
Neural Modelling of the Tropospheric Ozone Concentrations in an Urban Site 
 
 

A. K. Paschalidou1*, L. S. Iliadis 2, P. Kassomenos1, C. Bezirtzoglou2 

1 Department of Physics, Laboratory of Meteorology, University of Ioannina, 
45110, Ioannina, Greece 

2 Democritus University of Thrace, 193 Padazidou st., 68200, Nea Orestiada, Greece 
Email*: me00760@cc.uoi.gr 

 
 

Abstract 
 

The objective of the present study is to design and 
develop an Artificial Neural Network (ANN) model for 
estimations of the ambient ozone concentrations based 
on meteorological and pollutant parameters. The study 
focuses on an urban site in the metropolitan area of 
Athens. The research proves that the optimal ANN is a 
Modular one that uses the Back Propagation 
Optimization Algorithm. This ANN includes a Gating 
Network and it has a single Hidden Layer. Two other 
Back Propagation ANNs with a simpler architecture 
reveal a good performance as well. The large amount 
of data records combined with the good testing results 
prove the generalization ability of the developed ANN. 
Statistical analysis techniques, such as combinations 
of Principal Component and Stepwise Regression 
Analysis, have been used for the same area in a 
previous study. Comparing the results of the statistical 
analysis to the output of the designed optimal ANN 
reveals that the Neural Network performs more 
accurately.  
 
1. Introduction 
 

The Tropospheric Ozone O3 is an air pollutant of 
particular interest, as its presence in the lower 
atmosphere degrades the air quality and affects 
negatively not only human beings but also plant life, 
constructions and materials. Medical studies have 
revealed that in high concentrations it can be blamed 
for inflammation and irritation of the respiratory 
system particularly during heavy physical activity, 
reduced lung activity, aggravation of asthma as well as 
ocular diseases [5], [6], [24]. 

It is produced near the ground through a series of 
reactions between Volatile Organic Compounds 
(VOCs), nitric oxide (NO) and nitrogen dioxide (NO2) 
under the influence of sunlight. In other words it is a 
secondary pollutant, whose main anthropogenic source 
is the photochemical reaction between precursors 
emitted mainly during combustion of fossil fuels in 

industry and transportation. It is well documented that 
the production of ozone in an urban area is highly 
depended on the solar radiation and the air 
temperature. In a recent work [18] it was found that in 
the metropolitan area of Athens radiation levels 
greater than 600W/m2 combined with temperature 
observations greater than 28oC and wind speeds lower 
than 3m/sec imply favorable meteorology to 
photochemical ozone production.  

On the other hand, in the absence of other 
oxidizing agents, the major destruction mechanism is 
the oxidation of nitric oxide (NO) to form (NO2). 
Other destruction procedures include surface 
deposition and oxidation of sulphur dioxide (SO2). 

Due to the fundamental role of the tropospheric 
ozone on the air quality, numerous scientific studies 
examining the relationships between meteorological 
conditions, air pollutant parameters and ozone 
concentrations have been published. In most of these 
research efforts the O3 modelling relies, either on the 
statistical analysis of current and previous 
meteorological conditions and pollutant precursors, or 
on theories related to physical and chemical processes 
in the atmosphere; see e.g. [10], [27], [3], [28], [30], 
[18], [33], [31], [23]. Artificial Neural Networks have 
also been developed to meet the need for accurate 
ozone concentrations forecasting. These ANN models 
provide a new and sophisticated technique in order to 
model the ground-level O3 concentrations or the peak 
levels in major cities; see e.g. [32], [25], [15], [1], [4], 
[8], [2], [9], [26]. 

