

A Language-Independent Neural Network-Based Speech Synthesizer

Mario Malcangi, David Frontini
Università degli Studi di Milano

DICo - Dipartimento di Informatica e Comunicazione
Via Comelico 39 – 20135 Milano - Italy

Laboratorio DSP&RTS (Digital Signal Processing & Real-Time Systems)
Laboratorio LIM (Laboratorio di Informatica Musicale)

malcangi@dico.unimi.it, d.frontini@acm.org

Abstract

The applicability of soft computing to implementing

text-to-speech conversion is subject to debate. Using
neural networks for phoneme-level, text-to-speech
conversion has several advantages over hard
computing. Soft computing’s capacity to generalize
makes it possible to map words missing from the
database, as well as to reduce contradictions related
to different pronunciations for the same word.

Neural networks have been shown to optimally
solve a large class of applied pattern-matching
problems, but very little research has been done to
match the requirements of pattern generation in
machine-to-human interaction.

An artificial speech synthesizer based on neural
networks is being developed for application to deeply
embedded systems for language-independent speech
commands on hands-free interfaces. A feed-forward,
backpropagation artificial neural network has been
trained for this purpose using a custom-developed,
regular expression-based, text-to-phones transcription
engine to generate training patterns. Initial
experimental results show the expected properties of
language independence and in-system learning.

1. Introduction

Speech synthesis, the automatic generation of
speech waveforms, has developed rapidly in last
decade. Very good results have now been achieved in
text-to-speech (TTS) synthesis technology, above all in
terms of speech quality. These results have been
attained with redundancy as the primary solution to the
many hurdles to producing quality speech, thanks to

the assumption that vast resources (memory,
computing power, etc.) are available now (and in the
future). Personal computers now meet these
requirements, but speech-synthesis applications are
mainly targeted at embedded and deeply embedded
systems. Memory and processing-power resources are
scarce in this type of system and the current approach
to TTS synthesis does not suit them.

Speech synthesis becomes a very complex task if
the main goal is to implement it on a deeply embedded
system with real-time, unlimited-vocabulary, speaker-
independent and language-independent specifications.
Current speech-synthesis solutions cannot be scaled
down to satisfy the emerging demands of embedded
systems in every application field where human-to-
machine interaction is required.

In the past, when desktop computing had meager
computing power and memory storage, many research
and development efforts sought optimal solutions to
speech-synthesis problems, such as text-to-phoneme
translators based on neural networks and phoneme-
based speech-synthesizer circuits. When DSP (digital
signal processor) chips were introduced in 1980,
hardware implementation of speech synthesis was
neglected and firmware-based speech synthesizing
became a more interesting topic for researchers and
developers. Because memory was a scarce resource,
great effort was devoted to compressing speech data.
In the last decade, the availability of memory in
desktop and laptop computers has driven speech-
synthesis research to aim for high-quality speech
production, with engineers and system designers
paying little attention to system optimization.

The next wave of computing and communication
technology exhibits a clear trend towards embedded

computing solutions based on system-on-chip (SoC),
system-on-package (SoP), etc. These emerging
computing technologies are very powerful, but not
redundant in terms of memory and computing power.
Speech synthesis needs a systemic approach to achieve
new results befitting this new scenario.

The artificial neural-network (ANN) [1][2]
approach to speech synthesis [3] can optimally solve
several implementation and application problems,
above all because it is closer to the process to be
emulated, the human ability to communicate by means
of voice and language.

Sejnowski and Rosenberg [4] were the first
researchers to demonstrate that ANN can be
successfully applied to the speech-synthesis challenge.
Since that demonstration, many new ANN approaches
to speech synthesis have been proposed [5][6][7].

The main advantage of applying an ANN in speech
synthesis is its ability to learn to speak just as a human
does. This means that it can learn to speak any
language, just as a human does. The ANN engine is the
same for any language it is trained in, so there is no
coding dependency because the ANN trained for a
specific language is only data dependent.

The traditional approach to TTS requires a large
amount of data to represent all the knowledge about
how a word has to be converted into a correct speech-
synthesizer control stream. The ability of an ANN to
generalize reduces this amount of data and also
performs a smoothing action on the output, resulting in
more natural speech synthesis [8][9].

