
Feature Extraction for Time Series Data: an Artificial Neural Network Evolutionary
Training Model for the Management of Mountainous Watersheds.

Thomas J. Glezakos1, Theodore A. Tsiligiridis1, Lazaros S. Iliadis2, Constantine P. Yialouris1,
Fotios P. Maris2, Konstantinos P. Ferentinos1

1Agricultural University of Athens, Department of Science, Laboratory of Informatics, Iera Odos
75, 11855, Athens, Hellas, tsili@aua.gr

2Democritus University of Thrace, Department of Forestry & Management of the Environment &
Natural Resources, Pantazidou 193, 68200 Orestiada, Thrace, Hellas, liliadis@fmenr.duth.gr

Abstract
This manuscript is the result of research

conducted towards the production of meta-data to be
used as inputs to neural networks. It is essentially a
preliminary attempt towards the use of an evolutionary
approach to interpret the significance which time
series data pose on the behavior of mountainous water
supplies, proposing a model which could be effectively
used in the estimation of the average annual water
supply for the various mountainous watersheds. The
data used for the training and testing of the system
refer to certain watersheds spread over the island of
Cyprus and span a wide temporal period. The method
proposed incorporates an evolutionary process to
manipulate the time series data of the average monthly
rainfall recorded by the measuring stations, while the
algorithm includes special encoding, initialization,
performance evaluation, genetic operations and
pattern matching tools for the evolution of the time
series into significantly sampled data.
Keywords: Genetic algorithms; Artificial neural
networks; Maximum volume of water flow; Average
annual water supply; Evolutionary time series
processing; Genetic ANN training.

1. Introduction

Cyprus, the third largest island in the Mediterranean
Sea after Sicily and Sardinia, is geographically situated
in the eastern Mediterranean, south of the Anatolian
Peninsula of the Asian mainland. It is situated among
Hellas to its west / north-west side, east to Syria,
Lebanon and Israel and north to Turkey. Although
commonly referred to as part of the Middle East, it is

closely alligned with Europe (http://www.
moi.gov.cy/pio).
The landscape, mostly mountainous at the highest
percentage, includes the central plain of Mesaoria, with
the Kyrenia and Pentadactylos mountains to the north
and the Troodos mountain range to the south and west,
while there are also scattered, but significant, plains
along the southern coast. The climate is temperate
Mediterranean where dry summers follow variably
rainy winters. Summer temperatures range from warm
at higher elevations in the Troodos mountains to hot in
the lowlands. Winter temperatures are mild at lower
elevations, where snow rarely occurs, but are
significantly colder in the Troodos mountains. During
the recent years the dry seasons are intense, rendering
the lack of drinking water as a high pressure on the
citizens. On the other hand, floods, lower temperatures
and torrential rains throughout the wet season
constitute an unusual picture for this time of year for
the island (www.hri.org/news/cyprus/riken/2001/-
09.riken. html, www.mediterraneangardensociety.org),
causing erosion problems and destroy settlements and
infrastructure. There is no doubt whatsoever that
proper and efficacious water management is the key
factor not only for the well being of the citizens and the
satisfaction of their daily needs, but for the
achievement of sustainable development as well.

The primary aim of the present survey, a successor
to previous research work conducted by Iliadis and
Maris [6], is to present a preliminary attempt towards
the design and implementation of an evolutionary
technique in the line of producing meta-data for the
training and testing of Artificial Neural Networks
(ANN). The meta-data were produced out of raw time
series data, in the hopes of eliminating the noise
inherent in the initial data, in order to develop a highly
adaptive evolutionary model towards decision making

in water resources management. The genetic algorithm
governing the meta-data production performs a
forward crawl through the input space in search of
combination of genes which outperform their brethren
after they have been used as inputs to the neural
network, the performance of which is evaluated by
means of its root mean square error. The network
performs an effective estimation of the Average
Annual Water Supply (AAWS) on an annual basis, for
each mountainous watershed of Cyprus, since the
estimation of this factor plays a highly important role
to the management of mountainous water resources, as
it is closely related to the mountainous watershed
fermentations, as well as to the potential torrential risks
[5][12][13][14]. The input data consist of factors
which, according to their type may effectively be
classified into two categories: structural data in the
sense that they remain constant variables for the whole
time span of the research, as opposed to dynamic data,
category which holds ever changing variables.