This manuscript presents a research effort that has 
been contacted towards the design and development of 
an Artificial Neural Network capable of estimating the 
ozone concentrations in the center of the city of 
Athens. More specifically the research focuses on the 
Patission Street monitoring station, where the 
headquarters of the Air Pollution and Noise Control 
Division of the Greek Ministry of Environment are 
situated. Although the data of this station are not 
representative of the whole city air quality, as they are 
typical of the city centre only, still they are used here 



for 2 main reasons. Firstly, they consist of a high-
reliable continuous record, and, secondly, most 
decisions about air pollution temporal abatement 
measures in Athens are based on the data of this 
station. Therefore, the site of the Patission Street 
appears to be of extreme interest. This work is the 
continuity of a research effort which started by 
constructing the best linear equation for ozone 
modelling through various combinations of Regression 
Analysis and Multivariate Methods such as Principal 
Component Analysis. Hence, another objective of the 
study is to compare the statistical techniques with the 
ANN modelling procedures. The developed ANN 
model can then be used for the estimation of the ozone 
concentration in other major cities with similar 
climatic, topographic and traffic characteristics.  
 
2. Materials and methods 
 
2.1. Research area 
 

In the Greater Area of Athens (GAA) more than 2 
millions of vehicles are registered, while the industrial 
activities are centered in the southwestern and western 
part. The main air pollution sources are automobiles, 
industrial activities and central heating systems 
(during the cold period of the year). Some of the main 
air pollutants routinely recorded are carbon monoxide, 
nitric oxide, nitrogen dioxide and ozone. All the 
pollutants present an almost single intra-annual 
variation. In general, the primary pollutants display 
lower concentrations during summer time, when 
central heating systems are not operating and the 
traffic is reduced due to the Athenians’ summer 
vacations. On the other hand, ozone displays 
maximum values in accordance with the annual 
variation of the solar radiation and temperature; see 
e.g. [19], [13], [12]. 

The present study focuses on the Patission Street 
monitoring station. The position of the station can be 
considered as the centre of the Athens Metropolitan 
Area and its sampling inlet is about 10m above the 
street level. The area is a typical street canyon with 
buildings close to 30m high. The ventilation is usually 
weak and the traffic volume high. As a result, the 
primary traffic pollutants display high concentrations, 
while ozone concentrations display low levels in 
accordance with the photostationary equilibrium, 
which dictates that high concentrations of NO lead to 
low concentrations of O3 and vice-versa. The 
following figure 1 shows the topographic details of the 
research area. 

 

 
Figure 1. Topography map of the Attica 

Peninsula. Contours are drawn every 200m 

 
2.2. Basic ANN keypoints 
 

Artificial Neural Networks (ANN) are a special 
kind of Intelligent Systems whose computing power is 
achieved through their massively parallel distributed 
structure and their ability to learn and therefore 
generalize [11]. The ANN technology is rooted in 
many different disciplines such as engineering, 
mathematics, physics, neurosciences and statistics. 
This is due to their ability to learn from input data 
either in supervised or in unsupervised mode.  

A typical ANN consists of several units (called 
neurons) that have a very limited computing capability. 
However the neuron combination that forms the 
complete network is capable of performing very 
complicated tasks. The neurons use various rules that 
combine the input signals and an activation rule that 
processes the combined signal and calculates the 
output [7]. The output signals are transmitted among 
the neurons through the connections known as 
weights. The weights excite or inhibit the signal 
according to the case and the desired result. During the 
training/learning and testing/recall phases weight 
adjustments take place aiming to the determination of 
the optimal ANN. 

 It is very important that an ANN is considered 
successful only when it proves its ability to generalize 
[11]. Generalization is a measure of an ANN’s ability 
to produce reasonable output for inputs that are not 
encountered during the training phase [11].  
 
2.3. Determining the input vector 
 

The Input Layer of the Artificial Neural Network 
(ANN) developed in this study consists of ten neurons 



corresponding to the ten independent parameters. More 
specifically, mean hourly values gathered only in the 
day-light period, concerning seven meteorological and 
three pollutant parameters for the high summer season 
(June-August) for a 4-year period 2001-2004 have 
been gathered. The selection of the above months was 
based on the results of a previous study [18], which 
indicated that these months display favorable 
meteorology (in terms of temperature, solar radiation 
and wind speed) to ozone production. The pollution 
parameters that were used as input in the Neural 
Network are carbon monoxide (CO in mgm-3), nitric 
oxide (NO in µgm-3) and nitrogen dioxide (NO2 in 
µgm-3). The meteorological parameters that were used 
as input are the mean air temperature (T in C° ), the 
total solar radiation (Q in 2−Wm ), the mean pressure 
at sea level (P in hPa), the relative humidity (RH in %), 
the mean wind speed (WS in m 1−s ), the NW-SE 
direction wind component (u' in m 1−s ) and the SW-
NE direction wind component (v' in m 1−s ), normal to 
u'.  

