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Abstract 

 
The applicability of soft computing to implementing 

text-to-speech conversion is subject to debate. Using 
neural networks for phoneme-level, text-to-speech 
conversion has several advantages over hard 
computing. Soft computing’s capacity to generalize 
makes it possible to map words missing from the 
database, as well as to reduce contradictions related 
to different pronunciations for the same word. 

Neural networks have been shown to optimally 
solve a large class of applied pattern-matching 
problems, but very little research has been done to 
match the requirements of pattern generation in 
machine-to-human interaction. 

An artificial speech synthesizer based on neural 
networks is being developed for application to deeply 
embedded systems for language-independent speech 
commands on hands-free interfaces. A feed-forward, 
backpropagation artificial neural network has been 
trained for this purpose using a custom-developed, 
regular expression-based, text-to-phones transcription 
engine to generate training patterns. Initial 
experimental results show the expected properties of 
language independence and in-system learning. 
 
1. Introduction 
 

Speech synthesis, the automatic generation of 
speech waveforms, has developed rapidly in last 
decade. Very good results have now been achieved in 
text-to-speech (TTS) synthesis technology, above all in 
terms of speech quality. These results have been 
attained with redundancy as the primary solution to the 
many hurdles to producing quality speech, thanks to 

the assumption that vast resources (memory, 
computing power, etc.) are available now (and in the 
future). Personal computers now meet these 
requirements, but speech-synthesis applications are 
mainly targeted at embedded and deeply embedded 
systems.  Memory and processing-power resources are 
scarce in this type of system and the current approach 
to TTS synthesis does not suit them. 

Speech synthesis becomes a very complex task if 
the main goal is to implement it on a deeply embedded 
system with real-time, unlimited-vocabulary, speaker-
independent and language-independent specifications. 
Current speech-synthesis solutions cannot be scaled 
down to satisfy the emerging demands of embedded 
systems in every application field where human-to-
machine interaction is required. 

In the past, when desktop computing had meager 
computing power and memory storage, many research 
and development efforts sought optimal solutions to 
speech-synthesis problems, such as text-to-phoneme 
translators based on neural networks and phoneme-
based speech-synthesizer circuits.  When DSP (digital 
signal processor) chips were introduced in 1980, 
hardware implementation of speech synthesis was 
neglected and firmware-based speech synthesizing 
became a more interesting topic for researchers and 
developers. Because memory was a scarce resource, 
great effort was devoted to compressing speech data. 
In the last decade, the availability of memory in 
desktop and laptop computers has driven speech-
synthesis research to aim for high-quality speech 
production, with engineers and system designers 
paying little attention to system optimization. 

The next wave of computing and communication 
technology exhibits a clear trend towards embedded 



computing solutions based on system-on-chip (SoC), 
system-on-package (SoP), etc. These emerging 
computing technologies are very powerful, but not 
redundant in terms of memory and computing power. 
Speech synthesis needs a systemic approach to achieve 
new results befitting this new scenario. 

The artificial neural-network (ANN) [1][2] 
approach to speech synthesis [3] can optimally solve 
several implementation and application problems, 
above all because it is closer to the process to be 
emulated, the human ability to communicate by means 
of voice and language. 

Sejnowski and Rosenberg [4] were the first 
researchers to demonstrate that ANN can be 
successfully applied to the speech-synthesis challenge. 
Since that demonstration, many new ANN approaches 
to speech synthesis have been proposed [5][6][7]. 

The main advantage of applying an ANN in speech 
synthesis is its ability to learn to speak just as a human 
does. This means that it can learn to speak any 
language, just as a human does. The ANN engine is the 
same for any language it is trained in, so there is no 
coding dependency because the ANN trained for a 
specific language is only data dependent. 

The traditional approach to TTS requires a large 
amount of data to represent all the knowledge about 
how a word has to be converted into a correct speech-
synthesizer control stream. The ability of an ANN to 
generalize reduces this amount of data and also 
performs a smoothing action on the output, resulting in 
more natural speech synthesis [8][9]. 

