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Abstract 
This manuscript is the result of research 

conducted towards the production of meta-data to be 
used as inputs to neural networks. It is essentially a 
preliminary attempt towards the use of an evolutionary 
approach to interpret the significance which time 
series data pose on the behavior of mountainous water 
supplies, proposing a model which could be effectively 
used in the estimation of the average annual water 
supply for the various mountainous watersheds. The 
data used for the training and testing of the system 
refer to certain watersheds spread over the island of 
Cyprus and span a wide temporal period. The method 
proposed incorporates an evolutionary process to 
manipulate the time series data of the average monthly 
rainfall recorded by the measuring stations, while the 
algorithm includes special encoding, initialization, 
performance evaluation, genetic operations and 
pattern matching tools for the evolution of the time 
series into significantly sampled data. 
Keywords: Genetic algorithms; Artificial neural 
networks; Maximum volume of water flow; Average 
annual water supply; Evolutionary time series 
processing; Genetic ANN training. 
 
 

1. Introduction 

Cyprus, the third largest island in the Mediterranean 
Sea after Sicily and Sardinia, is geographically situated 
in the eastern Mediterranean, south of the Anatolian 
Peninsula of the Asian mainland. It is situated among 
Hellas to its west / north-west side, east to Syria, 
Lebanon and Israel and north to Turkey. Although 
commonly referred to as part of the Middle East, it is 

closely alligned with Europe (http://www. 
moi.gov.cy/pio). 
The landscape, mostly mountainous at the highest 
percentage, includes the central plain of Mesaoria, with 
the Kyrenia and Pentadactylos mountains to the north 
and the Troodos mountain range to the south and west, 
while there are also scattered, but significant, plains 
along the southern coast. The climate is temperate 
Mediterranean where dry summers follow variably 
rainy winters. Summer temperatures range from warm 
at higher elevations in the Troodos mountains to hot in 
the lowlands. Winter temperatures are mild at lower 
elevations, where snow rarely occurs, but are 
significantly colder in the Troodos mountains. During 
the recent years the dry seasons are intense, rendering 
the lack of drinking water as a high pressure on the 
citizens. On the other hand, floods, lower temperatures 
and torrential rains throughout the wet season 
constitute an unusual picture for this time of year for 
the island (www.hri.org/news/cyprus/riken/2001/-
09.riken. html, www.mediterraneangardensociety.org), 
causing erosion problems and destroy settlements and 
infrastructure. There is no doubt whatsoever that 
proper and efficacious water management is the key 
factor not only for the well being of the citizens and the 
satisfaction of their daily needs, but for the 
achievement of sustainable development as well. 

The primary aim of the present survey, a successor 
to previous research work conducted by Iliadis and 
Maris [6], is to present a preliminary attempt towards 
the design and implementation of an evolutionary 
technique in the line of producing meta-data for the 
training and testing of Artificial Neural Networks 
(ANN). The meta-data were produced out of raw time 
series data, in the hopes of eliminating the noise 
inherent in the initial data, in order to develop a highly 
adaptive evolutionary model towards decision making 



in water resources management. The genetic algorithm 
governing the meta-data production performs a 
forward crawl through the input space in search of 
combination of genes which outperform their brethren 
after they have been used as inputs to the neural 
network, the performance of which is evaluated by 
means of its root mean square error. The network 
performs an effective estimation of the Average 
Annual Water Supply (AAWS) on an annual basis, for 
each mountainous watershed of Cyprus, since the 
estimation of this factor plays a highly important role 
to the management of mountainous water resources, as 
it is closely related to the mountainous watershed 
fermentations, as well as to the potential torrential risks 
[5][12][13][14]. The input data consist of factors 
which, according to their type may effectively be 
classified into two categories: structural data in the 
sense that they remain constant variables for the whole 
time span of the research, as opposed to dynamic data, 
category which holds ever changing variables. 