In the following sections, this paper presents the
system framework, ANN architecture, training
strategy, and performance evaluation. A brief
concluding section summarizes the work and future
plans.

2. System framework

The main idea in developing our system framework
is to set up an almost fully automatic process to
generate a ready-to-run, ANN-based speech
synthesizer trained for a specific language, starting
from ASCII text.

A special-purpose development environment
(Figure 1) was designed for this purpose. It consists of
four functional blocks, each executing a whole task
useful in developing, training, evaluating, and
implementing a complete text-to-speech application.

The functional blocks are:

• Regular expression-based, text-to-phones

translator
• Training-set builder
• ANN engine
• Speech synthesizer

The regular expression-based, text-to-phones

translator is a specially developed engine that can
process ASCII text and convert it to the corresponding
phonetic transcription. It is based on a language-
specific rule set, which embeds all the phonetic
information needed to correctly speak each word in the
text.

Figure 1. System framework.

The text and its phonetic transcription are the data

input for the training-set builder. This functional block
automatically processes a phonetic transcription of the
text used to train the ANN, generating the training
patterns to tailor the ANN for this specific application.

A critical task executed by the training-set builder
for this ANN is aligning the text to its phonetic
transcription. Manual alignment is avoided by using
rule-based alignment between text and phonetic
transcription.

The ANN engine is the core processor of a neural
network-based speech synthesizer. It is based on
JOONE (Java Object-Oriented Neural-Network
Engine) [10]. This engine was trained using the
patterns generated from the training-set builder. When
training is complete, the ANN engine is ready to
process a text string and generate a pattern to run the
speech synthesizer.

Figure 2. JOONE.

The speech synthesizer, not discussed in this paper,

is a phoneme sequencer that allows software control of
rate, pitch, amplitude, duration, movement rate, and
articulation rate of spoken phonemes.

This framework allows the ANN to be trained
automatically by the user (application engineer or end
user) and applied to a specific task. The only data
needed to build the ANN to drive the speech
synthesizer for a specific language is a large text and
the phonetic rule set for that language. Both these data
sets are currently available for any language.
Therefore, the neural network-based speech
synthesizer is effectively language independent.

This architecture allows the ANN-based speech
synthesizer to be updated to a different language
simply by changing interconnection weightings, while
leaving its programming code as is. This enables run-
time, in-system updating of the speech-response
application to the country where it is running.

3. Regular expression-based text-to-phones
translator

Much of the computation in text-to-speech
synthesis consists of a series of processing passes
applied to the text to be uttered. Each pass serves to
transform the input text string into an output control
parameter string. To execute these tasks, special-
purpose (language dependent) algorithms need to be
developed.

Most of these algorithms apply context-sensitive
rules such as “if-then,” so our efforts have focused on
defining a fully phonetic and linguistic data-driven
(rules) text processor. The format of the rules is the
following:

C(A)D = B (1)

which reads “A is transformed into B, if the text to
which it belong matches A in the sequence CAD”,
where C is a pre-context string and D is a post-context
string. B is the phoneme string (symbols or codes).

Because many rules share elements of pre-context
and/or post-context, classes of elements were defined
to make rule coding more compact and to reduce the
number of rules.

For example, for Italian and English the following
classes of elements, with the corresponding regular
expressions, were defined:

(!) | (^) | ($)
(#) | ([AEIOUY]+)
(:) | ([^AEIOUY]*)
(+) | ([EIY]) (2)
($) | ([^AEIOUY])
(.) | ([BDGJMNRVWZ])
(^) | ([NR])

Using these classes, a general rule (for English)

such as the following can be coded (using X-SAMPA
to encode phones):

!(BI)# = /b/a/j/ (3)

The rule is thus valid for several text strings, such as
BIO…, BION…, BIOG…, BIANNUAL, etc.

The rules are ordered with the most specific first,
the most general last:

!(B)! = /b/i:/

…
 !(BI)# = /b/aj/ (4)

…
 (B) = /b/

The regular expression-based, text-to-phones

translator is a general purpose text-processor engine
applicable to any written text in any language. It
depends only on the rule set and on the classes defined
for that language.