The parental research of Iliadis and Maris used
three structural input parameters, namely the area of
watershed, the altitude and the slope and two dynamic
ones, the average annual and the average monthly rain
height. For the time span of each dynamic factor, the
monthly measurements had been averaged and the
result was used as input. The research key point was
that it used only two dynamic parameters and among
them, only the rain height should be monitored
monthly and annually, rendering the acquisition of
model inputs effortless and inexpensive both
financially and in human resources. The current
research differs in that it does not utilize the average
annual rain fall; instead, we have elected to bring the
whole monthly average measurements into play and to
search for the best combination of measurements as
inputs to the neural network. The key feature of this
attempt is that while it keeps the data acquisition at low
level of expenses, it also goes to a lower level of input
data search, essentially rendering the input vector more
precise. Once trained, the proposed ANN continues to
be highly adaptable to various regions and places,
provided that the inputs will have been manipulated
according to the genetic algorithm decisions.

1.1 The ANN Concept.

The human brain, is a highly complicated biologic
machine, capable of solving innumerable kinds of
problems, from the most simplistic to highly complex
ones. Artificial Neural Networks (ANN) were
developed in an attempt to simulate the function of the
human brain. An ANN is a software device consisting
of a number of simple processing elements
interconnected and operating in parallel. Each neuron
is only aware of the signals it receives from other

connected neurons and the information it sends from
time to time to other processing elements. In this
context, an ANN is a computer program capable of
learning from examples through iteration. In most of
the times no prior knowledge of the input data is
required, because the training process is essentially a
search for the best synaptic weight vector. Learning is
the process of adapting or modifying the neurons’
connection weights in response to stimuli presented as
inputs requiring the presence of a known output. This
process enables the network to learn to solve problems
by adequately adjusting the strength of the connections
between their processing elements according to the
input data and the desired outputs. ANNs have been
vastly used for recognizing patterns in the input data
space or to extract simple rules for complex problems
according to their inputs. Key factor in every neural
network training is generalization, the capability of the
network to predict “unseen” inputs merely with the
knowledge that has been acquired during the training
process, in which a stimulus presented in the output
corresponds to a desired response for a given input.

The ANN concept is currently widely used in
various research works, ranging from pattern
recognition, quality control, classification and have
gained wide recognition in modelling many processes
in engineering [7][15][10][4][11][2]. Lately they have
been used to predict wood water isotherm or sorption
isotherms in food science [1][9] and numerous other
disciplines. A neural network may learn by example
and outmatches rivalling techniques in that it may use
its knowledge under untrained circumstances
incorporating a large number of variables [3].

1.2 A Brief Reference to the Genetic
Algorithms Concept

Genetic algorithms are inspired by evolutionary
biology, and especially driven by the Darwinian axiom
of the “survival of the fittest”, incorporating numerous
biological procedures such as inheritance, selection,
crossover (or recombination) and mutation. They are
mostly implemented as computer simulations which
search for better solutions to a given optimization
problem. The genetic algorithm starts out with an,
often random, initial population of encoded
representations of candidate solutions. These
representations are referred to as chromosomes,
genotypes or genome, while the candidate solutions are
referred to as phenotypes. The algorithm proceeds by
generations each of which is comprised by genotypes
of the previous generation, which are elected basically
by their fitness and modified on the grounds of a
possible recombination or mutation to form a new
population of higher overall fitness. An overview of
genetic algorithms and their implementation in

computer science / machine learning may be found in
http://www.doc.ic.ac.uk/~nd/surprise
_96/journal/vol4/tcw2/report.html#SHOP.

2. Necessity for the Genetically Trained
ANN Development

It is beyond doubt that an innovative approach
may come in handy, especially considering the fact that
after time – consuming studies and raw data
acquisition, the Republic of Cyprus did not come up
with a viable solution to the problem of water
resources management. According to Iliadis and Maris
[6], the classical statistical analysis failed to support
this solution, although newer attempts have been
conducted towards this purpose. The recent findings of
the undergoing research have revealed that the water
resources of the island are much lower than it was
initially regarded. The correct number of the island’s
water reservoir is now considered to be approximately
40% lower than the original belief. This fact urges for a
new and perhaps more reliable approach.