The parental research of Iliadis and Maris used 
three structural input parameters, namely the area of 
watershed, the altitude and the slope and two dynamic 
ones, the average annual and the average monthly rain 
height. For the time span of each dynamic factor, the 
monthly measurements had been averaged and the 
result was used as input. The research key point was 
that it used only two dynamic parameters and among 
them, only the rain height should be monitored 
monthly and annually, rendering the acquisition of 
model inputs effortless and inexpensive both 
financially and in human resources. The current 
research differs in that it does not utilize the average 
annual rain fall; instead, we have elected to bring the 
whole monthly average measurements into play and to 
search for the best combination of measurements as 
inputs to the neural network. The key feature of this 
attempt is that while it keeps the data acquisition at low 
level of expenses, it also goes to a lower level of input 
data search, essentially rendering the input vector more 
precise. Once trained, the proposed ANN continues to 
be highly adaptable to various regions and places, 
provided that the inputs will have been manipulated 
according to the genetic algorithm decisions. 

1.1 The ANN Concept. 

The human brain, is a highly complicated biologic 
machine, capable of solving innumerable kinds of 
problems, from the most simplistic to highly complex 
ones. Artificial Neural Networks (ANN) were 
developed in an attempt to simulate the function of the 
human brain. An ANN is a software device consisting 
of a number of simple processing elements 
interconnected and operating in parallel. Each neuron 
is only aware of the signals it receives from other 

connected neurons and the information it sends from 
time to time to other processing elements. In this 
context, an ANN is a computer program capable of 
learning from examples through iteration. In most of 
the times no prior knowledge of the input data is 
required, because the training process is essentially a 
search for the best synaptic weight vector. Learning is 
the process of adapting or modifying the neurons’ 
connection weights in response to stimuli presented as 
inputs requiring the presence of a known output. This 
process enables the network to learn to solve problems 
by adequately adjusting the strength of the connections 
between their processing elements according to the 
input data and the desired outputs. ANNs have been 
vastly used for recognizing patterns in the input data 
space or to extract simple rules for complex problems 
according to their inputs. Key factor in every neural 
network training is generalization, the capability of the 
network to predict “unseen” inputs merely with the 
knowledge that has been acquired during the training 
process, in which a stimulus presented in the output 
corresponds to a desired response for a given input.  

The ANN concept is currently widely used in 
various research works, ranging from pattern 
recognition, quality control, classification and have 
gained wide recognition in modelling many processes 
in engineering [7][15][10][4][11][2]. Lately they have 
been used to predict wood water isotherm or sorption 
isotherms in food science [1][9] and numerous other 
disciplines. A neural network may learn by example 
and outmatches rivalling techniques in that it may use 
its knowledge under untrained circumstances 
incorporating a large number of variables [3]. 

1.2 A Brief Reference to the Genetic 
Algorithms Concept 

Genetic algorithms are inspired by evolutionary 
biology, and especially driven by the Darwinian axiom 
of the “survival of the fittest”, incorporating numerous 
biological procedures such as inheritance, selection, 
crossover (or recombination) and mutation. They are 
mostly implemented as computer simulations which 
search for better solutions to a given optimization 
problem. The genetic algorithm starts out with an, 
often random, initial population of encoded 
representations of candidate solutions. These 
representations are referred to as chromosomes, 
genotypes or genome, while the candidate solutions are 
referred to as phenotypes. The algorithm proceeds by 
generations each of which is comprised by genotypes 
of the previous generation, which are elected basically 
by their fitness and modified on the grounds of a 
possible recombination or mutation to form a new 
population of higher overall fitness. An overview of 
genetic algorithms and their implementation in 



computer science / machine learning may be found in 
http://www.doc.ic.ac.uk/~nd/surprise 
_96/journal/vol4/tcw2/report.html#SHOP. 

2. Necessity for the Genetically Trained 
ANN Development 

It is beyond doubt that an innovative approach 
may come in handy, especially considering the fact that 
after time – consuming studies and raw data 
acquisition, the Republic of Cyprus did not come up 
with a viable solution to the problem of water 
resources management. According to Iliadis and Maris 
[6], the classical statistical analysis failed to support 
this solution, although newer attempts have been 
conducted towards this purpose. The recent findings of 
the undergoing research have revealed that the water 
resources of the island are much lower than it was 
initially regarded. The correct number of the island’s 
water reservoir is now considered to be approximately 
40% lower than the original belief. This fact urges for a 
new and perhaps more reliable approach. 