The selection of the u' and v' components instead of 
the conventional ones, u (W-E) and v (S-N), was 
considered necessary as u' is almost parallel to the 
Saronic Gulf coast and v' to the direction of the sea 
breeze circulation and the main axis of the Athens 
Basin (see Fig. 1). Only the day light time period, i.e. 
from 7:00 to 19:00 LST, was used for all the 
parameters, since this is documented as the most 
important photochemical production period [18]. Thus, 
in total, 4611 data records were used; 66% of them 
were used for the training procedure, while 34% of 
them were used for the testing procedure. Missing 
values were excluded. It is noted that the separation of 
the data set in the above two groups was performed 
randomly so that each piece of data could have equal 
chances to be picked.  
 
3. Experimenting for the determination of 
the optimal ANN 
 

Various experiments with different architectures, 
optimization algorithms and learn or transfer functions 
were performed in order to determine the optimal 
ANN. Each experiment in its initial stage comprised a 
large number of training cycles.  

The Input Vector consisted of ten parameter values, 
while the output included only one neuron, which 
corresponds to the Ozone concentration. Several 
Artificial Neural Network models revealed a good 
performance during the training phase. However, the 

good performance of each ANN was confirmed in the 
final testing phase, in terms of its ability to generalize.  

Dozens of supervised ANN types were tried 
including Back Propagation ANN (BP), Modular 
ANN, General Regression ANN and Radial Basis 
Function Neural Networks (RBFNN). Hence, 
numerous different topologies were applied. As it is 
shown in the following Table 1, training and testing 
experiments included iterations with the use of the 
Tangent Hyperbolic (TanH), the Sigmoid, the DNNA 
and the Sine transfer functions. The Learning Rule 
applied in the experiments was the Extended Delta Bar 
Delta (ExtDBD), the Quick Propagation (Quick Prop), 
the Norm-Cum-Delta, the Delta and finally the Max 
Prop [17].  

The TanH is a smooth version of a [-1,1] step 
function and it can be considered as a bipolar version 
of the Sigmoid function, which is a smooth version of 
a [0,1] step function. Generally, the TanH is given by 
the following equation 1.  
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The BP Algorithm is the most popular and effective 
local algorithm for adjusting the weights of a multi-
layer neural network [21], [22]. Back Propagation 
ANN are very common and they have been used in 
numerous prediction modelling applications [29]. For 
many years there were no available rules for the 
weight-update in multilayered ANN undergoing 
supervised training. In the 1970s Werbos developed a 
technique for adapting the weights but it was 
Rummelhart who defined a weight adoption rule called 
Back-Propagation. In a network where the Processing 
Elements (PE) of a  layer are connected to every sngle 
PE in the upper layer, the BP algorithm performs at 
first a forward sweep, from the input to the output 
layer, and then a backward sweep from the output 
towards the input layer. In the backward sweep, error 
values are propagated back through the ANN, in order 
to determine the way in which the weights will be 
changed during the training. 

Modular Neural Networks (MODANN) are 
Adaptive Mixtures of “local experts” [7]. They were 
introduced by Jacobs, Jordan, Nowlan and Hinton 
[17]. In fact MODANN contain several separate ANN 
models. They comprise a group of BP networks, 
referred to as “local experts”, which compete to each 
other in learning different aspects of a problem. A 
“Gating Network” plays the role of the referee and it 
controls the competition.  It learns to assign different 
parts of the data vector to the different networks. It is 
the Gating Network that suggests the optimal local 
expert for a given problem. According to Jacobs, 



Jordan, Nowlan and Hinton Modular ANN can be used 
for System Modelling, Prediction, Classification and 
Filtering [16].  