3. Materials and Methods

3.1. Research Area and data acquisition

The research area, as in the initial research [6],
covers all of the mountainous watersheds which are
under the administration of the Republic of Cyprus.
Specifically, the island is divided into nine water
Divisions with a total of seventy Torrential Streams.
As already noted, the two most important landscape
characteristics of the island are the Kyrenia and
Pentadactylos mountains to the north with an altitude
which reaches 1000 m. and a length of 160 km., and
the Troodos mountain range to the south and west with
a maximum altitude of 1951 m.

20

Scale

40 Km0

Watershed Boundary

Hydrological Region Boundary

2

1 9

3

8

4

6

1 Hydrological Region Number

7

5

Ammochostos

Larnaka

Keryneia

Lefkosia

Lemesos

Pafos

Polis

No data available - Area under Turkish occupation

58 stream-flow stations
used in the analysis

2-2-3-95
2-2-6-60

2-3-4-95

2-2-8-95 2-3-4-80

1-1-7-95

1-2-7-90

1-4-9-80 1-3-8-55

1-4-7-10

2-4-6-80

1-4-4-50

1-4-2-15

2-4-6-70
2-3-8-60 2-8-3-10

2-7-2-75

3-1-1-70

1-1-3-95

1-3-5-05

1-2-4-95

3-3-1-70

3-3-4-95

3-2-1-85

9-6-4-90

9-4-3-80

9-6-7-70

9-6-2-90

3-5-1-50

3-3-3-95

3-4-2-90 3-5-4-40

3-3-3-15

3-3-2-60

3-7-1-50

3-7-3-90

6-1-1-80

6-1-1-85

9-2-3-85

9-2-4-95 8-9-7-50

6-5-3-15
6-5-1-85

8-7-3-60
8-7-2-60

8-7-3-958-8-2-50

8-9-5-40 8-8-2-95

8-5-1-60

8-4-3-40
8-2-2-90

8-4-5-30

8-2-4-10

8-4-5-40

3-7-1-50

7-2-3-50

7-2-6-60

7-2-7-05

Figure 1. General view of Cyprus mainstreams

The initial dataset accumulated out of 78 stations
located at the span of the seventy torrential streams.
The time span of the initial data set covered a period of
28 years, from 1965 to 1993, for most of the stations’
measurements. The current research though, did not
average the rainfall time series, but rather took under
consideration the average for every month for each
year. Figure 1 depicts a general view of the island’s
mainstreams, while Figure 2 presents the average
annual rain height (mm) from 1970 to 2000. Table 1 on
the other hand presents a small indicative sample of the
data used. All the measurement stations along with the
data which they have collected for the whole time span
of the research, belong to the Ministry of Agriculture
Natural Resources and Environment of Cyprus [8].

40 Km20

Scale

0

No data available - Area under Turkish occupation

Ammochostos

Larnaka

Keryneia

Lefkosia

Lemesos

Pafos

Polis

800 - 1000

Mean Annual Precipitation (mm)

200 - 400

600 - 800
400 - 600

> 1000

Figure 2. Average annual rain height (mm)

from 1970 to 2000.
Table 1. Sample of the gathered data

 Pattern 1 Pattern 2 Pattern 3

Station Code 1113 614 95 1117 898 95 1142 915 15

Year 1965-66 1965-66 1979-80
M1 229 201 195
M2 62 67 165
M3 89 77 135
M4 13 8 25
M5 4 4 9
M6 0 0 0
M7 0 0 0
M8 0 1 5
M9 70 54 1

M10 146 102 60
M11 23 19 133
M12 143 146 169

Fn (km2) 38 110 22
Qmax 54 120 8.6

P(mm) 770 660 810
H (m) 550 8 600

Jk (%) 4.2 2.2 8
Qmy(m3/s) 420.62 611.95 330.6

where M1 – M12: the months of the year, Fn: Area of
Watershed, Qmax: Maximum supply, P: Average
annual Rainfall, H: Absolute altitude, Jk: Absolute
slope, Qmy: Average annual water supply.
In this context we accumulated a range of 1411 records
covering the aforementioned period of time. It was
essential for our code to remove any record which had
missing values in one or more of the studied factors, so
this procedure left us with 1273 patterns of data (inputs
and outputs together). This initial recordset was used
for the formulation of the training and the testing data
sets, comprising of 1152 and 121 patterns respectively.
The inputs to the system were the area of the watershed
(in km2), the absolute altitude (in meters), the absolute
slope (in percentage) as structural input data, whereas
the dynamic input data consisted of the maximum
water supply, the average annual rainfall, as well as the
average rainfall for each month for each year of
measurement. The network had only one output, the
Average Annual Water Supply (in m3/s)

