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Abstract 
 

In this paper, dynamic neural networks are 
proposed to predict the plasma disruptions in a 
nuclear fusion device. Disruptions are critical events 
where the plasma, which is magnetically confined in a 
vacuum vessel, becomes unstable, cools down and the 
confinement is suddenly destroyed. These events may 
damage to the vessel, so they have to be foreseen well 
in advance in order to take mitigating action. 

Dynamic neural networks act as filters, which 
predict one step ahead the value of diagnostic signals 
acquired during a plasma pulse. The prediction error 
of the neural network depends on the regularity of 
signals. For this reason, an increasing prediction 
error reveals that the plasma operative conditions are 
changing, hence a disruption could be imminent. In 
this work, different diagnostic approaches, network 
adapting parameters, and diagnosis thresholds have 
been tested in order to determine the best performance 
in terms of prediction capability. 

1. Introduction 

In recent years, due to the necessity of finding new 
energy resources in order to satisfy the increasing 
demand for energy and to face the exhaustion of the 
fossil fuels, research into nuclear fusion has been 
significantly developed, by reaching important 
progresses. Nuclear fusion could provide enormous 
quantities of energy in a “clean” way; moreover, the 
“fuel” for this reaction, consists primarily of isotopes 
of hydrogen, which are practically inexhaustible. 

The most promising device for nuclear fusion is the 
Tokamak. In a Tokamak, the plasma is heated in a 
ring-shaped vacuum chamber (vessel or torus) and 

kept away from the vessel walls by applying magnetic 
fields. The equilibrium of a plasma in a magnetic field 
can be described by the Magnetic Hydro-Dynamic 
(MHD) theory [1]. If MHD instabilities arise, the 
plasma loses its confinement, leading, in the most 
serious cases, to the displacements of magnetic 
surfaces, and ending in a disruption. Disruptions are 
endemic and likely unavoidable aspect of tokamak 
operation that potentially pose serious problems to the 
integrity and the lifetime of the machine. 

During a disruption, the plasma energy is lost 
within a time span of few milliseconds. In major 
disruptions, taking place at high plasma current, the 
tokamak first wall components are subjected to high 
concentrated thermal fluxes and severe electro-
mechanical stresses due to induced currents. The 
physical causes that lead to a disruption have been 
widely studied [2] [3]. Even if the complete dynamic 
behavior of a disruptive event is not yet completely 
understood, some precursor phenomena that lead to a 
disruption have been identified [1].  

However, this knowledge is not sufficient to 
develop a deterministic mathematical model that takes 
into account all the complex phenomena leading to a 
disruptive event. On the other hand, a disruption model 
is of crucial importance for prediction purposes.  

Recently, disruption prediction techniques have 
been investigated [4][5][6]. 

In many of these techniques neural network based 
approaches are used and they look promising to predict 
the event or, more precisely, to build an impending 
disruption warning indicator. The approaches based on 
neural networks, which have been proposed in the 
literature until now, use static neural networks as 
predictors. This derives from the hypothesis that the 
available measurements give complete information 
about the state of the plasma. 



In this paper a different approach is adopted, which 
exploits the dynamic of the measured signals to predict 
the incoming disruptions. A neural network is 
dynamically adapted to predict the values of the 
measurements one time step ahead. The prediction 
error reflects both the capability of the network to 
learn the dynamics of the signals and the regularity of 
the signal itself. If the error prediction begins to rise, 
this is due to a variation of the dynamics of the signals, 
hence that can be interpreted as an indicator of an 
incoming disruption.  

Therefore, the proposed disruption predictor 
exploits the prediction error rather than the predicted 
signal values. In fact, even if the prediction error is 
high, the performance of the alarm system would be 
good, provided that the error is sensitive to the 
disruption precursors. The hypothesis is that said error 
rises well before the disruption event, so that the 
mitigation system has enough time to intervene. 

An important aspect of dynamic neural networks is 
that the prediction of the disruption is not based on a 
training set but only the temporal evolution of the 
pulse is taken into account, hence the proposed 
approach is not subject to the ageing phenomenon, 
which is typical of static neural networks. 

The proposed approach is applied on a disruption 
database taken from JET [7], the biggest experimental 
fusion reactor in Europe. The database, used to train 
and test the neural networks, contains several 
diagnostic signals, which characterize a disruptive 
event (disruptive pulse) or a non disruptive event (safe 
pulse). The diagnostic signals have been selected in 
order to maximize the prediction capability of the 
system and accordingly to both physical considerations 
and availability of real-time data. A sensitivity and a 
salience analysis confirmed the appropriateness of the 
choice [6] . 