RBFNN are networks having an internal 
representation of radially symmetric hidden neurons. 
For a neuron to be radially symmetric it needs to have 
the following three constituents: a) A center which is a 
vector in the input space. b) A distance measure to 
determine how far an input vector stands from the 
center. In this case standard Euclidean distance is used. 
c) A transfer function (using a single variable) which 
determines the output of the Neuron by mapping the 
output of the distance function. Usually a Gaussian 
function is applied, producing stronger values when 
the distance is small. The output of a pattern unit is a 
function of the distance between an input vector x and 
the stored center c exclusively. This is shown in the 
following equation 2. 

( ) ( )cxxf −=φ                      (2) 

In the RBFNN, the hidden layer is fully connected 
to a linear output layer. The pattern units lk are defined 
by using the Euclidean summation as follows in 
equation 3 (X is the input vector and c is the stored 
center), whereas a Gaussian transfer function is applied 
as shown in equation 4 [20], [14]. 
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3.1. Evaluation instruments applied 
 

In all of the prediction modelling efforts the target 
is the minimization of the differences between the 
predicted values and the actual experimental data. All 
of the experiments performed here included 1000, 
2000, 3000, 4000 and 5000 iterations. To avoid over-
Training the iterations were terminated every time that 
the performance started to drop.  

Two ANN instruments, the Root Mean Square 
Error (RMS Error) and the Confusion Matrix (CM) 
were used to check the ANN’s validity. The RMS 
Error adds up the squares of the errors for each PE in 
the output layer, divides by the number of PEs in order 
to obtain an average and finally estimates the square 
root of that average.  

The CM is a graphical way of measuring and 
displaying the performance of an ANN and it can be 
used in both training and testing processes. The CM 
correlates the actual results of the ANN to the desired 
results in a visual display and it consists of a matrix 

containing a number of small cells called bins [16]. 
The ANN with the optimal configuration must have 
the bins on the diagonal from the lower left to the 
upper right. The value of the vertical axis in the 
produced histogram is the Common Mean Correlation 
(CMC) coefficient of the desired (d) and the actual 
(predicted) output (y) across the Epoch. The CMC is 
calculated by the following equation 5. 
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It is noted that d stands for the desired values, y for the 
predicted values where i ranges from 1 to n (the 
number of cases in the data training set) and E for the 
Epoch size. The epoch size is the number of training 
data sets presented in the ANN learning cycles among 
weight updates.  
 
4. Training and Testing results 
 

The training vector consisted of 3442 actual data 
records and the testing vector included 1169 data 
records for all of the summer months. In all of the 
experiments the candidate optimal ANN had a 
maximum number of two Hidden sub-layers in an 
effort to keep the optimal ANN as simple as possible.  

All of the above evaluation instruments were 
applied in both phases (training and testing). The 
Epoch value was kept stable to the value of 16 in all of 
the iterations. 

Two ANN were characterized as having the best fit 
from the Back Propagation ones. They both had ten 
(10) neurons in the Input Layer corresponding to the 
ten independent parameters, a single Hidden Layer 
consisting of eleven (11) neurons and an output layer 
of one (1) neuron corresponding to the ozone 
concentration. The first BP best fit ANN used the Sine 
transfer function and the ExtDBD learning rule, 
whereas the second ANN used the Tangent Hyperbolic 
(TanH) transfer function and the ExtDBD learning 
rule. The values of the Correlation R2 and the RMS 
Error for the first ANN were 0.9286 and 0.1323 
respectively in the training phase, whereas in testing 
the R2 = 0.9153 and the RMS Error=0.1358. The 
second best fit BP ANN had R2= 0.9676 and RMS 
Error=0.1404 in the training phase, R2= 0.9144 and 
RMS Error=0.1253 in the testing. The following Table 



1 shows that apart from the optimal BP ANN several other ANN had a very good performance as well.  
 