3.2 The Python Programming Language and
the Fast Artificial Neural Network Library
(FANN)

The research team chose to develop code with the
much promising language of Python. This selection
was two-fold propulsed: on one hand to gain insight in
one of the most rapidly developing and integrated
computer programming languages available today and,
on the other, to use freely distributable open source
products. Python, as proved out to be, is an easy to
learn, yet powerful programming language,
incorporating efficient high level data structures as
well as a simple yet effective approach to object
oriented programming. Being a multi platform
language, it allows for programs to be developed on
most of the platforms available today. Our source was
writen in Ubuntu Linux, but can be run on a windows –
based system just as easily. Python is an interpeted
language. This, of course, renders it slower than any
compiled language, but the robust approach it offers
more than compensates for it. Being an open source
project, Python is supported by a vast number of freely
available libraries, in addition to the extensive
embedded library of its own. In addition, the
interpreter is easily extended with new functions and
data types implemented in C or C++, standard objects
and/or modules.

Python, as a dynamically developed programming
language, is supported by a vast number of freely
distributed libraries. One of these is the Fast Artificial
Neural Network library (FANN), a free open source
neural network library implementing multilayer
artificial neural networks in C, with support for both

fully connected and sparsely connected networks,
while cross-platform execution in both fixed and
floating point are supported and includes a framework
for easy handling of training data sets. The FANN
library proved out to be easy to use, versatile, well
documented and fast and was used by the research
team so as to construct the neural network model of the
application. The evolutionary process was coded in
Python from scratch, while the neural network was
embedded into it, in order to provide the fitness for the
population in each generation and to contribute in the
selection of the fittest chromosome.

4. The Algorithm

Our research in its essence was to develop a
commonly used procedure for the production of meta-
data from time series, so the implementation of an
evolutionary process, specifically a genetic algorithm,
seemed as an one-way road. Roughly the algorithm
should be able to produce an initially random
population of ‘trainers’ in its initial generation, that is
chromosomes behaving in certain ways and able to
appropriately manipulate the initial raw time series.
The products of the trainers should be assigned a
‘fitness’, that is a floating point value from some
function. In our case the fitness of each evolutionary
produced time series was the root mean square error of
a neural network. Thereinafter, the next and subsequent
generations of the algorithm should be formulated
according to a selection policy which should elect the
fittest members of the previous generation of trainers.

4.1 Initial Data Manipulation

The application starts out by incorporating the
initial training and testing data set, and then analyzing
it in order to create the initial random population of
trainers / chromosomes. It collects the initial training
and testing data and saves them to a locally created
nested list, each sublist of which corresponds to one
line of the initial raw data time series train and testing
files. Consequently, the data is analyzed and the
portion of it that corresponds to the initial time series
(in our case the twelve values corresponding to the
rainfall averages for the months of each year) will be
used for the creation of the basic training population of
the algorithm, while the rest of the initial data, which
correspond to the structural and dynamic input non
time series data are set aside for future use.

The initial generation of the algorithm starts out
with a user defined number of training chromosomes,
which comprise the basic trainer. Each chromosome of
the trainer contains twelve randomly chosen bits in the
range of [0, 1], plus one bit in the beginning of the

chromosome which stands out as a mechanism bit,
driving and manipulating the behavior of the whole
chromosome. So the chromosomes of the trainer for
each generation is a binary list of n+1 elements each,
where n is the initial time series data (twelve for our
case) and the excess gene is the “mechanism gene” of
the chromosome. The function of the trainer is to
essentially “map” its genes to the initial training and
testing data sets, according to its mechanism gene. If
this is 0, then it stands out as a “Discard-All-Zeros”
resampling function. In this case, the time series will
be stripped off of its values for which the
corresponding genes of the trainer is 0. On the other
hand, if it is 1, then it stands out as a “First-One-Last-
Zero” clustering mechanism for the initial data. In this
last case, the trainer extracts the everage of the time
series elements for every group of its own genes which
start with the first 1 and end with the last zero.