The performance of the proposed approach is 
compared with those of the Mode Lock Indicator 
(MLI). The Mode Lock Indicator (MLI) triggers a shut 
down procedure when the Locked Mode signal reaches 
a prefixed threshold. MLI is actually the only on-line 
disruption protection system used at JET. 

2. Disruptions 

Disruptions pose strong limits to tokamaks range of 
operation in current and density. 

Modifying the plasma parameters toward the 
desired high pressures, and increasing the plasma 
current to achieve better confinement, several kinds of 
instabilities can appear. Ideal MHD instabilities are 
often the most serious cases which end in a disruption. 

A disruption is a displacement of magnetic surfaces 
which lead to an irreversible loss of magnetic 
confinement. 

During a disruption a sudden loss of plasma energy 
occurs and the central temperature collapses. This 
energy quench leaves the plasma in a cold and resistive 
state, leading therefore to a quickly current decay. 

Additionally, during a disruption, after the thermal 
quench, the plasma may lose vertical stability. Both, 
the decreasing of the plasma current and the 
displacement of the current column, can induce large 
eddy currents in the machine structures and cause 
electromagnetic forces that, together with the heat 
loads released during the thermal quench, can damage 
the machine itself. In particular, intense heat loads of 
the order of MW/m2 in a few tens of ms, and 
mechanical stresses of the order of some MN/cm2 can 
occur, causing severe damage. 

The physical processes involved in a disruption are 
not known in detail. However, a description of the 
sequence of events, which characterize a disruption in 
four phases, is reported in [1]: Pre-precursor phase; 
Precursor phase, Fast phase and Quench phase. 

At JET, the fast phase and the quench phase last 
less then 40 ms [6]. During these phases the diagnostic 
signals are not completely reliable due to the presence 
of high induced currents and magnetic field variations, 
these two phases have not been monitored in the 
present work. 

Defining tprec as the time instant that discriminates 
between pre-precursor phase and precursor phase, 
some disruption precursors are expected to appear in 
the time window from tprec to 40 ms before the 
disruption. Unfortunately, tprec does not have a fixed 
value, and the identification of the two different phases 
is often a very difficult task. Presently, indexes of the 
transition from a phase to the other are not available. 

3. State of the art for disruption prediction 

The literature reports several approaches to 
disruption prediction using artificial neural networks 
(ANN): all of them are based on the identification of 
either the precursors events or the proximity or 
probability of disruption. 

In the first case, one or more plasma measurements 
are used as targets to be forecast by the ANN. The 
ANN produces a set of future values of plasma 
diagnostic signals that can be used in conjunction with 
a physical model to establish if a disruption is 
imminent.  

In [8] the authors’ goal was to predict the Mirnov 
coil measurements in the tokamak TEXT (Universtity 



of Texas, Austin, USA) in order to identify m=2 MHD 
modes, which were indicative of an impending 
disruption.  

Some improvements were obtained in [9] with the 
same approach, by adding the soft X-ray signals. By 
using this type of measurements, disruptions of two 
discharges were predicted 3 ms in advance.  

In a more recent article [10], the same approach 
used for TEXT was adopted for the ADITYA 
tokamak. The network, fed by several input signals, 
i.e., Mirnov coil signals, soft X rays, and Hα 
measurements, was able to predict all input signals 8 
ms in advance. 

The high β disruption boundary was modelled in 
[11] using 33 input magnetic measurements for the 
DIII-D TOKAMAK (San Diego, USA). At least 90% 
of disruptions in the test set, composed by 28 
disruptive pulses, were successfully predicted many 
tens of ms before the major disruption, but 20% of 
false alarms were generated.  

Although the results obtained with all these 
approach are very promising, they have been 
experienced only in particular operation scenarios. 

In this paper this precursor events approach is 
considered and a generalization to any operational 
scenario is tried. 

In the second type of predictors an artificial output 
is assigned to a neural network to directly indicate the 
eventual proximity of the disruptive event. 

In [12] the authors propose an approach based on a 
Bayesian probability assessment of the disruptive 
phenomenon, the Bayesian probability is modelled by 
a MLP neural network. The model tries to investigate 
if a set of parameters is useful as an incoming 
disruption indicator. 