3. Materials and Methods 

3.1. Research Area and data acquisition 

The research area, as in the initial research [6], 
covers all of the mountainous watersheds which are 
under the administration of the Republic of Cyprus. 
Specifically, the island is divided into nine water 
Divisions with a total of seventy Torrential Streams. 
As already noted, the two most important landscape 
characteristics of the island are the Kyrenia and 
Pentadactylos mountains to the north with an altitude 
which reaches 1000 m. and a length of 160 km., and 
the Troodos mountain range to the south and west with 
a maximum altitude of 1951 m. 
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Figure 1. General view of Cyprus mainstreams 

The initial dataset accumulated out of 78 stations 
located at the span of the seventy torrential streams. 
The time span of the initial data set covered a period of 
28 years, from 1965 to 1993, for most of the stations’ 
measurements. The current research though, did not 
average the rainfall time series, but rather took under 
consideration the average for every month for each 
year. Figure 1 depicts a general view of the island’s 
mainstreams, while Figure 2 presents the average 
annual rain height (mm) from 1970 to 2000. Table 1 on 
the other hand presents a small indicative sample of the 
data used. All the measurement stations along with the 
data which they have collected for the whole time span 
of the research, belong to the Ministry of Agriculture 
Natural Resources and Environment of Cyprus [8]. 
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Figure 2. Average annual rain height (mm) 

from 1970 to 2000. 
Table 1. Sample of the gathered data 

 Pattern 1 Pattern 2 Pattern 3 

Station Code 1113 614 95 1117 898 95 1142 915 15 

Year 1965-66 1965-66 1979-80 
M1 229 201 195 
M2 62 67 165 
M3 89 77 135 
M4 13 8 25 
M5 4 4 9 
M6 0 0 0 
M7 0 0 0 
M8 0 1 5 
M9 70 54 1 

M10 146 102 60 
M11 23 19 133 
M12 143 146 169 

Fn (km2) 38 110 22 
Qmax 54 120 8.6 

P(mm) 770 660 810 
H (m) 550 8 600 

Jk (%) 4.2 2.2 8 
Qmy(m3/s) 420.62 611.95 330.6 



where M1 – M12: the months of the year, Fn: Area of 
Watershed, Qmax: Maximum supply, P: Average 
annual Rainfall, H: Absolute altitude, Jk: Absolute 
slope, Qmy: Average annual water supply. 
In this context we accumulated a range of 1411 records 
covering the aforementioned period of time. It was 
essential for our code to remove any record which had 
missing values in one or more of the studied factors, so 
this procedure left us with 1273 patterns of data (inputs 
and outputs together). This initial recordset was used 
for the formulation of the training and the testing data 
sets, comprising of 1152 and 121 patterns respectively. 
The inputs to the system were the area of the watershed 
(in km2), the absolute altitude (in meters), the absolute 
slope (in percentage) as structural input data, whereas 
the dynamic input data consisted of the maximum 
water supply, the average annual rainfall, as well as the 
average rainfall for each month for each year of 
measurement. The network had only one output, the 
Average Annual Water Supply (in m3/s) 

3.2 The Python Programming Language and 
the Fast Artificial Neural Network Library 
(FANN) 

The research team chose to develop code with the 
much promising language of Python. This selection 
was two-fold propulsed: on one hand to gain insight in 
one of the most rapidly developing and integrated 
computer programming languages available today and, 
on the other, to use freely distributable open source 
products. Python, as proved out to be, is an easy to 
learn, yet powerful programming language, 
incorporating efficient high level data structures as 
well as a simple yet effective approach to object 
oriented programming. Being a multi platform 
language, it allows for programs to be developed on 
most of the platforms available today. Our source was 
writen in Ubuntu Linux, but can be run on a windows – 
based system just as easily. Python is an interpeted 
language. This, of course, renders it slower than any 
compiled language, but the robust approach it offers 
more than compensates for it. Being an open source 
project, Python is supported by a vast number of freely 
available libraries, in addition to the extensive 
embedded library of its own. In addition, the 
interpreter is easily extended with new functions and 
data types implemented in C or C++, standard objects 
and/or modules. 

