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Abstract 
 

An estimator which infers the distillate yields of an 
industrial visbreaking plant operating at the SARAS 
refinery is here presented. The estimator is based on a 
feed forward neural network, and the input data are 
pretreated with the Principal Component Analysis, 
which allows identifying the significant features in the 
available data. The neural model is trained, validated, 
and tested off-line by using plant data spanning an 
operating window of nine months. Results show a 
rather good agreement between the inferred yields and 
experimental measurements.  
 
1. Introduction 
 

Visbreaking is a mild liquid phase pyrolysis of 
atmospheric or vacuum distillation residues of crude 
oils. The aim of this process is to reduce the viscosity 
of the residues and to significantly increase the 
production of lighter distillates like gas, gasoline, 
kerosene.  

First principle modelling of visbreaking processes is 
very complex, time consuming and difficult in view of 
the many operating variables affecting the product 
quality properties. First principle models are actually 
available in literature [1-4], but they could not be 
adequate to use for on-line applications, where simple 
and compact models are preferred because, generally, 
they have to be implemented on DCS. Within this 
regard, Artificial Neural Networks (ANNs) may 
constitute a powerful approach to develop estimators 
that could be used for on-line applications. ANNs are 
data driven models, widely applied in process 
modelling and control [5-10], and they have 
demonstrated to be capable of successfully modelling 
non linear processes.  

In this work, we describe the development of an 
ANN estimator to infer the conversion of the 
visbreaking unit operating at SARAS refinery located 

in Sarroch (Cagliari, Italy). The goal is to estimate the 
distillate yields as a function of operating conditions 
and feed characteristics. The estimated yields may be 
used both to obtain the unit performances for a 
feedstock change, and support the operator to take a 
proper and prompt action when the yield quality is not 
at the desired value. The development of the estimator 
is not a trivial task, also because the considered plant is 
characterised by a high variability of the quality of the 
feedstock, which is formed by a mixture of heavy 
vacuum oils containing high concentration of sulphur 
compounds. Within this scenario, a strict control on the 
severity of the process is necessary in order to have the 
maximum recovery of distillates as the feedstock 
quality varies, without causing destabilizing effects on 
the residue (TAR). Furthermore, a correct management 
of the plant should assure an optimal period of life 
cycle maintenance. In fact, this factor often varies as a 
function of the production policy and of the scheduled 
stops of the other plants integrated with the 
visbreaking one. 
 
2. The industrial process and the 
experimental data 
 

A schematic representation of the visbreaking plant 
operating at SARAS Refinery is schematically 
reported in Figure 1. 

In this scheme, the mixture of vacuum oils, heated 
in two furnaces, is fed to an adiabatic reactor (soaker) 
where, mainly, the visbreaking process takes place. 
Each furnace is crossed by two coils that go through a 
convective and a radiant section. The soaker is 
equipped with perforated plates in order to reduce 
backflow and backmixing phenomena. The main 
purpose of the configuration “furnaces and soaker” is 
to increase the residence time and, consequently, 
reduce the average temperature of the process. In this 
way it is possible to decrease the fouling inside the 
coils and to increase the run time of the plant. The 



soaker is followed by a fractionating tower where the 
lighter fractions are separated from TAR. 

Two different streams constitute the feed to the 
plant: the principal one directly comes at high 
temperature from a vacuum unit (not reported in the 
Figure); the second is a cold stream, produced by 
another vacuum unit, which comes from stocking 
vessels. The hot visbroken residue is usually fed to a 
power plant. 
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Figure 1: Scheme of the visbreaking plant 

 
The analysis of the process was started with a 

comprehensive study of the visbreaking plant, either in 
terms of process conditions, including the 
configuration and location of the available 
measurements, and of stream characterization, 
including feed and products. The analysis was aimed 
to find the potential variables to be used to develop the 
distillate yield estimator. Finally, fifteen process 
variables were identified as possible inputs to the soft 
sensor, and they are essentially of two types: 6 
variables are related to the process operating 
conditions (temperatures, flowrates, etc.), while the 
remaining 9 variables concern the feed characteristics 
(e.g. carbon and hydrogen content). The selected 
variables were then collected with daily frequency for 
about nine months of operation. Because of a 
confidential agreement, no detailed indications on the 
variables made available for the current analysis can be 
reported in the present paper, and they will be denoted 
as OCi (i = 1, …, 6) variables when referred to the 
operating conditions, and FCi (i = 1, …,9) variables 
when referred to the feed characteristics. 