In the following sections, this paper presents the 
system framework, ANN architecture, training 
strategy, and performance evaluation. A brief 
concluding section summarizes the work and future 
plans. 
 
2. System framework 
 

The main idea in developing our system framework 
is to set up an almost fully automatic process to 
generate a ready-to-run, ANN-based speech 
synthesizer trained for a specific language, starting 
from ASCII text.  

A special-purpose development environment 
(Figure 1) was designed for this purpose.  It consists of 
four  functional blocks, each executing a whole task 
useful in developing, training, evaluating, and 
implementing a complete text-to-speech application. 

 
 
 
The functional blocks are: 

 
• Regular expression-based, text-to-phones 

translator 
• Training-set builder 
• ANN engine 
• Speech synthesizer 

 
The regular expression-based, text-to-phones 

translator is a specially developed engine that can 
process ASCII text and convert it to the corresponding 
phonetic transcription. It is based on a language-
specific rule set, which embeds all the phonetic 
information needed to correctly speak each word in the 
text. 
 

 
 

Figure 1. System framework. 
 
The text and its phonetic transcription are the data 

input for the training-set builder. This functional block 
automatically processes a phonetic transcription of the 
text used to train the ANN, generating the training 
patterns to tailor the ANN for this specific application. 

A critical task executed by the training-set builder 
for this ANN is aligning the text to its phonetic 
transcription. Manual alignment is avoided by using 
rule-based alignment between text and phonetic 
transcription. 

The ANN engine is the core processor of a neural 
network-based speech synthesizer. It is based on 
JOONE (Java Object-Oriented Neural-Network 
Engine) [10]. This engine was trained using the 
patterns generated from the training-set builder. When 
training is complete, the ANN engine is ready to 
process a text string and generate a pattern to run the 
speech synthesizer. 

 



 
Figure 2. JOONE. 

 
The speech synthesizer, not discussed in this paper, 

is a phoneme sequencer that allows software control of 
rate, pitch, amplitude, duration, movement rate, and 
articulation rate of spoken phonemes. 

This framework allows the ANN to be trained 
automatically by the user (application engineer or end 
user) and applied to a specific task. The only data 
needed to build the ANN to drive the speech 
synthesizer for a specific language is a large text and 
the phonetic rule set for that language. Both these data 
sets are currently available for any language.  
Therefore, the neural network-based speech 
synthesizer is effectively language independent. 

This architecture allows the ANN-based speech 
synthesizer to be updated to a different language 
simply by changing interconnection weightings, while 
leaving its programming code as is. This enables run-
time, in-system updating of the speech-response 
application to the country where it is running. 
 
3. Regular expression-based text-to-phones 
translator 
 

Much of the computation in text-to-speech 
synthesis consists of a series of processing passes 
applied to the text to be uttered. Each pass serves to 
transform the input text string into an output control 
parameter string. To execute these tasks, special-
purpose (language dependent) algorithms need to be 
developed. 

Most of these algorithms apply context-sensitive 
rules such as “if-then,” so our efforts have focused on 
defining a fully phonetic and linguistic data-driven 
(rules) text processor. The format of the rules is the 
following: 

 
C(A)D = B (1) 

 
which reads “A is transformed into B, if the text to 
which it belong matches A in the sequence CAD”, 
where C is a pre-context string and D is a post-context 
string. B is the phoneme string (symbols or codes). 

Because many rules share elements of pre-context 
and/or post-context, classes of elements were defined 
to make rule coding more compact and to reduce the 
number of rules. 

For example, for Italian and English the following 
classes of elements, with the corresponding regular 
expressions, were defined: 

 
(!)  | (^) | ($)    
(#)  | ([AEIOUY]+) 
(:)  | ([^AEIOUY]*) 
(+)  | ([EIY])   (2) 
($) | ([^AEIOUY]) 
(.)  | ([BDGJMNRVWZ]) 
(^)  | ([NR]) 

 
Using these classes, a general rule (for English) 

such as the following can be coded (using X-SAMPA 
to encode phones): 

 
!(BI)# = /b/a/j/ (3) 

 
The rule is thus valid for several text strings, such as 
BIO…, BION…, BIOG…, BIANNUAL, etc. 