In [4], an on-line predictor of the time to disruption 
installed on the ASDEX Upgrade tokamak is 
presented. The prediction system uses a neural network 
trained on eight plasma parameters and some of their 
time derivatives extracted from 99 disruptive 
discharges. The system was implemented and tested 
for real-time mitigation, showing satisfactory 
prediction capability. However the authors highlight 
the deterioration of the network performance on on-
line tests, due to the slight difference between the real-
time signal and the stored ones. Moreover, it has been 
shown that new experiments, which belong to 
operational spaces different from those used for 
training, are not well predicted in the on-line 
implementation, thus presenting the so-called ‘ageing’ 
of the neural network. 

Some major disruptions have been investigated in 
[5]. The concept of ‘stability level’, proposed in the 
paper is calculated from nine plasma parameters by a 

MLP, and the occurrence of a major disruption is 
predicted when the stability level decreases to a certain 
level, named the ‘alarm level’.  

The authors in [13] combine multiple plasma 
diagnostic signals to provide a composite impending 
disruption warning indicator. To take into account the 
disruption precursor appearing in different time 
instants for different pulses, an off-line clustering 
procedure automatically selects the training set 
samples. 

The work presented in [6] has been performed on 
flat-top JET scenarios characterized by a single null 
plasma. The authors trained a MLP to forecast 
disruptive events at JET, up to 100 ms in advance.  

In [14] two neural approaches (Self Organizing 
Maps and Support Vector Machines) are used to 
determine the novelty of the output of the neural 
disruption predictor. The novelty detector is used to 
assess the reliability of the network output, i.e., 
samples having a low confidence have to be discarded 
and used off line to update the disruption predictor. 

4. Approach for Precursor Prediction  

The basic idea of the proposed approach is that a 
neural network with memory can be adapted in order 
to forecast given signals some steps ahead. In this 
work a dynamic model is obtained by introducing a 
delay line in the input of the neural network. The 
prediction error depends both on the capability of the 
network to adapt itself to the signal behavior and on 
the fact that the signal follows more or less the same 
evolution with time. Hence, if during the pulse the 
prediction error increases, this means that a variation is 
occurring in the signal and this is interpreted as a 
precursor of the disruption. In Fig. 1, the scheme of the 
diagnostic procedure is shown. 

In order to perform the prediction, the network 
prediction errors on the different signals acquired on 
the machine have to be considered in order to obtain an 
unique prediction error, and a threshold has to be 
defined to perform the diagnosis. Different errors 
combinations and thresholds have been tested to 
trigger an alarm, but only the best results are reported 
here.  

As in the training of static neural networks, the set 
of examples is divided in a training and in a test set. 
During the training section the cited threshold values 
are set. The training phase is also used to determine the 
adapting time interval, namely the number of samples 
needed for the neural network to reach the regime 
value of the prediction error, whose importance will be 
explained in the following. 



Due to the philosophy of the approach, a neural 
network, which has low performance in predicting the 
input signal, could in general be suitable for the 
disruption prediction, provided that the error has a high 
sensitivity to the variations of the input signal 
behavior.  

Another aspect concerns the fact that the error 
exhibits a transient in the beginning of the pulse, due 
to the time interval that the network spends to adapt 
itself to the signal, and in the meantime the alarms 
given by the network are not reliable. On the other 
hand, if the network adapts itself too fast, the regime 
variation of the signal could not cause an error 
increase, so giving rise to a missed alarm. Then a 
compromise has to be found between the duration of 
the alarms reliability interval and the sensitivity to 
slow changes of signal dynamics. 

Therefore, several parameters have to be tuned in 
order to maximize the performance of the disruption 
predictor, in terms of ratio between correct alarms and 
total pulses. A number of both linear and nonlinear 
networks have been compared, by varying the memory 
depth, the number of adapting passes and, in the 
nonlinear networks, the number of hidden neurons. 

Furthermore, due to the experimental nature of the 
examined pulses, the operator often intervenes to 
modify the functioning parameters, and this causes a 
modification of the regime of signals and then, in most 
of the cases, an alarm of the system. Therefore, the 
alarms have to be inhibited when the operator acts on 

the process regulation, the inhibition time interval 
depending on the duration of the transient evaluated at 
the beginning of the pulse. 

Finally, the available signals have different attitude 
to trigger reliable alarms. Hence the performances 
obtained by considering different combinations of 
signals have been compared.  

