres of the cameras form a line. Only along this line a cor-
responding tracer can be found ([4], see also Fig. 3). This
decreases the search area from 2d (the whole image) to 1d
(a line in the image). Applying more than two cameras, the
search-space is further limited. Nevertheless the ambigui-
ties cannot be avoided. Most of all, their frequency depends
on the number of particles per image.

To deduce the information concerning the flow field, a
temporal correlation (tracking) is required. Thereby one
wants to get trajectories as long as possible, without any
interruption. A restriction of the search-space in successive
time steps can be derived because of the restricted varia-
tions of velocity and acceleration and by considering the
local correlation of the velocity vectors. Nevertheless, this
does not suppress all ambiguities, leading to a reduced res-
olution of the flow features [7].

For our purposes a 3D-PTV system with a high temporal
as well as spatial resolution is being developed, in order to
be able to investigate gas flows at relatively high speeds and
involving small eddies. In that case it is clear that PTV can
only be successful with a lot of tracer particles, so that the
particle concentration in the gas has to be very high.

To facilitate the temporal and spatial correspondence of
the particles it would be useful to employ further parame-
ters describing the tracers. In most cases, the size, form and
brightness cannot be characterized explicitly (and these pa-
rameters depend less on the actual properties of the mapped
particles than on the effect of the illumination, which can
vary significantly for the single cameras). Therefore, such
parameters are not suitable to improve correspondence and
have been barely applied [16].
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Figure 4. Two successive image triples with
PTV, spatial and temporal correspondence.

The idea, which is followed now, is to colour the trac-
ers and to use the colour information to simplify the cor-
respondence analysis. When using coloured tracers, colour
classes are created, which contain a lower number of par-
ticles, according to the total number of those classes. This
way the correspondence analysis will be considerably im-
proved (Fig. 5). The number of ambiguities decreases both
for the spatial and the temporal correspondence. All color
classes can be threaded separately. One gets decoupled sys-
tems for each class. The correspondence analysis becomes
easier.

Figure 5. Decreasing the relative particle den-
sity with the help of colour classes.

2.2. Coloured tracer particles

Essential requirement for the particles is that they should
follow the flow as accurately as possible, since their tra-
jectories are tracked, but the velocity field of the flow is
wanted. The diameter of the particles and the density dif-
ference between the continuous and dispersed phases are
the two most influencing factors. As a matter of course
the diameter should be as small as possible and the den-
sity the same as of the continuous phase. It is very difficult
to find such solid particles, the density of which is similar to
air. Furthermore, even for the lowest diameter, the particle
colour classes must be identified by the cameras.

After intensive tests, Expanded Microspheres (EMS)

Figure 6. Blue, green and red tracer.

particles with a diameter of 80µm have been selected (for
examples see Fig. 6). These particles follow air flows very
accurately and can thus be used for accurate, quantitative
measurements.

The selection of colours was complex. To achieve reli-
able separability these must clearly differ in their emission
spectrum (see also Fig. 7). This is not completely the case
with the current tracers. Further investigations are carried
out. The final goal is to use up to ten different colours.������������ 	� �
� ���������� � � � � � � � � � � � �� ��� ��� �
� � ������������� �������� � !"� !!� !#� $�� $�� $%� $&� %'� %$� % � #"�()*+,+-./0 1-23

Figure 7. The emission spectrum of the 4
used colours.

3. Colour cameras, problems for determining
colours

The most frequently applied colour cameras employ a
Bayer-pattern [1], where a special colour filter with a so
called Bayer-pattern is positioned in the front of a black and
white sensor. It usually consists of 2x2 pixel structure ele-
ments, each with a filter of one red, two green and one blue
(see also Fig. 8) elements. When further discussing the red,
green or blue pixel of the Bayer-image, always the respec-
tive colour of the filter is meant, which is located on the
corresponding sensor.

Starting from the black-white Bayer-raw-image the co-
lour image can be interpolated from the individual pixels.
This interpolation can be accomplished in different ways.
Simple methods interpolate the colour value from the pix-
els of the same colours in the neighbourhood. As this pro-
cedure is first of all problematic perpendicular to the edges,
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Figure 8. An exemplary Bayer-pattern. The
subjacent pixel of a b/w sensor is respec-
tively green, red or blue sensitive.

several methods try instead to carry out the interpolation
along the edges.

Other algorithms are based on the assumption that the
colour of a plane in the image is relatively constant, even
in case of changing lighting conditions. Therefore at first
the green channel is interpolated, followed afterwards by
the red and blue channel, so that the colour conditions red-
green and blue-green are constant respectively. A thorough
overview of the usual interpolation methods can be found
in [3] and [13].

As the tracers employed for the discretisation of the flow
are very small (typically <0.1mm), their size in the image
is only some pixels. Popular interpolation methods for the
colour reconstruction fail in such cases. Note that the tracers
has to be large enough that we do not get diffraction effects
(which is the case with tracers smaller than 0.01mm).