It is essential to be cleared at this point that the
trainer of the initial generation of the algorithm
explicitly contains a chromosome having all of its
genes equal to 1, so as to bring forth and test the initial
time series unaltered, along with all other tests
conducted.

Following the mapping of the trainer
chromosomes to the time series training and testing
data, is the joining phase, in which each “genetically”
produced time series training list will again embed the
structural and dynamic data from which was initially
deprived, in order to be genetically evolved. In the next
phase neural training and testing comes into play.

4.2 Neural Training and Testing

In the beginning we confronted the dilemma of
constructing a new neural network structure from the
ground up, making a variety of testing and trial and
error procedures, or to follow the initial research and
test the algorithm against the original findings. We
chose to proceed with the latter solution, so as to be
able to compare the results on more steady grounds.
The only alterations which we were unable to avoid
were the changing in the input layer of the neural
network. That happened because each trainer produces
different kind of data of varying inputs, although the
output remains unchanged. The code was enhanced
with a neural network object from the FANN library,
which was used as a landmark for the fitness of the
chromosomes. The Neural Network object was created
and trained as a standard backpropagation Multi Layer
Perceptron (MLP), with 3 layers: one input layer with
varying neurons (according to the input training and
testing file), one hidden layer of 9 neurons according to
the initital research and, finally, an output layer of one
neuron, predicting the average annual water supply.
The fact that a neural network may perform well on its

training data does not necessarily ensure that is a good
module. The only positive indication that a network
performs well is its generalization capabilities. As
generalization we conceive the ability of the neural
network to predict correctly on new ‘unseen’ data. We
utilized the standard way to test an ANN in our
research by setting aside a number of initial training
patterns to formulate the testing data set [3]. The
fitness function implemented later in the genetic
algorithm takes under consideration the testing error of
the network, the error that is derived by patterns which
were not used at all during the training phase.
The neural object for the application returns the Root
Mean Square error for the testing data each time.The
input layer of the neural network object was designed
so as to be auto – formatted according to each training
and testing file that came in turn. This was
implemented via the create_standard_array() function
of the FANN library which, among others, permits for
such a behaviour of the network. We should note at
this point that before proceeding to the formulation of
the algorithm, we conducted a series of tests in order to
verify that the <inputs>/9/1 structure of the network
was an acceptable choice for our own data. The series
of tests was realized by the cascadetrain_on_data()
function of the library. The module of cascade training
is totally different from ordinary training, permitting
the network to start out empty in the hidden layer.
Then, as training starts and continues, it adds neurons
one by one and layer by layer, until an optimal neural
network structure is reached (http://leenissen.dk/fann).
For each neuron added we tried several activation
functions and training algorithms. Table 2 shows the
activation functions tried.

Table 2. Activation Functions used
Activation
Function

Dependent
Variable
Span

Description

Linear -inf < y < inf y = x*s, d = 1*s
Threshold x < 0 -> y = 0,

x >= 0 -> y = 1
Sigmoid 0 < y < 1 y = 1/(1 + exp(-2*s*x))

d = 2*s*y*(1 - y)
Sigmoid
Symmetric

-1 < y < 1 y = tanh(s*x) = 2/(1 +
exp(-2*s*x)) – 1
d = s*(1-(y*y))

Gaussian 0 < y < 1 y = exp(-x*s*x*s)
d = -2*x*s*y*s

Gaussian
Symmetric

- 1 < y < 1 y = exp(-x*s*x*s)*2-1
d = -2*x*s*(y+1)*s

Where x is the input to the activation function, y is the
output, s is its steepness and d is the derivation
(http://leenissen.dk/fann).

The training algorithms we tried include Incremental
Training, Batch Training and the popular Rprop
algorithm. The incremental training constitutes the
basic standard backpropagation algorithm, where the
weights of the neural network are updated immediately
after each trianing pattern is shown to the network,
producing a numerous weight updating during a single
epoch of training. Batch training on the other hand, is
implemented by updating the weights once after the
epoch has been completed, that is after the root mean
square error has been calculated for the whole trianing
set. This category includes both the simple batch
training and the rprop training algorithms.

