

Application of Reinforcement Learning for the Generation of an
Assembly Plant Entry Control Policy

E. Kehris
Dept. of Business Administration

Technological Educational Institute of Serres
Serres, GREECE
 kehris@teiser.gr

D. Dranidis
Computer Science Department

CITY Liberal Studies
Affiliated Institution of the

University of Sheffield
Thessaloniki, GREECE

dranidis@city.academic.gr

Abstract
 The generation of an entry control policy for an

assembly plant using a reinforcement learning agent is
investigated. The assembly plan studied consists of ten
workstations and produces three types of products.
The objective of the entry control policy is to produce
a given production mix within a planning horizon,
while following a given production mix. Due to the
large state space, a function approximator, based on a
neural network, is used to model the long-term reward
function. The schedules generated by the trained agent
are compared to those produced by a deterministic
heuristic control policy that has been developed for
this assembly plant. Simulation results show that the
reinforcement learning agent produces production
plans that achieve better productivity than the
heuristic controller under tight planning horizons,
generating sub-optimal yet acceptable production mix
balance.

1. Introduction

Production scheduling deals with the allocation of
the resources of a manufacturing system to a set of
activities so as to optimize managerial objectives while
satisfying system constraints. Typical managerial
objectives include the minimization of make span,
mean flow time, tardiness or the maximization of the
resource utilization, while system constraints are
related to the order in which the various processing
activities are performed. Production scheduling
problems usually belong to the NP-complete class of
problems [1, 2]. Real-life scheduling problems are not
amenable to analytical treatment and are studied
mainly by developing specialized heuristics which
often exploit individual characteristics of the

manufacturing system and generate satisfactory but not
optimal schedules. More recently, machine-learning
techniques have been employed in an attempt to
address production scheduling. In this paper, we
investigate the application of a reinforcement learning
(RL) in production scheduling.

Production scheduling is often treated [3, 4] as a
two-level decision process: at the upper level the entry
control policy (system loading) is decided, while at the
lower level the job routing and job sequencing are
determined. The entry control policy determines the
time and the type of the part to be loaded into the
system, usually taking into account general system
requirements (e.g. the required production mix, the
time horizon) and system’s state (e.g. work-in-
progress, bottleneck machine status). Job routing, on
the other hand, deals with the assignment of operations
to the manufacturing system machines and is required
in cases in which some of the machines of the
manufacturing system have the capability of carrying
out more than one processing operations. Job
sequencing, finally, identifies the job to be processed
in a specific machine by selecting the job from a non-
empty set and it is required whenever a set of jobs are
simultaneously requesting to be processed by the same
machine. A practical and widely used approach to
solving the job sequencing problem is the adoption of
heuristic dispatching rules, such as FIFO or LIFO.

This research investigates the application of a
reinforcement learning approach in developing an
upper-level controller that determines the entry control
policy for a manufacturing system. To our knowledge
no research has been reported to deal with this
particular problem.

The aim of the RL controller is to produce
production schedules for the given manufacturing
system which satisfy the demand while keeping a good
balance of the production mix.

The structure of this paper is as follows: section 2
describes the reinforcement learning approach and its
application to production scheduling, section 3
presents the manufacturing system which is used as a
case study, the managerial objectives that should be
met by the schedulers that feed the manufacturing
system and a heuristic controller that has been used for
loading the manufacturing system. The reinforcement
learning agent developed for the specific
manufacturing system is described in section 4,
together with the results obtained when the RL agent is
used to control the manufacturing system. A
comparison of the RL agent to a heuristic controller is
also presented in section 4. Section 5 concludes the
paper by discussing the main finding of this research.

2. Reinforcement Learning

RL algorithms approximate dynamic programming
on an incremental basis. In contrast to dynamic
programming, RL algorithms do not require a model of
the dynamics of the system and can be used online in
an operating environment. A reinforcement learning
agent senses its environment, takes actions and
receives rewards depending on the effect of its actions
on the environment. The agent has no knowledge of
the dynamics of the environment (it cannot predict the
consequences of its actions). Rewards provide the
necessary information to the agent to adapt its control
policy. The aim of a reinforcement learning agent is to
maximize the total reward received (simply called
return) from the environment. For successfully
applying a RL algorithm the system has to be
represented as a stationary Markov Decision Process
(MDP). Figure 1 illustrates the interaction of the RL
agent with the system.