Python, as a dynamically developed programming 
language, is supported by a vast number of freely 
distributed libraries. One of these is the Fast Artificial 
Neural Network library (FANN), a free open source 
neural network library implementing multilayer 
artificial neural networks in C, with support for both 

fully connected and sparsely connected networks, 
while cross-platform execution in both fixed and 
floating point are supported and includes a framework 
for easy handling of training data sets. The FANN 
library proved out to be easy to use, versatile, well 
documented and fast and was used by the research 
team so as to construct the neural network model of the 
application. The evolutionary process was coded in 
Python from scratch, while the neural network was 
embedded into it, in order to provide the fitness for the 
population in each generation and to contribute in the 
selection of the fittest chromosome. 

4. The Algorithm 

Our research in its essence was to develop a 
commonly used procedure for the production of meta-
data from time series, so the implementation of an 
evolutionary process, specifically a genetic algorithm, 
seemed as an one-way road. Roughly the algorithm 
should be able to produce an initially random 
population of ‘trainers’ in its initial generation, that is 
chromosomes behaving in certain ways and able to 
appropriately manipulate the initial raw time series. 
The products of the trainers should be assigned a 
‘fitness’, that is a floating point value from some 
function. In our case the fitness of each evolutionary 
produced time series was the root mean square error of 
a neural network. Thereinafter, the next and subsequent 
generations of the algorithm should be formulated 
according to a selection policy which should elect the 
fittest members of the previous generation of trainers. 

4.1 Initial Data Manipulation 

The application starts out by incorporating the 
initial training and testing data set, and then analyzing 
it in order to create the initial random population of 
trainers / chromosomes. It collects the initial training 
and testing data and saves them to a locally created 
nested list, each sublist of which corresponds to one 
line of the initial raw data time series train and testing 
files. Consequently, the data is analyzed and the 
portion of it that corresponds to the initial time series 
(in our case the twelve values corresponding to the 
rainfall averages for the months of each year) will be 
used for the creation of the basic training population of 
the algorithm, while the rest of the initial data, which 
correspond to the structural and dynamic input non 
time series data are set aside for future use. 

The initial generation of the algorithm starts out 
with a user defined number of training chromosomes, 
which comprise the basic trainer. Each chromosome of 
the trainer contains twelve randomly chosen bits in the 
range of [0, 1], plus one bit in the beginning of the 



chromosome which stands out as a mechanism bit, 
driving and manipulating the behavior of the whole 
chromosome. So the chromosomes of the trainer for 
each generation is a binary list of n+1 elements each, 
where n is the initial time series data (twelve for our 
case) and the excess gene is the “mechanism gene” of 
the chromosome. The function of the trainer is to 
essentially “map” its genes to the initial training and 
testing data sets, according to its mechanism gene. If 
this is 0, then it stands out as a “Discard-All-Zeros” 
resampling function. In this case, the time series will 
be stripped off of its values for which the 
corresponding genes of the trainer is 0. On the other 
hand, if it is 1, then it stands out as a “First-One-Last-
Zero” clustering mechanism for the initial data. In this 
last case, the trainer extracts the everage of the time 
series elements for every group of its own genes which 
start with the first 1 and end with the last zero. 

It is essential to be cleared at this point that the 
trainer of the initial generation of the algorithm 
explicitly contains a chromosome having all of its 
genes equal to 1, so as to bring forth and test the initial 
time series unaltered, along with all other tests 
conducted. 

Following the mapping of the trainer 
chromosomes to the time series training and testing 
data, is the joining phase, in which each “genetically” 
produced time series training list will again embed the 
structural and dynamic data from which was initially 
deprived, in order to be genetically evolved. In the next 
phase neural training and testing comes into play. 

4.2 Neural Training and Testing 

In the beginning we confronted the dilemma of 
constructing a new neural network structure from the 
ground up, making a variety of testing and trial and 
error procedures, or to follow the initial research and 
test the algorithm against the original findings. We 
chose to proceed with the latter solution, so as to be 
able to compare the results on more steady grounds. 
The only alterations which we were unable to avoid 
were the changing in the input layer of the neural 
network. That happened because each trainer produces 
different kind of data of varying inputs, although the 
output remains unchanged. The code was enhanced 
with a neural network object from the FANN library, 
which was used as a landmark for the fitness of the 
chromosomes. The Neural Network object was created 
and trained as a standard backpropagation Multi Layer 
Perceptron (MLP), with 3 layers: one input layer with 
varying neurons (according to the input training and 
testing file), one hidden layer of 9 neurons according to 
the initital research and, finally, an output layer of one 
neuron, predicting the average annual water supply. 
The fact that a neural network may perform well on its 