The best results were achieved with the Rprop
training algorithm in combination with the Sigmoid
Symmetric (hyperbolic tangent) activation function of
the neurons. This procedure confirmed that the
aforementioned proposed structure was acceptable for
most of the cases.

By performing the neural network trining for all
the evolutionary produced time series data and
acquiring the network root mean square error for each,
we assigned the RMS error to the corresponding
trainer. Having initially set an ideal desired neural
network error, the distance of the recorded error from
the ideal already set, should suffice to stand as the
fitness value for the corresponding chromosome. The
algorithm proceeded in the selection of the fittest
chromosomes for the next generation.

4.3 Selection Policy and Intermediate
Generation

In order to formulate each next generation of the
algorithm, there was a need to create a ‘behind-the-
scenes’ intermediate generation at the end of the
current generation. This holds the fittest members of
the generation, as well as other chromosomes not so fit.
The policy for the selection incorporated a stochastic
procedure. In order to send a copy into the intermediate
generation, a chromosome should have fitness under a
user defined arbitrary value. Moreover, there was also
a test for the real RMS value for every chromosome: if
the RMS value was smaller or equal to a randomly
produced real number in an arbitrary range, then a
second copy of the chromosome should be copied to
the intermediate generation. The intermediate
generation should be essentially a set of trainers with
population twice as much as the original trainer
population. If after the application of the
aforementioned selection policy the population of the
intermediate generation was not the desired one, the
algorithm continued to copy the fittest members of the
original trainer population.

The following diagram graphically illustrates the
evolutionary training procedure.

4.4 Formulation of the Next Generation

At the point when the population of the
intermediate generation was fixed, the genetic

Initialization Stage
- Pick train/test files
- Set crossover/mutation thresholds
- Set NN desired error

Raw Data Manipulation Stage
- Collect initial raw data
- Split data into Time Series (TS) and non-

TS data
- Derive basic information on the TS

Generation Pre-processing
- Create the fundamental TS object
- Create the basic trainer population

Basic Generation Structure (data mapping
and NN training)
- Map the pattern of every gene of the

trainer to the TS data
- Reconstruct initial data by adding the

saved non-TS data
- NN training/testing
- Link each gene to its corresponding RMS

error

Intermediate Generation
- Stochastic selection of the fittest members
- Formulation of the basic trainer population

for the next generation

Next Generation
- Probabilistic crossover and mutation for

the genes of the basic trainer of the interim
generation

- Restart the basic generation procedures

Algorithm exits when the desired NN
error is reached or superseded

mechanisms of the algorithm formulate the next
generation. For each randomly picked pair of
chromosomes of the intermediate generation there is an
arbitrary set probability of selection, recombination
(crossover) or mutation. Recombination of
chromosomes is the procedure where the parents
contribute with different supplementary parts of their
genome in the production of their offspring. In our
algorithm, the ‘breaking point’ for the chromosome of
the parent is random within the bounds of the parent
genome. On the other hand, mutation refers to the
‘flipping’ of an offspring’s random gene.

It is well known that, as for all the machine
learning problems, a proper amount of time should be
invested in the fine tuning of the mutation and
recombination probability of the genetic algorithm. An
excessively small mutation rate may lead to “genetic
drift”, that is the statistical effect that stems from the
influence thatprobability poses on the survival of
alleles (variants of a gene, 0 or 1 in our case) and the
trait that it confers to the chromosome. A positive
genetic drift renders the allele paramount in the genetic
pool, whereas a negative genetic drift may extinct the
allele. Both limits, either too high, or too low, in the
genetic drift could potentially pose irreparable damage
to the genetic pool. The same holds true for the
crossover probability. It is a fact that a variety of
crossover and mutation probabilities were tested,
concluding on selecting 0.4 and 0.005 respectively.

5. Results

For every genetic algorithm the aforementioned
evolutionary process continues until a stopping
condition is met. The most common terminating
conditions include the satisfaction of the minimization
(or maximization) criteria by one or more generations,
the trapping of the generations to a minimal plateau
which is not improving by successive generations any
longer and, finally, if a fixed number of generations
has been reached.