 System

RL agent

tα ts1+tr

Figure 1. The interaction of the RL agent
with the simulation system.

If Sst ∈ (S is a set of states) is the state of the

system at time t then the RL agent decides the action

At ∈α (A is a finite set of actions) according to its
current policy AS →:π . The action tα leads the

system to its new state 1+ts and results an immediate

reward 1+tr .
RL algorithms usually employ stochastic action

selection policies. A frequently used policy is the ε-
greedy policy: at each state the agent chooses with a
probability 1-ε the action that returns the maximum
expected long-term reward (a greedy action) and with
a probability ε a random action (an explorative action).
The estimated return is represented by the action value
function ℜ→× ASQ : . A greedy action corresponds
to the action associated with the maximum action
value:

)),((max)(ttt sQsV
t

α
α

= .

ℜ→SV : is called the state value function.
)(tsV is an estimation of the expected return when

beginning from state ts the agent follows a strictly
greedy policy. In tasks in which there is a final state
the expected return tR starting from state ts may be
calculated as the sum of immediate rewards:

Ttrt rrrR +++= ++ L21
Tasks which have a final state are called episodic

and the agent-system interaction from the initial to the
final state is called an episode. To allow learning in
non-episodic task (non-terminating tasks) a discount
rate γ (10 ≤≤ γ) is introduced which discounts the
present value of future rewards:

LL +++++= +++++ 13
2

21 nt
n

ttrt rrrrR γγγ
To progressively improve the control policy of the

RL agent when a near greedy policy is followed, the
estimations of the expected return, as represented by
the action values),(ttsQ α , need to be updated during
the agent-system interaction. One of the most popular
RL algorithms is the Q-learning algorithm [5]. The
update of the action values),(ttsQ α with the Q-
learning algorithm are:

ttttt asQsQ δαα +←),(),(

where α (10 <<α) is a positive step-size
parameter and

),()(

),(),(max

11

11

tttt

ttttt

sQsVr

sQsQr

αγ

ααγδ
α

−+=

−+=

++

++

tδ is the “error” of the estimation of the return.
The target value of),(ttsQ α is equal to the immediate

received reward 1+tr plus the discounted estimated
state value)(1+tsV of the next state. Learning is based
on temporally successive estimates of Q; this sort of
learning is typical in Temporal Difference (TD)
reinforcement learning algorithms.

In the case of Q-learning the agent is able to learn
the estimates of the optimal policy independently of
the policy being followed (the agent does not need to
take the best action at the next state). Therefore Q-
learning is considered an off-policy control algorithm.

Another algorithm that can be used for the update
of the action value function Q is the Sarsa algorithm
[6]. In Sarsa the error tδ is:

),(),(111 tttttt sQsQr ααγδ −+= +++
In Sarsa, the target value of),(ttsQ α is equal to the

immediate received reward 1+tr plus the discounted
estimated action value),(11 ++ ttsQ α of the next action
taken at the next state. Sarsa, in contrast to Q-learning,
is an on-policy control algorithm. The agent learns the
estimates of the policy being followed.

Due to the near-greedy policy, better estimations of
the followed policy, progressively result in better
control policies. Exploration is necessary for the agent
to discover better states and actions in order to
improve its policy.

To improve the efficiency of RL algorithms, they
can be combined with eligibility traces. Eligibility
traces keep track of the states visited and the actions
taken so far and thus allow multiple updates of the
action value function Q. The value of using eligibility
traces increases significantly in tasks which have long
episodes and delayed rewards.

The eligibility trace for state s and action α at time t
is denoted),(tt ase . Each time an action is taken at
some state, the corresponding eligibility trace is
increased by 1. At the same time, all eligibility traces
are decayed by γλ, where γ is the discount rate and λ is
the trace-decay parameter. The update of the action
value function is performed for all states-action pairs s
and a:

),(),(),(aseasQasQ ttαδ+←
Only the visited state-action pairs which are tracked

by the eligibility traces are actually updated. Both Q-
learning and Sarsa can be combined with eligibility
traces and are called Q(λ) and Sarsa(λ) respectively. In
the case of Q(λ), however, all eligibility traces must be
set to zero after an exploratory action is taken.