It should be noted that a reliable feedstock 
characterization is not available and this fact is one of 
the main difficulties when modelling the present 
process. Within this regard, these variables were 
derived by daily global mass balances combined with 

analysis (True Boiling Point, TBP, curves) of the crude 
oils processed in the refinery.  

The selected inputs are the candidates to infer the 
distillate yield, which is one of the most important 
indexes of the plant performance. This variable is not 
directly measured in the plant, but it is attained through 
the measurements of the volumetric flowrate of the 
products (gas, QG; gasoline, QGL; and gasoil, QGO) and 
the feedstock flowrate, QF, according to the following 
relation: 
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Incidentally, it is worth noting that flowrate 

measurements are affected by an error which depends 
on the instrument precision. At the SARAS 
visbreaking plant, flowrates are measured by 
obstruction flow-meters. Generally this kind of sensors 
is characterized by small rangeability (3:1) and limited 
accuracy (3 - 5%). The measurement error was thus 
calculated by considering that each flow rate is 
affected by an estimated relative error δQ/Q equal to 
4% circa. Resorting to consolidated formulas for the 
error propagation, one ends up with an error estimation 
on the experimental measure for the distillate yield 
equal to δY/Y = 8%. 

 
3. The neural estimator 
 

The distillate yield estimator is based on a 
feedforward fully connected neural network. The aim 
is to estimate the product yields through indirect 
measurements easily accessible. Soft sensors are 
required to be as simple and compact as possible, since 
they are devoted to on-line applications, and they 
usually have to be implemented on DCS.  

The first issue of the model development is the 
selection of the inputs to the neural network. This is 
not a trivial task, but some of the following indications 
may help the input choice. For example, measurements 
with high level of noise or with significant time delays 
should be not considered. Moreover, a proper selection 
of the inputs variables will allow reducing the number 
of inputs and will help the soft sensor design. Within 
this regard, one should select out, among all the 
potential variables, the actual variables carrying out 
enough information to detect variations of the process 
status. Redundancy should be avoided and, quite often, 
lumping (grouping) more variables may improve the 
neural model performance. In this work, this step of 
the network design was carried out by applying the 
Principal Component Analysis (PCA) to the fifteen 



candidate data inputs. This technique implies the 
reduction of the dimensionality of the input space, 
makes the data linearly independent and less affected 
by the experimental noise. 

Another important issue, when developing neural 
models, is the selection of the number of hidden layers 
and neurons in each hidden layer. In this case, a 
network structure with one hidden layer was selected, 
while the number of hidden neurons was found with a 
trial and error procedure, with the final goal to obtain 
the simplest structure as possible. 

The neurons for each layer were activated by means 
of a sigmoidal function, and the resulting neural model 
is the following 
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where z3(1) is the network output, z1(j) are the 

neural inputs, b is the bias term set equal to +1, n1 and 
n2 are the number of the input and the hidden layer, 
respectively, w1 and w2 are the weights of the input and 
hidden layer of the network, respectively. 

The subsequent calibration of the ANN model was 
accomplished in two different steps: model training 
and off-line validation. In particular, the total available 
data (233 daily averaged values) were split into a 
training and validation data set (170 points for training 
and 30 points for validation) and a test data set (the 
remaining 33 points). 