The rules are ordered with the most specific first, 
the most general last: 

 
!(B)! = /b/i:/ 

… 
                            !(BI)# = /b/aj/  (4) 

… 
                                   (B) = /b/ 

 
The regular expression-based, text-to-phones 

translator is a general purpose text-processor engine 
applicable to any written text in any language. It 
depends only on the rule set and on the classes defined 
for that language. 

 
 



The algorithm is as follows,  if ρ  is the word to be 
translated, ℜ the current rule, and cover is the size of 
the string to be converted: 

 
       size = size(ρ) 
           for index=0 to size do 
               c ← get(ρ, index ) 
               Rules ← GetRules( c ) 
               for ℜ  in Rules do 
                   pre-Context← createPreContext(ρ,c) 
                   post-Context← createPostContext(ρ,c) 
                   if ℜ  is valid c|ρ  then 
                         result ← result + ℜ.phoneme 
                         cover ← ℜ.cover 
                         index ← index + cover 
                         break 
                   end if  
                end for  
             end for 
 
4. ANN architecture 
 

The ANN has a three-layer, feed-forward, 
backpropagation architecture (FFBP-ANN), similar to 
that used in NETtalk [4]. Its inputs are fully connected 
to all the nodes of the hidden layer, and the hidden 
layer is fully connected to the output nodes.  

All the inputs and outputs have a linear activation 
function that controls the connection. A non-linear 
activation function (sigmoid) connects hidden-layer 
nodes to output-layer nodes.  
 

 
 

Figure 3.  Architecture of the FFPB-ANN.  
 
Input to the FFBP-ANN consists of nine 

consecutive characters of text to be phonetized. The 
output encodes the phone that corresponds to the 

character in the center position of the nine-character 
input window. 

Each of the nine input nodes consists of 36 binary 
elements, one for each symbol in the character set (the 
complete alphabetic set A-Z plus a few control 
characters such as space, period, question mark, etc.). 
There are thus 324 (36 x 9) total input elements for the 
FFBP-ANN, enough to fully encode a complete pattern 
nine characters wide. 

 
Figure 4. Input-layer data encoding. 

 
The output consists of 394 nodes, one for each 

phone of the phone set to be used. 
Current output encodes the phone that corresponds 

to the middle character in the input-layer string.  The 
pre-context and post-context of the current input 
character help determine output. 

 
 

 
Figure 5. Sliding window. 

 



The size of the layers depends on the number of 
phones that the ANN needs to represent and on the 
number of different characters that may occur in the 
text to be uttered. If the ANN is to be trained for a 
specific language, the size of the input layer can be 
fixed as the character set of that language. 

The output layer cannot be fixed, because a given 
language exhibits many variations (phones) of basic 
speech sounds (phonemes).  The ANN must be 
adapted to the specific speech synthesizer being 
employed. For this reason, the output layer is resized at 
training time to fit the applied synthesis model. 

To fix output layer size, a binary coded solution can 
be implemented, but this leads to a lower learning rate 
compared to one-in-position, as reported in section 6. 

 
5. Training strategy 
 

FFBP-ANN training strategy is a key issue in our 
framework. One primary goal is to fully automate the 
training procedure so that the ANN can be trained for 
any language regardless of its specificity.  

The backpropagation algorithm was used as the 
learning algorithm to train our FFBP-ANN. 
Successfully applying this algorithm required that 
training data (words and their pronunciations) be 
collected and that input and output data be converted 
into suitable binary form.  

 

 
 

Figure 6.  Training-set generation process. 
 
Two main problems have to be solved: generating 

the set of training patterns and aligning them. 
 