5. Disruptions prediction 

5.1. Database 

In the present paper, a large database [15] has been 
built based on hundreds of diagnostic signals available 
in the JET experimental machine. Each series of 
experiments consists of about 30 pulses, oriented to 
investigate different functional aspect of the plasma.  

The pulses included in the database satisfy the 
following requirements:  
- Plasma current Ipla>1.5 MA; 
- X-point configuration; 
- Flat-top plasma current profile. 

Discharges with Ipla below 1.5 MA were discarded 
as they generally have little impact on subsequent 
conditioning and operation of the device. 

For each pulse, nine diagnostic signals are 
considered, which have shown to be suitable for 
disruption prediction in several works presented in 
literature [6]. 

Analog SignalAnalog Signal

Adaptive FilterAdaptive FilterAdaptive Filter

Prediction Error

The network predicts 
the signal and the 
error comes down

The network does not 
predict the signal and 

the error rises

 

Fig. 1 Diagnostic procedure 



The selected diagnostic signals are reported in 
Table I. 

The database contains 102 pulses without disruption 
(safe pulses) and 154 disruptive pulses. The sampling 
interval is 20 ms. 

The pulses have been used in this paper without 
performing any pre-selection of the data, neither using 
the classification of the different disruptions, which is 
known. The reason is that the aim of this work is to 
determine what performance can be obtained by means 
of the simple analysis of the signals.  

To determine the adapting parameters and the 
thresholds described above, a training set constituted 
by 69 disrupted pulses has been used, while the 
remaining 85 disrupted pulses and all the 102 safe 
pulses have been used as test set. 
 
5.2. Performance evaluation 

In the proposed approach the training phase is not 
distinguished from the testing phase, because the 
training is performed dynamically during each pulse. 
Hence, the separation between training and test sets is 
made in order to define a priori the adapting 
parameters and the thresholds that have to be adopted 
during the test. 

Therefore, the main attention is spent to evaluate 
the performance on the test set. The aim of the 
diagnostic system is to predict the disruption in time to 
undertake a form of mitigating action, so avoiding to 
damage the apparatus.  

In particular, in the JET tokamak, at least 100 ms 
are necessary to terminate a pulse. Furthermore, the 
alarm has not to be given too early, since this should 
restrict the operative space. In the considered machine, 
an alarm is successfully given if it is triggered at most 
1s before the disruption time. Finally, no alarm would 
be given if the pulse is safe. 

The performance of the prediction systems can be 
evaluated in terms of percentage of false alarms (PFA), 
where PFA is defined as the ratio between the number 
of safe pulses predicted by the system as disruptive 
pulses, and the total number of safe pulses, in percent; 
and in percentage of missed alarms (PMA), where 
PMA is defined as the ratio between the number of 
disruptive pulses predicted as safe pulses, and the 
number of disruptive pulses, in percent.  

Moreover, for disruptive pulses, the percentage of 
premature alarms (PPA) is defined as the ratio between 
the number of disruptive pulses predicted by the 
system too much in advance, and the number of 
disruptive pulses, in percent.  

Finally, the prediction success (PSR) rate is defined 
as the success rate of the predictor in correctly 
predicting both disruptive and safe pulses. 

 
5.3 Neural approach 

The input of the neural network is a delay line that 
is fed with the nine diagnostic signals of Table I. The 
number of taps of the delay line is optimized by means 
of a trial and error procedure, in order to obtain a 
prediction error as small as possible. Both linear and 
nonlinear networks have been used to construct the 
predictor. In the latter, the hidden layer has to be 
suitably sized, in order to give enough degrees of 
freedom, but avoiding to over fit the network. Also this 
parameter has been determined by means of a trial and 
error procedure. 

In all the cases only one adapting iteration is 
performed at each instant. This causes the transient 
duration to be long, but it guarantees that whatever 
variation in the dynamics of the signal causes an 
observable rise of the prediction error.  

The output layer consists of eight linear neurons, 
each one corresponding to a measurement to be 
predicted. The unique input value that has not a 
correspondence in the output is the power Pin fed to the 
machine, which cannot be predicted because it is 
regulated by the human operator. 

As said above, the prediction error is assumed as 
diagnostic signal. Such prediction error has been 
calculated in different ways.  

Moreover, in order to determine a suitable alarm 
threshold, several procedures have been developed and 
compared.  