The model calibration was accomplished by 
searching the minimum of the cost function mean 
square error giving the distance among the 
experimental values yi and the predicted ones ypi. The 
minimization of the cost function is performed using 
the Levenberg-Marquardt algorithm, while 
overtraining was avoided by means of the cross-
validation. The capability of the neural model to 
reconstruct the distillate yields is evaluated by 
considering as performance indexes the determination 
coefficient R2 and the root mean square error MSE as 
defined below: 
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where N is the number of experimental data and y  

is their average value. 
 

4. Preprocessing of data 
 

As discussed in the previous section, the data were 
preprocessed by performing the Principal Component 
Analysis on the available measurements of the fifteen 
input candidates. The PCA technique is a well 
consolidated mathematical procedure that transforms a 
number of correlated variables into a smaller number 
of uncorrelated ones, which are the projections of the 
original variables onto the principal components [11]. 
These (linearly) independent variables are often 
referred as latent variables. 
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Figure 2: Bars: Eigenvalues (in decreasing 
order) of the covariance matrix. The y-axis 
is the relative percentage. Solid line: 
Cumulative percentage of the principal 
components 
 
Let X be a (n×p) data matrix of n observations on p 

variables x1, x2, …, xp. The correlation among the 
variables can be detected by inspection of the (p×p) 
covariance matrix S of the vector data. The principal 
components are then obtained as the eigenvectors of 
the covariance matrix. With this procedure one can 
transform interdependent coordinates into significant 
and independent ones. The eigenvalue associated to 
every principal component gives a measure of the 
variance explained by the single component. The 
principal components are then sorted in such a way 
that they account for the variability of the data with a 
decreasing order. Thus, the first principal component 
takes into account the largest variability of the data, 



whereas the smallest principal components can be 
regarded as redundant information that can be 
dropped. The final objective is to discover common 
trends and to reduce the dimensionality of the observed 
data. 

Results of the PCA procedure for the current case 
are reported below. In particular, Figure 2 shows the 
percentage of total variance explained by the single 
principal component (bars) and the cumulative 
percentage (solid line). It was found that the first 11 
latent variables collect the 99.6% of the total variance 
of data. Thus, projecting the data onto the linear space 
spanned by these principal components, one can end 
up with 11 linearly independent variables which can be 

used instead of the original data. These projected 
variables are usually called latent variables, and they 
will be denoted with bj (j =1, …, 11). In this way, one 
can address a reduction of the size of the data to be 
investigated without loss of information. 

In Table 1, the loadings between the single process 
variable (in the i-th line) and the principal component 
(in the j-th column) are reported. High values imply 
that the j-th principal component is dominated by i-th 
variable behaviour. The last rows in Table are, 
respectively, the eigenvalues and the variance 
explained by the j-th principal component. 

 

 
Table 1: The Principal Component table for the process variables 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