training data does not necessarily ensure that is a good 
module. The only positive indication that a network 
performs well is its generalization capabilities. As 
generalization we conceive the ability of the neural 
network to predict correctly on new ‘unseen’ data. We 
utilized the standard way to test an ANN in our 
research by setting aside a number of initial training 
patterns to formulate the testing data set [3]. The 
fitness function implemented later in the genetic 
algorithm takes under consideration the testing error of 
the network, the error that is derived by patterns which 
were not used at all during the training phase. 
The neural object for the application returns the Root 
Mean Square error for the testing data each time.The 
input layer of the neural network object was designed 
so as to be auto – formatted according to each training 
and testing file that came in turn. This was 
implemented via the create_standard_array() function 
of the FANN library which, among others, permits for 
such a behaviour of the network. We should note at 
this point that before proceeding to the formulation of 
the algorithm, we conducted a series of tests in order to 
verify that the <inputs>/9/1 structure of the network 
was an acceptable choice for our own data. The series 
of tests was realized by the cascadetrain_on_data() 
function of the library. The module of cascade training 
is totally different from ordinary training, permitting 
the network to start out empty in the hidden layer. 
Then, as training starts and continues, it adds neurons 
one by one and layer by layer, until an optimal neural 
network structure is reached (http://leenissen.dk/fann). 
For each neuron added we tried several activation 
functions and training algorithms. Table 2 shows the 
activation functions tried. 

Table 2. Activation Functions used 
Activation 
Function 

Dependent 
Variable 
Span 

Description 

Linear -inf < y < inf y = x*s, d = 1*s 
Threshold  x < 0 -> y = 0, 

x >= 0 -> y = 1 
Sigmoid 0 < y < 1 y = 1/(1 + exp(-2*s*x)) 

d = 2*s*y*(1 - y) 
Sigmoid 
Symmetric 

-1 < y < 1 y = tanh(s*x) = 2/(1 + 
exp(-2*s*x)) – 1 
d = s*(1-(y*y)) 

Gaussian 0 < y < 1 y = exp(-x*s*x*s) 
d = -2*x*s*y*s 

Gaussian 
Symmetric 

- 1 < y < 1 y = exp(-x*s*x*s)*2-1 
d = -2*x*s*(y+1)*s 

Where x is the input to the activation function, y is the 
output, s is its steepness and d is the derivation 
(http://leenissen.dk/fann). 



The training algorithms we tried include Incremental 
Training, Batch Training and the popular Rprop 
algorithm. The incremental training constitutes the 
basic standard backpropagation algorithm, where the 
weights of the neural network are updated immediately 
after each trianing pattern is shown to the network, 
producing a numerous weight updating during a single 
epoch of training. Batch training on the other hand, is 
implemented by updating the weights once after the 
epoch has been completed, that is after the root mean 
square error has been calculated for the whole trianing 
set. This category includes both the simple batch 
training and the rprop training algorithms. 

The best results were achieved with the Rprop 
training algorithm in combination with the Sigmoid 
Symmetric (hyperbolic tangent) activation function of 
the neurons. This procedure confirmed that the 
aforementioned proposed structure was acceptable for 
most of the cases. 

By performing the neural network trining for all 
the evolutionary produced time series data and 
acquiring the network root mean square error for each, 
we assigned the RMS error to the corresponding 
trainer. Having initially set an ideal desired neural 
network error, the distance of the recorded error from 
the ideal already set, should suffice to stand as the 
fitness value for the corresponding chromosome. The 
algorithm proceeded in the selection of the fittest 
chromosomes for the next generation. 

4.3 Selection Policy and Intermediate 
Generation 

In order to formulate each next generation of the 
algorithm, there was a need to create a ‘behind-the-
scenes’ intermediate generation at the end of the 
current generation. This holds the fittest members of 
the generation, as well as other chromosomes not so fit. 
The policy for the selection incorporated a stochastic 
procedure. In order to send a copy into the intermediate 
generation, a chromosome should have fitness under a 
user defined arbitrary value. Moreover, there was also 
a test for the real RMS value for every chromosome: if 
the RMS value was smaller or equal to a randomly 
produced real number in an arbitrary range, then a 
second copy of the chromosome should be copied to 
the intermediate generation. The intermediate 
generation should be essentially a set of trainers with 
population twice as much as the original trainer 
population. If after the application of the 
aforementioned selection policy the population of the 
intermediate generation was not the desired one, the 
algorithm continued to copy the fittest members of the 
original trainer population. 
 