The algorithm is as follows, if ρ is the word to be
translated, ℜ the current rule, and cover is the size of
the string to be converted:

 size = size(ρ)
 for index=0 to size do
 c ← get(ρ, index)
 Rules ← GetRules(c)
 for ℜ in Rules do
 pre-Context← createPreContext(ρ,c)
 post-Context← createPostContext(ρ,c)
 if ℜ is valid c|ρ then
 result ← result + ℜ.phoneme
 cover ← ℜ.cover
 index ← index + cover
 break
 end if
 end for
 end for

4. ANN architecture

The ANN has a three-layer, feed-forward,
backpropagation architecture (FFBP-ANN), similar to
that used in NETtalk [4]. Its inputs are fully connected
to all the nodes of the hidden layer, and the hidden
layer is fully connected to the output nodes.

All the inputs and outputs have a linear activation
function that controls the connection. A non-linear
activation function (sigmoid) connects hidden-layer
nodes to output-layer nodes.

Figure 3. Architecture of the FFPB-ANN.

Input to the FFBP-ANN consists of nine

consecutive characters of text to be phonetized. The
output encodes the phone that corresponds to the

character in the center position of the nine-character
input window.

Each of the nine input nodes consists of 36 binary
elements, one for each symbol in the character set (the
complete alphabetic set A-Z plus a few control
characters such as space, period, question mark, etc.).
There are thus 324 (36 x 9) total input elements for the
FFBP-ANN, enough to fully encode a complete pattern
nine characters wide.

Figure 4. Input-layer data encoding.

The output consists of 394 nodes, one for each

phone of the phone set to be used.
Current output encodes the phone that corresponds

to the middle character in the input-layer string. The
pre-context and post-context of the current input
character help determine output.

Figure 5. Sliding window.

The size of the layers depends on the number of
phones that the ANN needs to represent and on the
number of different characters that may occur in the
text to be uttered. If the ANN is to be trained for a
specific language, the size of the input layer can be
fixed as the character set of that language.

The output layer cannot be fixed, because a given
language exhibits many variations (phones) of basic
speech sounds (phonemes). The ANN must be
adapted to the specific speech synthesizer being
employed. For this reason, the output layer is resized at
training time to fit the applied synthesis model.

To fix output layer size, a binary coded solution can
be implemented, but this leads to a lower learning rate
compared to one-in-position, as reported in section 6.

5. Training strategy

FFBP-ANN training strategy is a key issue in our
framework. One primary goal is to fully automate the
training procedure so that the ANN can be trained for
any language regardless of its specificity.

The backpropagation algorithm was used as the
learning algorithm to train our FFBP-ANN.
Successfully applying this algorithm required that
training data (words and their pronunciations) be
collected and that input and output data be converted
into suitable binary form.

Figure 6. Training-set generation process.

Two main problems have to be solved: generating

the set of training patterns and aligning them.

5.1. Training patterns

Rosenberg and Sejnowski developed a special-
purpose dictionary of English words and their
pronunciations. Each word consists of two strings, the
phoneme string (transcribed in PronLex) and the stress
string. Both strings are aligned character-by-character
with the word as shown for the two words agglutinate
and aberration:

a → x, 0;
g → g, <;
g → -, >;
l → l, >;
u → u, 1;
t → t, <;
i → -, 0;
n → N, <;
a → e, 2;
t → t, <;
e → -, <;

a → @, 2;
b → b, <;
e → x, 0;
r → r, <;
r → -, >;
a → e, 1;
t → S, >;
i → -, 0;
o → x, <;
n → n, <;

This training set is very large but not exhaustive. It

cannot be automatically generated for any language
because it requires a phonetic dictionary for the target
language. It also needs manual alignment when word
length fails to match phone-string length.

In an attempt to achieve fully automated training-
pattern generation, the pronunciation rule set and the
text-to-phones algorithm are used to generate the
training pattern starting from the word list alone.

The pronunciation rule set embeds both alignment
information and stress information in each rule, so
alignment can be executed automatically during
training-pattern generation. The stress information is
encoded in the phone symbol as follows:

/a/ not stressed
/'a/ stressed
/'a:/ stressed and long

This solution allows any stress information to be

encoded into the phone name, so the ANN can learn
more about different pronunciations of each phone.