OC1 0.2684 -0.1875 -0.3254 0.0066 -0.0802 0.4441 -0.1924 0.1434 0.6516 0.0725 -0.2994 

OC2 0.2210 0.1621 0.2956 -0.1921 -0.5031 -0.1608 0.1041 -0.3017 0.3422 0.4543 0.2971 

OC3 -0.0214 -0.3472 -0.1434 0.2292 0.5867 -0.0497 0.3491 -0.3620 0.2180 0.2847 0.2734 

OC4 0.2100 -0.3952 -0.2774 -0.0290 -0.2781 0.1361 0.0296 0.2553 -0.1588 -0.2303 0.6827 

OC5 -0.1624 0.3753 0.0133 0.0488 -0.0728 0.6197 0.6439 0.1244 -0.0700 0.0536 0.0439 

OC6 0.0646 -0.3635 -0.3309 0.0907 -0.4394 -0.1916 0.4020 -0.2246 -0.2807 0.0809 -0.4645 

FC1 0.3420 0.1827 -0.2036 -0.2727 0.1441 0.0374 -0.0245 -0.0470 -0.2516 0.1582 0.1100 

FC2 0.2564 0.3335 -0.3597 -0.1295 0.1272 -0.2175 0.0994 0.0743 0.0244 -0.0477 -0.0187 

FC3 -0.1783 -0.1376 -0.0595 -0.6855 0.1258 -0.0526 0.1417 0.0444 0.0946 0.0336 -0.0496 

FC4 -0.2634 -0.2189 0.0202 -0.5382 0.0277 0.1825 -0.0253 -0.1399 -0.0616 -0.0566 -0.0470 

FC5 -0.3315 0.1602 -0.2034 -0.0212 -0.1217 -0.3656 0.2509 0.0171 0.4540 -0.4707 0.1204 

FC6 -0.3785 -0.0353 -0.2204 -0.0357 -0.0353 -0.0654 -0.1483 0.3370 -0.0772 0.5424 0.0457 

FC7 0.3317 -0.1619 0.3370 -0.1715 0.1081 0.1343 0.1066 -0.1855 -0.0214 -0.2919 -0.0998 

FC8 0.3113 0.2849 -0.3011 -0.1272 0.1547 -0.1322 0.0507 0.0011 -0.0639 0.0217 -0.0577 

FC9 -0.2449 0.2078 -0.3613 0.0322 -0.1240 0.2776 -0.3509 -0.6699 -0.0937 -0.1085 0.1287 

Eigen 
values 5.4997 2.6732 1.9186 1.5488 1.1704 0.6285 0.5279 0.3655 0.3252 0.1831 0.0989 

            

% 
variance 36.66 17.82 12.79 10.33 7.80 4.19 3.52 2.44 2.17 1.22 0.66 

  
 
5. Results 
 

Preprocessing of the data with the PCA procedure 
allowed reducing the input set variables to 11 
independent latent variables which are formally 
equivalent to the 15 original ones. A subsequent step 
in the neural modelling would be a proper selection of 
the variables relevant for the output. In fact, although 
the PCA procedure guarantees that the 11 latent 
variables collect almost the total variance of the input 

data, it does not take into account the relationship 
between the output and the input variables. Introducing 
irrelevant variables in the input sets may eventually 
have detrimental effect on the prediction capabilities of 
the neural network.  

To this end, a forward/backward selection of the 
latent variables was implemented. The variables were 
inserted in turn one at a time, computing 100 ANNs, 
and choosing each time the one leading to the most 
efficient ANN. The basic procedure is as follows. 



First, an ANN Y = G(bi) with only one latent variable 
was implemented by varying i (i = 1,…, 11), and the 
neural model which works better in terms of 
performance indexes was selected. Next, a second 
latent variable bj (with j ≠ i) was selected and one 
looks for the neural model Y = G(bi, bj) (i fixed and 
evaluated in the previous step, j = 1, …, 11, j ≠ i) 
showing the best performance. The procedure was 
iterated by adding further latent variables until the 
MSE (or, equivalently, R2) saturates. The procedure 
involves the re-examination at every stage of the 
influence of the inputs previously incorporated into the 
neural model. In fact, an input variable which may 
have been the best single variable to enter at an early 
stage may, at a later stage, be superfluous in view of 
the (nonlinear) relationships between it and the other 
variables next added as inputs to the neural model. 
This check was performed by using a backward 
procedure. However, for the current study, backward 
procedure evidenced that no latent variables previously 
included in the model revealed to be negligible in the 
next iterations. The performance index was always 
evaluated on the validation data set. It is worth noting 
that for each input structure, the number of hidden 
neurons was varied up to a maximum of two neurons. 
This limit depends on the small amount of available 
data, which required the development of a 
parsimonious model.  

The results of the procedure are summarized in 
Table 2, where the R2 and MSE evaluated for the best 
neural model obtained at any iteration are reported. 
The latent variables selected as inputs to the network 
are also shown, and for every model the number of 
hidden neurons was found to be always equal to two. 

The procedure applied for the selection of the 
neural inputs evidences that saturation of the 
performance indexes is reached with five inputs.  