5.1. Training patterns 
 

Rosenberg and Sejnowski developed a special-
purpose dictionary of English words and their 
pronunciations. Each word consists of two strings, the 
phoneme string (transcribed in PronLex) and the stress 
string. Both strings are aligned character-by-character 
with the word as shown for the two words agglutinate 
and aberration: 

 
a  →  x, 0; 
g  →  g, <; 
g  →  -, >; 
l  →  l, >; 
u  →  u, 1; 
t  →  t, <; 
i  →  -, 0; 
n  →  N, <; 
a  →  e, 2; 
t  →  t, <; 
e  →  -, <; 

 
a  →  @, 2; 
b  →  b, <; 
e  →  x, 0; 
r  →  r, <; 
r  →  -, >; 
a  →  e, 1; 
t  →  S, >; 
i  →  -, 0; 
o  →  x, <; 
n  →  n, <; 

 
This training set is very large but not exhaustive. It 

cannot be automatically generated for any language 
because it requires a phonetic dictionary for the target 
language. It also needs manual alignment when word 
length fails to match phone-string length. 

In an attempt to achieve fully automated training-
pattern generation, the pronunciation rule set and the 
text-to-phones algorithm are used to generate the 
training pattern starting from the word list alone. 

The pronunciation rule set embeds both alignment 
information and stress information in each rule, so 
alignment can be executed automatically during 
training-pattern generation. The stress information is 
encoded in the phone symbol as follows: 

 
/a/ not stressed 
/'a/ stressed 
/'a:/  stressed and long 

 
This solution allows any stress information to be 

encoded into the phone name, so the ANN can learn 
more about different pronunciations of each phone. 



 
5.2. Aligning patterns 
 

Pattern alignment [11] is automatically solved by 
looking up the pronunciation rules applied during the  
generation of the phonic transcription for each word in 
the training set. 

Defined as the transformation T of the word string 
(ρ) into the phonetic string (p) by applying the rule ℜ 
(see section 3): 

 
p =T(ℜ(ρ)) 

 
the alignment problem between the word character 
string and the corresponding phone character string is 
implemented during run time when the rule is applied. 
Implementation is based on the following algorithm: 
 

if sizeof(p) = sizeof(ρ) 
      no alignment required 
               else 
            cover ←ℜ.cover 

     if cover > 1 
 alignment required 
     endif 
endif 
 

If alignment is not required, a one-to-one 
association between one character of the word ρ  and 
one phone is established. If alignment is required, a 
many-to-one association between a number equal to 
cover characters of the word ρ  and one phone 
followed by cover-1 null phones (coded as -) is 
established.  

Applying this method to the Italian word GOGNA, 
yields the following alignment: 

 
 G = /_g/ 
          O = /’o/ 
          G = /J:J/ 
          N = /-/      ← null phone inserted 
 A = /a_/ 
 
The applied rules are the following: 
 
 !(G) = /_g/ cover=1 
          … 
          (O)$$# = /’o/ cover=1 
 … 
          (GN)#! = /J:J/ cover=2 
 … 
 (A)! = /a_/ cover=1 
 … 

 
Once alignment is complete, the sliding window 

algorithm is applied to the transcribed word, 
generating the following training array (based on a 
nine-character window): 

 
 _ _  _ _ _    G  O G N A /_g/ 
 _  _ _ _ G   O  G N A _ /’o/ 

 _ _ _ G O  G  N A _ _ /J:J/ 
  _ _ G O G  N  A _ _ _ /-/ 

 _ G O G N A   _ _ _ _ /a_/ 
 G O G N A _   _ _ _ _ /-/ 
 O G N A  _ _   _ _ _ _ /-/ 
 G N A  _ _  _   _ _ _ _  /-/ 
 N A  _  _  _ _   _ _ _ _ /-/ 
 A _  _   _  _ _   _ _ _ _ /-/ 

 
5.3. Training 
 

Training is performed by running the 
backpropagation algorithm. This algorithm is difficult 
to set up for application-specific purposes because 
several parameters must be trimmed for optimal 
learning, the number of hidden units, initial random 
weight, learning rate, the coefficient of momentum, 
and stopping point (how many training epochs to run) 
[12]. 