5.2. Aligning patterns

Pattern alignment [11] is automatically solved by
looking up the pronunciation rules applied during the
generation of the phonic transcription for each word in
the training set.

Defined as the transformation T of the word string
(ρ) into the phonetic string (p) by applying the rule ℜ
(see section 3):

p =T(ℜ(ρ))

the alignment problem between the word character
string and the corresponding phone character string is
implemented during run time when the rule is applied.
Implementation is based on the following algorithm:

if sizeof(p) = sizeof(ρ)
 no alignment required
 else
 cover ←ℜ.cover

 if cover > 1
 alignment required
 endif
endif

If alignment is not required, a one-to-one
association between one character of the word ρ and
one phone is established. If alignment is required, a
many-to-one association between a number equal to
cover characters of the word ρ and one phone
followed by cover-1 null phones (coded as -) is
established.

Applying this method to the Italian word GOGNA,
yields the following alignment:

 G = /_g/
 O = /’o/
 G = /J:J/
 N = /-/ ← null phone inserted
 A = /a_/

The applied rules are the following:

 !(G) = /_g/ cover=1
 …
 (O)$$# = /’o/ cover=1
 …
 (GN)#! = /J:J/ cover=2
 …
 (A)! = /a_/ cover=1
 …

Once alignment is complete, the sliding window

algorithm is applied to the transcribed word,
generating the following training array (based on a
nine-character window):

 _ _ _ _ _ G O G N A /_g/
 _ _ _ _ G O G N A _ /’o/

 _ _ _ G O G N A _ _ /J:J/
 _ _ G O G N A _ _ _ /-/

 _ G O G N A _ _ _ _ /a_/
 G O G N A _ _ _ _ _ /-/
 O G N A _ _ _ _ _ _ /-/
 G N A _ _ _ _ _ _ _ /-/
 N A _ _ _ _ _ _ _ _ /-/
 A _ _ _ _ _ _ _ _ _ /-/

5.3. Training

Training is performed by running the
backpropagation algorithm. This algorithm is difficult
to set up for application-specific purposes because
several parameters must be trimmed for optimal
learning, the number of hidden units, initial random
weight, learning rate, the coefficient of momentum,
and stopping point (how many training epochs to run)
[12].

Several experiments were conducted to find the best
combination of such setup parameters. The following
setup was identified:

 Input layer units: 324

Hidden layer units: 80
Output layer units: 394
Learning epochs: 400
Learning rate: 0.15
Momentum: 0.9

As a training set, 720 Italian words are used. Each

input word is assigned a set of phone codes, each
including all the parameters that make the word sound
natural when played through the synthesizer. The
network learns the relationship between input words
and output parameters through iteration. After 50
passes (epochs) through the training set, the
phonetized text will be understandable, and after 100
passes, the error rate will be less than 2%. After 400
training passes the error rate is below 1%. This
represents an ANN stable state useful for synthesizing
good-quality speech.

To test the ANN thus set up, an Italian text was
conveyed into the system and the corresponding

utterance was produced by driving a concatenative
speech synthesizer.

Figure 10. Learning curve after 400 epochs of 720

patterns.

6. Performance evaluation

To evaluate the trained FFBP-ANN’s performance,
a special-purpose environment that implements the
soft-computing and hard-computing text-to-speech
models (TXT2SP) was developed. Both
implementations share the pronunciation rule set,
allowing significant comparison.

Hard-computing (algorithmic) implementation of
the text-to-speech uses a set of coded phonetic rules to
execute the text-to-phones transcription. Soft-
computing (ANN) implementation uses the trained
knowledge obtained during learning, from the same set
of coded phonetic rules used to run the hard-
computing implementation.

The same word (text) can be sent as input to both
transcription processes (soft- and hard-computing) and
compared at the phonetic level. Utterance-level
comparison is also available because the concatenative
speech synthesizer is integrated into the TXT2SP
developing environment.

The TXT2SP development environment also
provides the functions needed to set up and train the
ANN, as well as to compare ANN performance with

rule-based implementation, using a text file as test
input.