The following diagram graphically illustrates the 
evolutionary training procedure. 

4.4 Formulation of the Next Generation 

At the point when the population of the 
intermediate generation was fixed, the genetic 

Initialization Stage 
- Pick train/test files 
- Set crossover/mutation thresholds 
- Set NN desired error 

Raw Data Manipulation Stage 
- Collect initial raw data 
- Split data into Time Series (TS) and non-

TS data 
- Derive basic information on the TS

Generation Pre-processing 
- Create the fundamental TS object 
- Create the basic trainer population 

Basic Generation Structure (data mapping 
and NN training) 
- Map the pattern of every gene of the 

trainer to the TS data 
- Reconstruct initial data by adding the 

saved non-TS data 
- NN training/testing 
- Link each gene to its corresponding RMS 

error 

Intermediate Generation 
- Stochastic selection of the fittest members 
- Formulation of the basic trainer population 

for the next generation 

Next Generation 
- Probabilistic crossover and mutation for 

the genes of the basic trainer of the interim 
generation 

- Restart the basic generation procedures

Algorithm exits when the desired NN 
error is reached or superseded 



mechanisms of the algorithm formulate the next 
generation. For each randomly picked pair of 
chromosomes of the intermediate generation there is an 
arbitrary set probability of selection, recombination 
(crossover) or mutation. Recombination of 
chromosomes is the procedure where the parents 
contribute with different supplementary parts of their 
genome in the production of their offspring. In our 
algorithm, the ‘breaking point’ for the chromosome of 
the parent is random within the bounds of the parent 
genome. On the other hand, mutation refers to the 
‘flipping’ of an offspring’s random gene. 

It is well known that, as for all the machine 
learning problems, a proper amount of time should be 
invested in the fine tuning of the mutation and 
recombination probability of the genetic algorithm. An 
excessively small mutation rate may lead to “genetic 
drift”, that is the statistical effect that stems from the 
influence thatprobability poses on the survival of 
alleles (variants of a gene, 0 or 1 in our case) and the 
trait that it confers to the chromosome. A positive 
genetic drift renders the allele paramount in the genetic 
pool, whereas a negative genetic drift may extinct the 
allele. Both limits, either too high, or too low, in the 
genetic drift could potentially pose irreparable damage 
to the genetic pool. The same holds true for the 
crossover probability. It is a fact that a variety of 
crossover and mutation probabilities were tested, 
concluding on selecting 0.4 and 0.005 respectively. 

5. Results 

For every genetic algorithm the aforementioned 
evolutionary process continues until a stopping 
condition is met. The most common terminating 
conditions include the satisfaction of the minimization 
(or maximization) criteria by one or more generations, 
the trapping of the generations to a minimal plateau 
which is not improving by successive generations any 
longer and, finally, if a fixed number of generations 
has been reached. 

The algorithm implemented in this research falls 
under the last category of stopping conditions, mainly 
due to computational power constraints. Instead of 
letting the developed algorithm run for a vast number 
of generations until reaching a solution plateau, we 
chose to allow it to run for five generations, while the 
whole procedure was repeated for five times, in order 
to have a better understanding on the performance of 
the search with various initial starting points. The 
results are illustrated in Table 3 and on Figure 3, where 
it is made clear that the evolutionary process performs 
well, crawling steadily to an optimal solution. 

 

6. Discussion 

It has been made obvious by recent trends in 
climate change that the management of water resources 
is of great importance, especially for a region such as 
Cyprus which has already bear a significant amount of 
environmental pressure. The estimation of the Average 
Annual Water Supply plays a very important role to the 
said water resources management, as it is closely 
related to the mountainous watershed fermentations on 
one hand and to the potential torrential risks on the 
other. It is of great importance for the policy makers to 
have reliable integrated tools at their disposal, tools 
which could inform them about the course of the 
phenomena in the near future. It is also of great 
importance that these tools requirements are kept at as 
lower cost as possible, both at the financial level and at 
the human-day occupation. 