Several experiments were conducted to find the best 
combination of such setup parameters. The following 
setup was identified: 

 
 Input layer units: 324 

Hidden layer units: 80 
Output layer units: 394 
Learning epochs: 400 
Learning rate: 0.15 
Momentum: 0.9 

 
As a training set, 720 Italian words are used. Each 

input word is assigned a set of phone codes, each 
including all the parameters that make the word sound 
natural when played through the synthesizer. The 
network learns the relationship between input words 
and output parameters through iteration. After 50 
passes (epochs) through the training set, the 
phonetized text will be understandable, and after 100 
passes, the error rate will be less than 2%. After 400 
training passes the error rate is below 1%. This 
represents an ANN stable state useful for synthesizing 
good-quality speech. 

To test the ANN thus set up, an Italian text was 
conveyed into the system and the corresponding 



utterance was produced by driving a concatenative 
speech synthesizer. 

 
 
Figure 10. Learning curve after 400 epochs of 720 

patterns. 
 

6. Performance evaluation  
 

To evaluate the trained FFBP-ANN’s performance, 
a special-purpose environment that implements the 
soft-computing and hard-computing text-to-speech 
models (TXT2SP) was developed. Both 
implementations share the pronunciation rule set, 
allowing significant comparison. 

Hard-computing (algorithmic) implementation of 
the text-to-speech uses a set of coded phonetic rules to 
execute the text-to-phones transcription. Soft-
computing (ANN) implementation uses the trained 
knowledge obtained during learning, from the same set 
of coded phonetic rules used to run the hard-
computing implementation. 

The same word (text) can be sent as input to both 
transcription processes (soft- and hard-computing) and 
compared at the phonetic level. Utterance-level 
comparison is also available because the concatenative 
speech synthesizer is integrated into the TXT2SP 
developing environment. 

The TXT2SP development environment also 
provides the functions needed to set up and train the 
ANN, as well as to compare ANN performance with 

rule-based implementation, using a text file as test 
input. 

 
 

Figure 11. Graphic user interface of the special-
purpose developed environment (TXT2SP) used to 

compare ANN implementation with rule-based 
implementation of text-to-speech synthesis.  

 
The hard-computing implementation proves faster. 

But it fails if the word is not included in the 
pronunciation rule set. This happens when a 
proparoxytone word is tested. 

For example, the proparoxytone word 
 

CEMBALO = /_tS/’e/m:/b/a/l/o_/ 
 

is not in the pronunciation rule set, so the hard-
computing implementation incorrectly transcribes it as 
follows (default): 

 
CEMBALO = /_tS/e/m/b/’a:/l/o_/ 

 
However, the soft-computing implementation runs 
almost correctly: 
 

CEMBALO = /_tS/’e/m/b/a/l/o_/ 
 

It fails only with regard to the duration of /m/ 
phone.  Moreover, it identifies the correct stress 
position. This demonstrates the ANN’s very high 



generalization ability despite the limited number of 
exception words furnished in the 720 word-based 
training set.  Increasing  the number of  exception 
words at training time, a more robust generalization 
ability can be embedded in the ANN. 

Increasing training-set size implies increasing the 
ANN’s learning time. This time can be trivially 
reduced by using a faster executing processor or a 
parallel executable software coding of the ANN. A 
smarter solution can be found in ANN development 
strategy. 

A test was performed to compare the learning speed 
of an ANN with binary-coded output to that of an 
ANN with binary-decoded (one-in-position) output. 
This test showed that the one-in-position ANN learns 
faster, as shown in fig. 12. 

 

 
 

Figure 12. Learning speed is better for one-in- 
position coding at output layer level.  

 
7. Conclusions  
 

An FFBP-ANN-based engine for text-to-phone 
transcription is being developed to act as the back end 
for phonetic synthesizers. It can be trained 
automatically if pronunciation rules are available. Only 
a set of words is needed for training. 

The ability of the trained FFBP-ANN to generalize 
shows that this approach to text-to-speech becomes 
advantageous compared to current TTS 
implementations when embedded systems are the 
target. 

Future efforts will strive to solve the problem of 
automatically generating the pronunciation rule set for 
a given language starting from text only. A further aim 

will be to develop an ANN-based speech synthesizer 
that can be embedded in an SoC solution. 
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