The algorithm implemented in this research falls
under the last category of stopping conditions, mainly
due to computational power constraints. Instead of
letting the developed algorithm run for a vast number
of generations until reaching a solution plateau, we
chose to allow it to run for five generations, while the
whole procedure was repeated for five times, in order
to have a better understanding on the performance of
the search with various initial starting points. The
results are illustrated in Table 3 and on Figure 3, where
it is made clear that the evolutionary process performs
well, crawling steadily to an optimal solution.

6. Discussion

It has been made obvious by recent trends in
climate change that the management of water resources
is of great importance, especially for a region such as
Cyprus which has already bear a significant amount of
environmental pressure. The estimation of the Average
Annual Water Supply plays a very important role to the
said water resources management, as it is closely
related to the mountainous watershed fermentations on
one hand and to the potential torrential risks on the
other. It is of great importance for the policy makers to
have reliable integrated tools at their disposal, tools
which could inform them about the course of the
phenomena in the near future. It is also of great
importance that these tools requirements are kept at as
lower cost as possible, both at the financial level and at
the human-day occupation.

The main advantage of the present research work,
as well as its parental one, is the fact that it proposes
the development of a tool for the prediction of a key
factor in water management and torrential risk and
elimination, which requires minimal effort and expense
as it measures only two dynamic input factors.
Obviously, the structural input data are not to change
for the relatively small era of measurements that are
conducted, thus the only factor which is to be
monitored as precisely as possible on a daily basis is
rain - height. Furthermore, the developed module can
be re-adjusted and developed by continuous training,
as new input data flow in and, provided the availability
of training data could be proposed for different regions.

The crucial contribution of the present research
work is the evolutionary clustering and re-sampling of
the initial time series data. The advantages of the
proposed approach are numerous. Firstly, the
researcher and the developer of the system has a vast
number of training / testing data at his disposal,
because now we do not need to average the whole time
span of measurements of the monthly rain height and
create only one record of input patterns. Instead, every
year has become an input pattern for our system,
effectively multiplying the number of the initial data
set. Also, the evolutionary process diminishes both the
total number of inputs, as well as the potential noise
inherent in the input time series data. This way we
have succeeded in effectively train the proposed neural
network and produce reliable estimations, while
keeping the operating costs at acceptable levels.

There is always, of course, the invariable dilemma
of the representation of the gene. In our case, we have
conducted a number of training scenarios some of
which included the floating point representation of the
basic trainer genes, instead of the binary one. This
configuration though posed a lot of problems and was
eventually dropped. For one, the whole system was

very demanding in computing power, partly due to the
requirements posed by the programming language, as
well as the structure of the initial row data itself. The
system also crashed in certain circumstances, when the
algorithm produced illegal gene values and
furthermore illegal clustering configurations in the
time series.

Although these obstacles were too important to be
overlooked, the benefits committed by a floating point
representation of the gene, such as greater variability
among the offspring and increased probability for the
algorithm to overcome trapping in luring local minima,
has posed a challenging prospect for the future. The
plans of the research team is to essentially widen the

scope of the algorithm, along with its potential, by
adding more machine genes at the chromosomes of the
generation trainers, so as to force them to expand their
search plane. This development may probably require
the re-engineering of the core code of the program so
as to keep its computational demands at as low a level
as possible. Also, the development of a Graphical User
Interface (GUI), which could render the application
friendlier to the average user, could contribute in the
acceptance of the software to different regions.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 1 2 3 4

Generations

D
is

ta
nc

e

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

Figure 3. The course of the evolutionary process

Table 3. Results of the evolutionary process

Iteration Generation Chromosome RMS Error Distance from set Error
1 0 1100111010011 0.0106134622 0.0076134622
1 1 1111011001101 0.0121847362 0.0021847362
1 2 0100001000011 0.0089017823 0.0010982177
1 3 0100010001001 0.0093576869 0.0006423131
1 4 1100010001001 0.0122147424 0.0022147424
2 0 1100000000000 0.0061973166 0.0038026834
2 1 0100001000011 0.0078532060 0.0021467940
2 2 0100001000011 0.0089220124 0.0010779876
2 3 0100001000011 0.0075098990 0.0024901010
2 4 1101001011111 0.0105336589 0.0005336589
3 0 1100000000000 0.0055064529 0.0044935471
3 1 1101001101101 0.0105042536 0.0005042536
3 2 1101001001001 0.0102993900 0.0002993900
3 3 0100001001001 0.0089830988 0.0010169012
3 4 1100000100111 0.0127581959 0.0027581959
4 0 1100000000000 0.0053980419 0.0046019581
4 1 1110100110101 0.0100132720 0.0000132720
4 2 1101000110101 0.0126448840 0.0026448840
4 3 1101001101001 0.0103567051 0.0003567051