A combined analysis of Table 1 and Table 2 can 
give useful insights on the rule of the different 
variables on the performance of the neural model. In 
fact, the first latent variables to be selected (in more 
detail, the 5th, the 9th and the 2nd ones) are mainly 
related to the operating conditions, whereas the 
loadings of the feed characteristics in such principal 
components have a minor impact. Only at the 4th 
iteration the information related to the feed 
characteristics are taken into account by means of the 
first principal component. One should remark that 
although the first principal component collects almost 
37% of the total variance of data, such information 
appears to be less significant for the modelling of the 
distillate yield. In conclusion, this result clearly 
indicates the significant rule played by the process 

conditions and the minor importance of the feedstock 
characterization data. 

 

Table 2: Summary of the performance 
indexes calculated for the best neural 
model (validation data set) at any step 
and the corresponding selected latent 
variables. 

 

 Input variables R2 MSE 

1 5 0.37 1.8e-2 

2 5 – 9 0.56 1.6e-2 

3 5 – 9 – 2 0.61 1.1e-2 

4 5 – 9 – 2 – 1 0.67 1.0e-2 

5 5 – 9 – 2 – 1 – 11 0.72 9.0e-3 

6 5 – 9 – 2 – 1 – 11 – 4 0.74 8.7e-3 

7 5 – 9 – 2 – 1 – 11 – 4 – 8 0.75 8.6e-3 
 
In the following, the prediction capabilities of the 

model are illustrated. For confidential reasons, all the 
following figures do not report the absolute values of 
distillate yield, but the normalized ones. Figure 3 
shows the comparison of network predicted distillate 
yields with the measured yields for the training and 
validation data set, obtained by selecting five inputs 
for the neural network (structure #5 in Table 2). In this 
case, the determination coefficient is R2 = 0.70 and the 
mean square error is MSE = 0.010.  

Experimental yield
0.0 0.2 0.4 0.6 0.8 1.0

E
st

im
at

ed
 y

ie
ld

0.0

0.2

0.4

0.6

0.8

1.0

 
 

Figure 3: Comparison of the predicted 
distillate yields with the measured ones for 
the training and validation data set 
(structure 5 in Table 2) 



The capability of the network is then verified by 
processing the test data set and the results are shown in 
Figure 4, where the predicted yields are compared with 
the measured experimental ones. In this case, the 
performance indexes are R2=0.83 and MSE=0.007. The 
two solid lines in the figures indicate the error of ±8% 
(estimated experimental error) on the measured values. 
It is evident that the prediction error is under the 
experimental one for the most of situations. Hence the 
results are surely satisfactory, and Figures 3 and 4 
show a good agreement with an average error 
comparable to that of the measurements.  
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Figure 4: Comparison of the predicted 
distillate yields with the measured ones for 
the test set (structure 5 in Table 2) 

 
6. Conclusions  
 

A neural-based estimator has been developed to 
infer the distillate yield of an industrial visbreaking 
plant, owned by the SARAS refinery (Cagliari, Italy). 
The soft sensor was based on a feedforward fully 
connected neural network, with one hidden layer and 
sigmoidal activation functions. The data made 
available for this study consisted of fifteen daily 
averaged process variables (operating conditions and 
feed characteristics) collected during nine months of 
the plant operations. The data were preprocessed by 
PCA in order to reduce the redundancy in the data. The 
neural network inputs were then selected, among the 
first eleven latent variables, with a forward-backward 
procedure. This led to a parsimonious and efficient 
model constituted by five inputs, two hidden neurons 
and one output. The uncertainty of the estimation of 
the distillate yields is lower than the uncertainty 
assumed for the experimental measurements, hence the 

results are promising. In addition, the adopted 
procedure evidenced a strong dependence of the 
distillate yield on the operating conditions, whilst the 
feed characteristics show a minor impact. These results 
suggest the possibility to use this methodology to 
obtain an on-line monitoring of the distillate yield, by 
means of real time data, and it gives also useful 
insights for the development of first-principle models 
of the investigated process.  
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