Figure 11. Graphic user interface of the special-
purpose developed environment (TXT2SP) used to

compare ANN implementation with rule-based
implementation of text-to-speech synthesis.

The hard-computing implementation proves faster.

But it fails if the word is not included in the
pronunciation rule set. This happens when a
proparoxytone word is tested.

For example, the proparoxytone word

CEMBALO = /_tS/’e/m:/b/a/l/o_/

is not in the pronunciation rule set, so the hard-
computing implementation incorrectly transcribes it as
follows (default):

CEMBALO = /_tS/e/m/b/’a:/l/o_/

However, the soft-computing implementation runs
almost correctly:

CEMBALO = /_tS/’e/m/b/a/l/o_/

It fails only with regard to the duration of /m/
phone. Moreover, it identifies the correct stress
position. This demonstrates the ANN’s very high

generalization ability despite the limited number of
exception words furnished in the 720 word-based
training set. Increasing the number of exception
words at training time, a more robust generalization
ability can be embedded in the ANN.

Increasing training-set size implies increasing the
ANN’s learning time. This time can be trivially
reduced by using a faster executing processor or a
parallel executable software coding of the ANN. A
smarter solution can be found in ANN development
strategy.

A test was performed to compare the learning speed
of an ANN with binary-coded output to that of an
ANN with binary-decoded (one-in-position) output.
This test showed that the one-in-position ANN learns
faster, as shown in fig. 12.

Figure 12. Learning speed is better for one-in-
position coding at output layer level.

7. Conclusions

An FFBP-ANN-based engine for text-to-phone
transcription is being developed to act as the back end
for phonetic synthesizers. It can be trained
automatically if pronunciation rules are available. Only
a set of words is needed for training.

The ability of the trained FFBP-ANN to generalize
shows that this approach to text-to-speech becomes
advantageous compared to current TTS
implementations when embedded systems are the
target.

Future efforts will strive to solve the problem of
automatically generating the pronunciation rule set for
a given language starting from text only. A further aim

will be to develop an ANN-based speech synthesizer
that can be embedded in an SoC solution.

8. References

[1] C. Bishop, “Neural Networks for Pattern
Recognition”. Oxford University Press, 1995.

[2] S. Haykin, “Neural Networks A Comprehensive
Foundation”. Prentice Hall, 1999.

[3] D. P. Morgan, C. L. Scofield, “Neural Networks
and Speech Processing”, Kluwer Academic Publishers,
1991.

[4] T. J. Sejnowski, C. R. Rosenberg, “Parallel
Networks that Learn to Pronounce English Text”.
Complex System Publications, 1987.

[5] M. Rahim, C. Goodyear, “Articulatory Synthesis
with the Aid of a Neural Net”, in Proceedings
ICASSP, Glasgow, Scotland, May 1989, pp. 227-230.

[6] M.S. Scordilis, J.N. Gowdy, “Neural Network
Based Generation of fundamental frequency contours”,
in Proceedings of ICASSP, Glasgow, Scotland, May
1989, pp. 219-222.

[7] F. Hendessi, A. Ghayoori, T.A. Gulliver, “A
Speech Synthesizer for Persian Text Using a Neural
Network with a Smooth Ergodic HMM”, ACM
Transactions on Asian Language Information
Processing, Vol. 4, No. 1, March 2005.

[8] G. Bakiri, T. G. Dietterich, ”Achieving High-
Accuracy Text-to-Speech with Machine Learning”, In
R. I. Damper, editor, Data Mining Techniques in Speech
Synthesis. Chapman and Hall, New York, NY, 2002.

[9] J. A. Bullinaria, “Representation, Learning,
Generalization and Damage in Neural Network Models
of reading aloud “. Edinburgh University Technical
Report, 1994.

[10] JOONE, Java Object Oriented Neural Engine,
http://www.joone.org.

[11] C. X. Ling, H. Wang, “Alignment Algorithms for
learning to read aloud”. IJCAI, 1997.

[12] M. Moreira, E. Fiesler, “Neural Networks with
Adaptive Learning Rate and Momentum Terms”.
IDIAP Technical report, 1995.