Table 1. Training and Testing results at 5000 iterations 

LEARNING 
RULE 

OPTIMIZATION 
ALGORITHM 

TRANSFER 
FUNCTION 

 Neurons 
in the 
Input 
Layer 

Neurons 
in the 1st 
Hidden 

Sub-
Layer 

Neurons 
in the 2nd 
Hidden 

Sub-
Layer 

Neurons 
in the 

Output 
Layer 

R2 RMS 
Error 

1.   ExtDBD Back Propagation TanH 10 11 0 1 

Training 
0.9676 
Testing 
0.9144 

Training 
0.1404 
Testing 
0.1253 

2.  ExtDBD Back Propagation Sigmoid 10 11 0 1 

Training 
0.8897 
Testing 
0.8419 

Training 
0.0641 
Testing 
0.0630 

3.  ExtDBD Back Propagation Sine 10 11 0 1 

Training 
0.9286 
Testing 
0.9153 

Training 
0.1323 
Testing 
0.1358 

4.  Quick 
Prop Back Propagation TanH 10 11 0 1 

Training 
0.9327 
Testing 
0.8834 

Training 
0.1709 
Testing 
0.1452 

5.  Norm-
Cum-Delta Back Propagation TanH 10 11 0 1 

Training 
0.9486 
Testing 
0.9058 

Training 
0.1316 
Testing 
0.1317 

6.  Delta-
Rule Back Propagation TanH 10 11 0 1 

Training 
0.9091 
Testing 
0.8834 

Training 
0.1728 
Testing 
0.1473 

7.  ExtDBD Modular ANN TanH 10 11 0 1 

Training 
0.9602 
Testing 
0.9290 

Training 
0.1546 
Testing 
0.1186 

Gating Network of the Modular ANN (Connect Prior) - 4 - 1   

8.               RBF ANN (ExtDBD TanH) 10 Pattern 
50 11 1 

Training 
0.9321 
Testing 
0..8901 

Training 
0.1090 
Testing 
0.1411 

 
The following figure 2 shows the architecture of the 

first BP Ext DBD ANN, whereas figures 3 and 4 show 
the output of the evaluation instruments for the same 
ANN in training and testing respectively. Furthermore, 
figure 4 presents a diagram that estimates the degree of 
input contribution of each independent parameter for 
the determination of the ozone concentration. The 
Input Contribution diagram reveals that the NO 
concentration plays the most important role in the 
determination of the ozone concentration, whereas CO 
is second with a much lower (almost negligible) 
contribution degree.  

However, it is clearly shown in the above Table 1 
that the optimal ANN has proven to be a Modular one. 

It had ten (10) neurons in the Input Layer 
corresponding to the ten independent parameters, a 
single Hidden Layer consisting of eleven (11) neurons 
and an output layer of one (1) neuron corresponding to 
the Ozone concentration. The Gating Network had a 
Hidden Layer with four (4) neurons and an Output 
Layer with three (3) neurons. The optimal Modular 
ANN had R2= 0.9602 and RMS Error=0.1546 in the 
Training phase, R2= 0.9290 and RMS Error=0.1186 in 
the testing. Figure 5 presents the architecture of the 
Modular optimal ANN, while figure 6 displays the 
output of the evaluation instruments for the same ANN 
in the testing phase. 



 
Figure 2. Architecture of the BP Ext-DBD Sine ANN 

 

 
Figure 3. Evaluation instruments’ values in training for the Ext-DBD-Sine BP ANN 

 

 
Figure 4. Evaluation instruments-input contribution in testing for the Ext-DBD-Sine BP ANN 

 



 
Figure 5.  Architecture of the Modular optimal ANN 

 
 

4.1. Reliability of the ANN 
 

To avoid over-Training, the network was trained by 
performing initially 1000 iterations. The number of 
iterations was increased gradually (with a step equal to 
1000), while the process stopped when the 
performance started to drop. In this way the optimal 
ANN was identified in 5000 iterations. The large 
amount of actual data used in the ANN development 
process (3442 in training and 1169 in testing) 
combined with the very good results of the evaluation 
instruments and the simple structure of the optimal 
network confirms its ability to generalize and therefore 
its reliability. 