For problems in which the state space is small a
table can be used for storing the action value function
Q. In real world problems, however, the state space is
too large or even continuous, and the Q function
cannot be represented in a tabular way. In these cases
function approximation techniques are employed to
approximate the Q function. Function approximation
can be achieved by representing Q as a function of a
parameterized vector. For example, if an artificial
neural network is used, then the aQ function (where

),()(asQsQ tt
a =) can be represented as a

parameterized function of the state as input and the
connection weights vector twr as the parameter vector,
and a gradient descent technique (such as
backpropagation [7]) may be used to adjust twr . A

separate output unit, representing the value of)(t
a sQ ,

has to be used for each action A∈α . Since states are
indirectly represented by the weights vector, eligibility
traces are represented as a vector ter (one trace for each
component of twr). The updates of the weights vector
are:

tttt eww rrr αδ+←
where

),(ttwtt asQee
t
r

rr
∇+← γλ

tδ is the error in the estimation of Q, as it was
described above. The derivative vector),(ttw asQ

t
r∇

is the gradient of),(tt asQ with respect to twr .
Intuitively, the weights which contribute more to the
calculation of the Q value have larger eligibility traces.

The pseudocode for Sarsa(λ) with a back-
propagation network as the function Q approximator is
given below:

initialize weights vector
set eligibilities vector e to zero
set s as the initial state

Q = ΝΝw(s) (forward propagate)
a = arg maxa Q(a)
with probability ε: a = random action

repeat
 decay all eligibilities by γλ
 update eligibilities for action a (back propagate)

 take action a, observe reward r, and next state s

 δ = r - Q(a)

 Q = ΝΝw(s) (forward propagate)
 a = arg maxa Q(a)
 with probability ε: a = random action

 if s is not terminal
 δ = δ + γQ(a)

 update weights vector w based on δ and e

 Q = ΝΝw(s) (forward propagate)
until s is terminal

2.1. Related work

Probably the most impressive application of

Reinforcement Learning is the TD-Gammon system
[8], which achieved a master level in backgammon by
applying the TD(λ) reinforcement learning algorithm
(Temporal Difference algorithm [9]). In TD-Gammon
a neural network receives the full representation of the
board and approximates the value function. Successful
applications of RL algorithms to control problems have
been reported. Crites and Barto [10], for example,
employed RL algorithms for elevator dispatching. A
team of RL agents using neural networks were trained
to improve the performance of multiple elevator
systems. Zhang and Dietterich [11] applied a RL
method that learns to incrementally improve a repair-
based job-shop scheduler for the payloads placed in
the cargo bay of the NASA space shuttle. Their
objective was to schedule a set of tasks without
violating any resource constraints while minimizing
the total duration. They use the TD(λ) algorithm (the
same algorithm used in TD-Gammon) to learn an
evaluation function over states of scheduling.

A number of researchers have reported on
employing reinforcement learning to address various
problems related to manufacturing. Mahadevan et al.
[12], for example, introduced a model-free algorithm
for average-reward RL (called SMART). They apply
the algorithm in controlling a production-inventory
system with multiple product types. In their system,
there was a single machine capable of producing
multiple types of products with multiple buffers for
storing each of the different products. Whenever a job
is finished, the machine may either undergo
maintenance or start another job. The RL agent has to
decide between these two actions in order to avoid
costly repairs. Mahadevan and Theocharous [13]
applied SMART to a 3-machine transfer line
producing a single product type. Their goal was to
maximize the throughput of the transfer line while
minimizing its work-in-process inventory and failures.
They compared the policy from SMART to the kanban

heuristic. Their results showed that the policy learned
by SMART requires fewer items in inventory and
results in fewer failures than with the Kanban
heuristic.