It can be seen in Fig. 9, that the colour of a tracer can-
not be determined accurately after the Bayer-conversion in
a simple way. So another approach should be selected for
the colour classification.

4. Artificial neural networks for colour classi-
fication

In principle, it is not necessary to determine the colour of
a tracer in the present case. It is only important to assign it
to the appropriate colour class. These classes have to be suf-
ficiently distinguished. The idea is to use an artificial neural
network for the colour classification. In the followings the
procedure is shown in details.

4.1. Feature vector

First we have to determine the centre of the tracer. There
are various methods to locate the particles in the image. We
use the Particle Mask Correlation (PMC) Method [15]. It
can be started from the assumption that the image of a tracer
corresponds to a Gaussian function. Then an appropriate
template is correlated with all the pixels of the image. When
there is a correlation maximum, a particle is assumed to be
present at these coordinates.
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Figure 10. Illustration of the Bayer pattern
and the composition of a feature vector. We
use the gray value of the nearest green pixel
to the center of the tracer (GV1), the gray
value of the surrounding green, blue and red
pixels (GV2...GV9), the size of the specific
tracer in x- and y-direction (NX and NY) and
the distance in x- and y-direction from the
green pixel to the center of the tracer (DX and
DY).

The first elements of the feature vector consist of the as-
signed greyscale values of the Bayer-image. To decrease
the influence of the varying intensity of the background, a
background image is subtracted from the recorded image.
This image is taken with an empty wind tunnel. To map a
tracer the next green pixel will be searched in the Bayer-
pattern starting from the centre of a particle. This and the
surrounding 8 pixels form the first elements of the feature
vector (see also Fig. 10). Of course, the pixels have to be ar-
ranged to get a specific order (5x green – 2x red – 2x blue).



(a) Raw image. (b) Red Tracer. (c) Blue Tracer. (d) Green Tracer.

Figure 9. Left, the unconverted mapping of a blue tracer on the sensor (the Bayer-pattern can be
recognised). Next to it the colour image of three differently coloured particles with a smaller scale.
While the colour of the red one can still directly recognised, the colour of the blue and green ones can
barely be distinguished after the Bayer-conversion. The calculated colour depends on the position
in the pixel raster. The conversion has been carried out with a simple interpolation of the greyvalues
of a Bayer-image.

In addition to these image-based values some geometrical
attributes of the imaged tracers are also used as feature such
as its width or height or the distances in x- and y-direction
from the green pixel to the centre of the tracer (this informa-
tion is a result of the mentioned tracer search). This gives
13 features. Note that the analysed image of a tracer has to
be at least 3x3 pixel wide.

4.2. Network setup

A fully connected multilayer network with back-propa-
gation is applied. It consists of an input layers, one or more
hidden layer and an output layer. The number of neurons in
the input layer corresponds to the size of the feature vector
and the number in the output layer to the colour classes.
Because of its high numerical efficiency, the Fast Artificial
Neural Network Library (FANN) [10] is applied. For the
activation function the symmetric sigmoid function is used.
Before training the initial weights are set to random values
between -0.1 and 0.1.

4.3. Separability of the classes

A two-dimensional Self-Organizing Map (SOM) [5] has
been used to get a general idea of the separability of the
classes. The neurons have been arranged in a 5x5 grid.
Fig. 12 shows the results of the separation of four classes
with respective 500 vectors (the generation of the input data
is explained in the next section). This shows that the colour
classes are in principle separable and can be distinguished.
But is shows also the one colour classes could fall into two
classes. It appears to be important which pixel of the bayer-
pattern is illuminated by the tracer.

Input Layer Hidden Layer

C
o
lo
u
r 
C
la
s
s

x5

x6

x7

x8

x1

x4

x2

x3

...

F
e
a
tu
re
 v
e
c
to
r

Output Layer

x0

K1

K0

K2

K3

Figure 11. Architecture of the ANN using 4
colours classes and one hidden layer.

Additionally a Principal Components Analysis [9] was
done with the data set of all colour classes. The total vari-
ability resulting from each principal component is illus-
trated in Fig. 13.

5. Experiments

The experimental setup consists of four glass sheets
assembled in a distance of about 2 cm (this is a pre-
arrangement setup for measurements in the windtunnel).
The medium of the laminar flow was air. The employed
camera is a Pulnix TMC 1400CL with a resolution of
1392x1040 pixels. For lighting standard halogen lamps are
used. The complete experimental setup is shown in Fig. 14.
There the fan controller regulates the flow, a control monitor
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Figure 12. Result of the training of a 5x5
grid SOM. The feature vectors of four colour
classes had been presented to it. The answer
of the SOM after training is shown if only fea-
ture vectors of one class are presented to it.
(Using of an indication threshold.)

enables the control of the camera and the image recording.
The tracers are in the velocity box. They are illuminated by
several lights.