The main advantage of the present research work, 
as well as its parental one, is the fact that it proposes 
the development of a tool for the prediction of a key 
factor in water management and torrential risk and 
elimination, which requires minimal effort and expense 
as it measures only two dynamic input factors. 
Obviously, the structural input data are not to change 
for the relatively small era of measurements that are 
conducted, thus the only factor which is to be 
monitored as precisely as possible on a daily basis is 
rain - height. Furthermore, the developed module can 
be re-adjusted and developed by continuous training, 
as new input data flow in and, provided the availability 
of training data could be proposed for different regions. 

The crucial contribution of the present research 
work is the evolutionary clustering and re-sampling of 
the initial time series data. The advantages of the 
proposed approach are numerous. Firstly, the 
researcher and the developer of the system has a vast 
number of training / testing data at his disposal, 
because now we do not need to average the whole time 
span of measurements of the monthly rain height and 
create only one record of input patterns. Instead, every 
year has become an input pattern for our system, 
effectively multiplying the number of the initial data 
set. Also, the evolutionary process diminishes both the 
total number of inputs, as well as the potential noise 
inherent in the input time series data. This way we 
have succeeded in effectively train the proposed neural 
network and produce reliable estimations, while 
keeping the operating costs at acceptable levels. 

There is always, of course, the invariable dilemma 
of the representation of the gene. In our case, we have 
conducted a number of training scenarios some of 
which included the floating point representation of the 
basic trainer genes, instead of the binary one. This 
configuration though posed a lot of problems and was 
eventually dropped. For one, the whole system was 



very demanding in computing power, partly due to the 
requirements posed by the programming language, as 
well as the structure of the initial row data itself. The 
system also crashed in certain circumstances, when the 
algorithm produced illegal gene values and 
furthermore illegal clustering configurations in the 
time series. 

Although these obstacles were too important to be 
overlooked, the benefits committed by a floating point 
representation of the gene, such as greater variability 
among the offspring and increased probability for the 
algorithm to overcome trapping in luring local minima, 
has posed a challenging prospect for the future. The 
plans of the research team is to essentially widen the 

scope of the algorithm, along with its potential, by 
adding more machine genes at the chromosomes of the 
generation trainers, so as to force them to expand their 
search plane. This development may probably require 
the re-engineering of the core code of the program so 
as to keep its computational demands at as low a level 
as possible. Also, the development of a Graphical User 
Interface (GUI), which could render the application 
friendlier to the average user, could contribute in the 
acceptance of the software to different regions. 
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Figure 3. The course of the evolutionary process 
 
Table 3. Results of the evolutionary process 

Iteration Generation Chromosome RMS Error Distance from set Error 
1 0 1100111010011 0.0106134622 0.0076134622 
1 1 1111011001101 0.0121847362 0.0021847362 
1 2 0100001000011 0.0089017823 0.0010982177 
1 3 0100010001001 0.0093576869 0.0006423131 
1 4 1100010001001 0.0122147424 0.0022147424 
2 0 1100000000000 0.0061973166 0.0038026834 
2 1 0100001000011 0.0078532060 0.0021467940 
2 2 0100001000011 0.0089220124 0.0010779876 
2 3 0100001000011 0.0075098990 0.0024901010 
2 4 1101001011111 0.0105336589 0.0005336589 
3 0 1100000000000 0.0055064529 0.0044935471 
3 1 1101001101101 0.0105042536 0.0005042536 
3 2 1101001001001 0.0102993900 0.0002993900 
3 3 0100001001001 0.0089830988 0.0010169012 
3 4 1100000100111 0.0127581959 0.0027581959 
4 0 1100000000000 0.0053980419 0.0046019581 
4 1 1110100110101 0.0100132720 0.0000132720 
4 2 1101000110101 0.0126448840 0.0026448840 
4 3 1101001101001 0.0103567051 0.0003567051 



4 4 0111100100101 0.0092294285 0.0007705715 
5 0 1100000000000 0.0049562710 0.0050437290 
5 1 1100011000001 0.0124807614 0.0024807614 
5 2 1100000000001 0.0079311285 0.0020688715 
5 3 1100001010001 0.0134370692 0.0034370692 
5 4 1100000000001 0.0070299043 0.0029700957 
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