A number of researchers deal with the job-
sequencing problem. Liu and Dong [14] used the Q-
learning algorithm to train a neural network to select
the most appropriate dispatching rules. Their results
showed that the dispatching rules that are known to
provide good results have higher probabilities of being
selected by their trained neural network than the least
desirable rules. In a similar approach, Wan and Usher
[15] employed the Q-learning algorithm to the
dispatching rule selection problem for a single
machine. Their results showed that an agent trained
with the Q-learning algorithm is able to identify the
best rules for different system objectives. Aydin and
Öztemel [16] report similar results using the Q-III
reinforcement learning algorithm.

System scheduling (i.e. upper-level scheduling)
bears some similarities to lower level scheduling since
in both cases the objective is to determine the next job
to be processed. However, the aim of system
schedulers is much more complicated for a number of
reasons: Firstly, system schedulers should consider the
possibility of not loading any job into the system:
given a production mix that has to be satisfied within a
time horizon, there may be time instances at which the
system scheduler decides not to load any part into the
system, e.g. due to excessive work in progress. This
option is not considered at machine-level job
scheduling: whenever a set of jobs are simultaneously
requesting to be processed by an available machine,
one of them is always loaded to the machine.

Furthermore, the machine-level schedulers reported
in the literature, are presented with a small number of
heuristic dispatching rules and attempt to develop a
new policy by applying the most appropriate
dispatching rule taking into account the system status.
At any decision point, the machine-level dispatcher has
to select one of the available dispatching rules.

In the problem we consider, however, the set of
available actions is not constant: at some points of
time, some of the actions considered by the system
scheduler may not be feasible e.g. because the machine
required to process a part type is busy and its local
buffer is full.

In addition, machine-level controllers reported in
the literature aim to optimize the performance of a
single machine. The system-level controller we
consider in our work aims at optimizing the
performance of the whole manufacturing system which
consists of a number of machines. As a result, our
system-level controller needs to generate a control

policy by considering the overall system status, while
the actions taken may at some points deteriorate the
performance of some machines in favour of improving
the overall system performance.

The systems reported in the literature consider a
single machine, which process parts from an input
buffer. The machine performs one operation at a time.
As a result, at any point of time, the action to be taken
is the selection of one part out of the input buffer. The
next time at which a decision is required is when the
machine completes the operation of the selected part.
Similarly, in the manufacturing system we consider,
the machines operate on parts selected from their input
buffers and process them. In contrast to the systems
reported in the literature, however, in our system,
while the machine is carrying out an operation, (i.e.
without any obvious state change) the scheduler may
still decide whether to add another part in the
machine's input buffer. This characteristic renders the
system status more "continuous".

 Finally, the manufacturing system we study is
initially empty. The existence of many machines and
the necessary set up operations result to a long
transient period during which the RL agent takes
actions without any obvious immediate effect. The
effect of the actions taken by the RL agent become
obvious at a later stage, when the parts start to be
produced. This long transient period may have an
affect on the behaviour of the RL agent.

These features place additional difficulties on the
application of RL to a system-level loading scheduler
in comparison to a machine-level scheduler. Initial
findings related to the development of RL-based
schedulers that control system-level loading are
reported in [17] and [18]. The problem studied in [17,
18] was simpler than the one addressed in this paper,
since the manufacturing system produces two part
types, while in this work it produces an extra third
type. Furthermore, in [17, 18] the system-level
scheduler used employed three independent neural
networks to decide the action to be taken at each time
step, while in the current work, we employ a single
neural network with RBF units representing the
production backlogs. Finally a different reward
function is proposed.

The manufacturing system used to study the
applicability of the RL approach on developing a
system-level scheduler is described next.

3. The manufacturing system

The manufacturing system studied in this paper is a
simplification of an existing assembly plant. In its
simplified version, the assembly plant we consider

consists of ten different workstations and produces
three types of printed circuit boards (PCBs) referred to
as Type A, B and C.

The manufacturing system consists of ten
workstations shown in Table 1. The workstations do
not suffer from breakdowns but some of them require
set up. More explicitly, the automatic surface mounting
(workstation 2) and the Integrated Circuit testing
machines (workstation 10) require a set up operation
when a change in the type of board is encountered.
Table 1 shows the set-up times for each machine of the
workstation.