The best results have been obtained by evaluating 
the prediction error as the weighted sum of the 
prediction errors on each signal, where the weights are 
the standard deviation on the signals, calculated in a 
fixed number of time steps before. A static threshold 

TABLE I – DIAGNOSTIC SIGNALS 
Signal Unit Symbol 

Plasma current [A] Ipla 
Locked Mode [T] ML 

Radiated power [W] Prad 
Plasma Density [m-3] Dpla 

Input Power [W] Pin 
Internal Inductance  li 

Safety factor  Q 
Poloidal Beta  βp 

Plasma centroid 
vertical position 

[m] Pv 

 



has been empirically determined on the basis of the 
training set. 

The reliability of such an alarm depends on the fact 
that no transient is evolving, where a transient can be 
due to both the start of the pulse and an intervention of 
the human operator. In order to know if a transient is 
present, the time elapsed from the last cause of 
transient is greater than the transient time evaluated for 
the signal that gives the alarm. 

An exhaustive analysis of the network behaviour 
with respect of the different signals highlighted that 
Input Power signal presents a step discontinuity for 60 
of the 102 safe pulses (see Fig. 2) due to control action 
of the operator. For that reason, the alarms on Pin 
corresponding to such discontinuities have been 
inhibited. 

6. Results 

By comparing the performance of linear and 
nonlinear networks, we found that the latter ones are 
able to reach a smaller prediction error at the regime, 
and also they are more sensitive to the variations of the 
signals dynamics, but the error value greatly depends 
on the initial randomization of connections weights, 
hence this information is not reliable. On the contrary, 
the linear networks exhibit a greater robustness in 
adapting, and they show a sufficient sensitivity to the 
disruption precursors. 

In this paper, only the best results, obtained with 
linear networks are presented. In Table II the results 
obtained on the training set are reported in terms of 
PMA, PPA, and PSR. Note that, in Table II, PFA are 
not present as the training set contains only disruptive 
pulses. 
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Fig. 2 Inhibition of the alarm caused by a step discontinuity of Pin 



As it can be noted, the proposed system has an 
interesting predicting capability on the training set, 
comparable with that of other prediction systems 
reported in literature.  

In Table III the system performance is reported for 
the test set in terms of PFA, PMA, PPA, and PSR. The 
results are very encouraging, even if the percentage of 
false alarms needs to be further reduced.  

Moreover, the prediction capability of the neural 
predictor has been compared with the performance of 
the Mode Lock Indicator. The Mode Lock Indicator 
(MLI) is used at JET in the on-line disruption 
protection system and it triggers a shut down 
procedure.  

As data on missed alarms are, obviously, the only 
data available for the Mode Lock Indicator, Table IV 
shows a comparison between the results of the 
dynamic neural network and the MLI only in terms of 
PMA. Note that, MLI intervenes only in the case of 
disruptions due to locked modes. In our test set the 
class of disruption is unknown, hence such comparison 
is significant only because MLI is the only disruption 
protection system presently implemented at JET. 

For the training set, the MLI missed the alarm for 
50 pulses, while the proposed predictor missed the 
alarm for 19 pulses. It has to be pointed out that the 
two systems correctly agree for only 17 pulses.  

For the test set, the MLI missed the alarm for 43 
pulses, while the proposed predictor missed the alarm 
for 16 pulses. It has to be pointed out that the two 
systems correctly agree for 41 pulses. Moreover, the 
proposed system is able to correctly detect further 28 
disruptions. 

7. Conclusion 

In this paper, the dynamics of the diagnostic signals 
have been considered in order to predict the 
disruptions in nuclear fusion experiments. As a 
diagnostic signal, we use the error of the adapting 
neural network in the prediction of the signals coming 
from the machine. More specifically, if the prediction 
error begins to rise a disruption alarm is given. Several 
techniques have been applied to determine suitable 
alarm thresholds, and neural network structures. 
Different combinations of the prediction errors are 
tested, in order to obtain the best performance in terms 
of prediction success rate. 

The obtained results show that the proposed 
approach could furnish a new interesting point of view 
in predicting disruptions in nuclear fusion experiments, 
even if it needs to be further investigated in order to 
reduce the false alarms.  

It has to be highlighted that, the proposed prediction 
system is able to reduce the percentage of Missed 
Alarms more than 60 % with respect to the Locked 
Mode indicator, which is presently the only prediction 
system used at JET in the on-line disruption protection 
system. 
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