To acquire the training and test data, only tracers of a
certain colour class have been mixed to the flow in each
case. We used tracers of 4 colour classes (blue, green, brick-
red and pink). Then the recordings have been carried out
with constant illumination and recording conditions.

The centres of the particles are then determined using
the previously mentioned PMC-method and the feature vec-
tors are calculated for each tracer. So we had 12.000 fea-
ture vectors (8.000 for training, 4.000 for tests) for each
colour class. Afterwards the training is executed with
8.000 datasets for every colour group (this gives a total
amount of 32.000 feature vectors). The mean square er-
ror over the number of the training epochs is presented in
Fig. 15.

Table 1 shows the results for the four applied colours.
The recall-data contains 4.000 feature vectors for each
class. It can be seen that about 90% of the tracers of each
colour class are assigned to the correct colour group. The
remaining of the answers of the network are usually in the
most similar colour group (blue–green resp. brick-red–
pink). It should be noted that the device could not always be
cleaned entirely. Thus some (several percentage of the re-
sult) different-coloured tracers always remained in the flow.
Of course, thats one reason for errors. Others are the diffi-
cult lightning conditions and the problematic colourisation

43%

18%

15%

10%

4%

2%

<2%

Figure 13. Amount of variance accounted for
by each component after a Principal Compo-
nent Analysis.

of the tracers.

Fig. 16 shows the results for different ANNs setups.
They were tested with the mentioned training- and test data.
One, two or three hidden layers have been used. The num-
ber of neurons in the hidden layers was 10, 10-7 respec-
tively 10-8-5. It can be seen that a net with only one hidden
layer is not sufficient. As expected two hidden layers are
optimal when considering both computational cost and ac-
curacy. With 3 hidden layers we do not get a better result.
In Fig.17 the results of the classification with different num-
bers of neurons in the hidden layer are presented.
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Figure 15. Progression of the mean square
error during the training.
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Figure 14. Experimental setup with 3 cameras (prearrangement for measurements in a wind tunnel).

hhhhhhhhhhhhhhhhColor of Tracer
Recognized color

blue green brick-red pink vague

blue 90.7% 2.7% 0.3% 0.6% 5.8%
green 3.0% 89.6% 2.5% 0.0% 4.9%

brick-red 2.0% 1.1% 86.0% 5.2% 5.6%
pink 2.2% 0.1% 3.4% 91.0% 3.3%

Table 1. Results of a recall with test data. The bold number indicates the right answer. Vague means
that the answer of the network was not clear enough.

6. Conclusions and Acknowledgment

PTV on the one hand and colour recognition with artifi-
cal neural networks on the other hand are known techniques.
Our new approach is the determining the colour-classes of
dyed tracers in PTV with ANNs. Therefore different ar-
chitectures of ANNs have been investigated. The presented
results show the suitability of the system for colour classifi-
cation.

With the additional colour information temporal and
spatial correspondence analysis are remarkably simplified.
Hereby the number of tracers and consequently the resolu-
tion can be increased for PTV measurements in gas flow.
At the same time higher flow velocities can be measured. It
has been demonstrated in the present study that particles
below 0.1 mm (as long as there are no diffraction prob-

lems and the images of the tracers are at least 3x3 pixel)
can safely be employed. We used the 8-neighborhood of
a central green pixel and some additional geometrical pa-
rameters to describe a tracer and build the feature vector.
For classification a fully connected multilayer network with
two hidden layers was used.

The further work shall concentrate on the direct integra-
tion of the colour information in the particle identification,
to be able to determine the locations of the particles with a
high accuracy. Furthermore more work will be done in an-
alyzing the properties of the colour classes and we want to
use more than four classes (up to 10).

Support by the Deutsche Forschungsgemeinschaft
within the priority programme Bildgebende Messver-
fahren in der Strömungsmechanik” (SPP1147) is grate-
fully acknowledged.
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Figure 17. Comparison of the results using different numbers of neurons in the hidden layers
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[9] J. Marques de Sá. Pattern Recognition: Concepts, Meth-
ods and Applications. Springer Verlag, Berlin Heidelberg
New York, 2001.

[10] S. Nissen. Implementation of a fast artificial neural net-
work library (FANN). Technical report, Department of
Computer Science University of Copenhagen (DIKU),
2003. http://fann.sf.net.

[11] K. Okamoto, S. Nishio, T. Saga, and T. Kobayashi. Stan-
dard images for particle-image velocimetry. Measure-
ment Science and Technology, 11:685–691, 2000.

[12] N. T. Ouellette, H. Xu, and E. Bodenschatz. A quan-
titative study of three-dimensional lagrangian particle
tracking algorithms. Experiments in Fluids, 40(2):301–
313, 2006.

[13] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A.
Sander. Demosaicking methods for bayer color arrays.
Journal of Electronic Imaging, 11(2):306–315, 2002.

[14] P. Ruhnau, C. Guetter, T. Putze, and C. Schnörr. A vari-
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