The following figure 7, presents a comparison 
between the actual and the ANN predicted ozone 
concentration values for 1167 cases in the testing 
phase with first time seen data. It can easily be seen 
that the compatibility is quite high.  
4.2. Comparison with Statistical Analysis 
 

In the context of the statistical approach, a 
Stepwise Regression Analysis was applied in the 
values of the independent variables (CO, NO, NO2, 
pressure, solar radiation, relative humidity, air 
temperature, wind speed, u' and v' components), in 
order to produce prediction models for the logarithmic 
transformation of the ozone concentrations ln[O3]. It is 
noted that the logarithmic transformation of ozone 
ln[O3] was used instead of O3 because its frequency 
distribution is closer to the normal and it is well-known 
that the regression analysis works better with normal 
variables. The coefficient of determination R2 can be 
interpreted as the percentage of the variation of the 
predictand ln[O3] that is accounted for by the 
regression model. Even though, the R2 value was 
found to be 0.86, a deeper look in the results revealed 
strong multicollinearity evidence. The low Tolerances 
(down to 0.15) and the high Variance Inflation Factors 
(up to 6.54) indicated that the predictors were strongly 
intercorrelated to

 

 
 

Figure 6. Evaluation instruments’ values in testing for the Modular  ANN 



 

 
Figure 7. Comparison between actual and forecasted ozone for the Modular ANN 

 
each other, so that small changes in the data values 
could lead to large changes in the estimates of the 
coefficients. 

To overcome the problem of multicollinearity, 
Principal Component Analysis with a varimax rotation 
was applied. in the initial data matrix, in order to 
reduce the number of the original intercorrelated 
variables. At first, the analysis was carried out keeping 
all the PCs and then only the strongest (in terms of 
loadings) were retained. Thus, by excluding the 
variables that were not highly correlated to a PC 
(loadings < 0.70) the remaining variables were more-
or-less uncorrelated to each other. 

Next, free of the multicollinearity problem, a 
Stepwise Regression Analysis was applied in the 
remaining original variables. The coefficient of 
determination was then found to be 0.8356. This 
means that approximately 84% of the variation in O3 
values was explained by the produced equation. 
However, in the case of the optimal ANN the 
coefficient of determination R2 was found to be 0.9602 
in the training phase and 0.9290 in the testing phase. 
Consequently, almost 93% of the variation in ozone 
values has been accounted for. It is now clear that in 
the case of the Patission Street the use of ANN offers 
greater reliability in the issue of ozone modelling on its 
precursors. 
 
5. Conclusions 
 

The objective of the study was to design and 
develop a series of ANN models for the estimation of 
the tropospheric ozone concentrations in a heavy 
traffic road in the center of Athens, Greece. For this 
reason a big number of ANN types were tested. 
Several of them revealed high accuracy in terms of 

high levels of R2. However, the optimal ANN was 
proven to be a Modular one, which has ten (10) 
neurons in the input layer, a single hidden layer 
consisting of 11 neurons and an output layer consisting 
of one (1) neuron. This Modular ANN revealed 
R2=0.9602 in the training phase and R2=0.9290 in the 
testing phase. The high levels of R2 combined with the 
simple structure guarantees its reliability and 
generalization ability. Therefore, it can serve as 
prototype and can be tested and applied in other major 
urban centers with similar climatic, topographic and 
traffic conditions. It is among the authors’ intentions to 
cooperate in the near future with other major European 
cities authorities in order to investigate the potential 
usage of these ANN models in them. 

Finally, compared to our previous statistical 
analysis performed on the same data, most of the 
designed ANN models have proven to perform more 
efficiently. This can be considered as a strong 
motivation for our research team to continue this effort 
in other areas in the near future. 
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