 Parts waiting to be processed by the workstations
are temporarily stored at workstation’s local input
buffer which is of capacity of two. The dispatching
rule used to select the next part to be processed from
an input buffer is the FIFO rule.

Table 1: The workstations of the
manufacturing system.

Work
station

Id

Workstation
Name

Setup time

1 Solder paste painting
2 Surface Mounting 12 sec
3 Reflow soldering
4 SMD vision control
5 Assembly
6 Assembly
7 Wave soldering
8 Final assembly
9 Vision control

10 Integ. circuit test 24 sec

Table 2: The routing of the part types.

Board
Type

Routing (workstation id)

A 1 2 3 4 5 7 9 10
B 1 2 3 4 5 7 8 10
C 1 2 3 4 6 7 8 9 10

The routings of the three types are given in Table 2

in terms of the sequence of the workstations they have
to visit to complete their assembly. Each operation
required by the part types is carried out by one
machine only and thus job routing is not required. The
duration of the corresponding operations are given in
Table 3. It is evident from the duration of the

processes that the setup operation is a time-consuming
activity.

Table 3: Processing Times (in sec).

Workstation id Board
Type 1 2 3 4 5 6 7 8 9 10

A 3 3 11 7 11 -- 19 -- 3 2
B 3 3 11 13 20 -- 19 14 4 1
C 3 5 11 15 -- 11 19 4 4 6

A typical production mix for the manufacturing

system, which must be satisfied within a time horizon
that ranges between 1100 and 1300 time units, is
shown in Table 4.

Table 4: A typical production mix.

Type Quantity
A 20
B 5
C 30

3.1. The Simulation Program

A simulation model that mimics the manufacturing
system described earlier was built using the FMSLIB
simulation library [19] which is a generic software
library written in C that facilitates the simulation of
manufacturing systems and their real time control
strategies. FMSLIB employs the three-phase approach
[20] and provides facilities for modelling the physical
structure, the part flow and the system and workstation
loading policy of a family of FMSs. FMSLIB currently
supports the following simulation entities:

• parts of different types
• machines
• workstations (a group of machines)
• limited capacity buffers
• non-accumulating conveyors

FMSLIB advocates the separate development of the
conceptually different views of the simulated system.
This approach facilitates the modular program
development, program readability and maintainability
and the evaluation of different strategies (system-level
control policy, dispatching control, etc) on the same
system. A simulation program based on FMSLIB is
comprised of the following modules:

• Physical Structure (Equipment) - Contains the
descriptions of the machine, conveyor, buffer

and workstations that make up the simulated
system

• Operational Logic - Contains the descriptions
of the feeding policies for the machine,
workstation and conveyors of the simulated
system i.e. determines the input buffer policy
for each machine.

• Input Data - Provides system-related static
data like the demand and the machine
processing times

• Part path - Describes the part flow through the
system. This module explicitly describes the
equipment required by each part type, at each
stage of its manufacturing process.

• Data Collection - Defines the user-defined
parts of the system for which data collection is
necessary.

• Control Strategy - Determines the system-level
scheduling policy to be implemented for the
control of the system; i.e. it determines which
part type will be introduced in the system and
when. In this paper, the control strategy is
implemented by the neural network which is
trained using the RL agent.

The separation of the different views of the
simulated system advocated by FMSLIB greatly
facilitated the incorporation of the software that
implements the RL agent (written in C++) with the
simulation code.

3.2. Heuristic controller

The manufacturing system described earlier is fed

by a heuristic controller which determines the time and
the type of the part to be introduced into the system
[21]. An important managerial objective of the
scheduling policy that must be satisfied by any control
policy for this system is to ensure timely demand
satisfaction and balanced production rate of the
required types. This means that ideally the production
rates of the three types must be constant during
production. The balanced production requirement is
necessary because the assembly plant feeds successive
production stages. In this section we provide a short
description of the heuristic algorithm without getting
into details (e.g. the treatment of machine break
downs) which are of no interest for this work.