4 4 0111100100101 0.0092294285 0.0007705715
5 0 1100000000000 0.0049562710 0.0050437290
5 1 1100011000001 0.0124807614 0.0024807614
5 2 1100000000001 0.0079311285 0.0020688715
5 3 1100001010001 0.0134370692 0.0034370692
5 4 1100000000001 0.0070299043 0.0029700957

References

1. Avramidis, S. and L. Iliadis, “Wood-Water Isotherm Prediction with Artificial Neural Networks: a Preliminary
Study” Holzforschung. ISSN: 0018-3830 59 (3), 336-341. Berlin, New York, Walter De Gruyter & Co.

2. Boillereaux L., Cadet C. and A. Le Bail, 2003. Thermal properties estimation via real time neural network
learning. J. Food Eng. 57:17-23.

3. Haykin, S., 1999. Neural Networks, A Comprehensive Foundation. Prentice Hall International, New Jersey.
4. Hussain M.A., Safiur Rahman M. and C.W. Ng., 2002. Prediction of pores formation (porosity) in foods during

drying: generic models by the use of hybrid neural network. J. Food Eng. 51:239-248.
5. Iliadis, L., Spartalis, S., 2005. Fundamental Fuzzy Relation Concepts of a D.S.S. for the Estimation of Natural

Disasters’ Risk (The case of a trapezoidal membership function), Mathematical and Computer Modelling,
Elsevier, 42, p.747-758 (2005).

6. Iliadis, L.S. and F. Maris, “An Artificial Neural Network model for mountainous water-resources management.
The case of Cyprus mountainous watersheds”, Environmental Modelling and Software, Elsevier, 2006.05.26,
pp. 1-7.

7. Jambunathan K., Hartle S.L., Ashforth-Frost S. and V.N. Fontana, 1996. Evaluating convective heat transfer
coefficients using neural networks. Int. J. Heat Mass Transfer 39(11):2329-2332.

8. Kyprhs D., Neofytou P., 1998. Monhtly River Supplies of Cyprus, Monthly Rain-Falls, Maximums of instant
flow. Ministry of Agriculture Natural Resources and Environment, Department of Water Development. Cyprus.

9. Myhara R.M., Sablani S., 2001. Unification of food water sorption isotherms using artificial neural networks.
Drying Technol. 19(8):1543-1554.

10. Paliwal J., Visen N.S. and D.S. Jayas (2001) Evaluation of neural network architectures for cereal grain
classification using morphological features. J. Agri. Eng. 79(4):361-370.

11. Sablani S.S., Baik O-D. And M. Marcotte, 2002. Neural networks for predicting thermal conductivity of bakery
products. J. Food Eng. 52:299-304.

12. Spartalis, S., Iliadis, L., Maris, F., 2007. An Innovative Risk evaluation System estimating its own Fuzzy
Entropy, Mathematical and Computer Modelling, Elsevier, Vol.46, Issues1-2, pp.260-267

13. Spartalis, S., Iliadis, L., Maris, F., Marinos, D., 2004. A Decision Support System Unifying Fuzzy Trapezoidal
Function Membership Values Using T-Norms: The case of river Evros Torrential Risk Estimation,
ICNAAM2004 Intern. Conf. on Numerical Analysis and Applied Mathematics WILEY-VCH
VerlagGmbH&Co.KGaA,ISBN3-527-40563-1, pp. 173-176.

14. Spartalis, S., Iliadis, L., Unsupervised Neural Clustering applied on Fuzzy Conjunction Vectors accepted for
publication in the Journal “Mathematical and Computer Modelling, Elsevier.

15. Sreekanth S., Ramaswamy H.S. and S.S. Sablani, 1998. Prediction of psychrometric parameters using neural
networks. Drying Technol. 16(3-5): 825.