The heuristic algorithm employed for the system
loading policy consists of two steps: (a) the part types
that are candidate for loading into the system are
identified and (b) the type of the part to be loaded in
the system is decided.

The type of the part to be loaded into the system is
the one having the maximum backlog of the
cumulative entrance from a boosted desired, where the
backlog for type i is calculated by the expression:

)()()(teTtdtb iiii −+= if ii Pte <)(
otherwise

)()(tetb ii −=
 where

• t is the current time, iP is the production
demand;

• TPd ii = is the demand rate (T is the
planning horizon) for product type i

• iT is the estimated processing time for for
product type i; and

•)(tei the number of entered parts at time t
for product type i.

The part types that are candidates for loading into

the system are those having positive backlogs)(tbi .
The behavior of the heuristic controller under the

range of typical planning horizons and for the typical
production requirements shown in Table 4 is discussed
next. Simulation results show that the heuristic
controller achieves very stable production balances
under a wide range of planning horizons. When the
planning horizon is sufficiently long, the heuristic
controller achieves a nearly ideal production mix. For
example, when the planning horizon is set to 1300 time
units the heuristic controller produces all the required
parts of Table 4 following closely the ideal production
rates. This is shown in Figure 2 which displays the
actual production achieved by the heuristic algorithm
(stepwise lines) together with the ideal production
rates (straight lines).

However, when the planning horizon is tight, the
heuristic algorithm produces an extremely balanced
production mix at the cost of a significantly lower total
production. For example when the planning horizon is
set to 1100 time units, the total production for types A,
B and C is 16, 4 and 24 parts respectively – instead of
the 20, 5 and 30 parts required. The production rates
achieved by the heuristic controller for this case are
extremely balanced throughout the planning horizon as
it is shown in Figure 3.

0

5

10

15

20

25

30

35

59 16
8

25
4

31
2

39
3

42
3

50
9

59
1

67
2

70
6

78
8

86
9

92
7

96
5

10
23

11
04

11
62

12
44

13
02

Time

Pa
rt

s
pr

od
uc

ed

Type C Type B Type A

Figure 2. The production achieved by the
heuristic controller for a sufficiently long
planning horizon.

0

5

10

15

20

25

30

35
59 14
3

22
4

28
0

33
8

38
9

45
1

45
5

54
1

59
2

65
0

70
6

76
4

82
0

90
1

95
7

10
15

10
71

Time

Pa
rt

s
pr

od
uc

ed

Type C Type B Type A

Figure 3. The production achieved by the
heuristic controller for a tight production
horizon.

3.3. Scheduling policy objectives

The aim of this research is to develop a RL-based
controller which under tight planning horizons
achieves better productivity than the heuristic
controller generating sub-optimal – but still acceptable
– production rates.

The system scheduling policy we consider is
responsible for deciding the time instances at which a
part will be input in the manufacturing plant as well as
the part type. The objective of the scheduling policy is
to ensure timely demand satisfaction and as balanced
production rate of the required types as possible. This
means that ideally the production rates of the three
types must be constant during production.

The simulation program that has been developed for
modeling the dynamics of the manufacturing system is

supervised by an RL agent that determines the loading
policy of the simulated plant. The details of the RL
agent developed are discussed in the next section.

4. The Reinforcement Learning agent

The definition of a reinforcement learning agent
consists of:

• a state representation,
• a reward function,
• an action selection control policy, and
• a learning algorithm for estimating the

state (or action) values.

All these decisions are very important for the

success of an RL agent. The above elements of the RL
agent are described in the following sections.

4.1 State representation

One of the most important decisions when
designing an RL agent is the representation of the
state. In the system described in this paper this is one
of the major concerns since a complete representation
is not possible due to the complexity of the problem.
Therefore we choose to include the following
information in the state representation:

• state of machines. Each machine may be
found in one of three distinct states: idle,
working or blocked. The setup machines may
be found in an extra state: setup.

• state of input buffers. Buffers are of limited
capacity.

• backlogs for each type of production parts.
Due to the large state space a neural network is used

for approximating the value function. Specifically the
neural network input layer consists of the following
units:

• 3 input units are used for each one of the 10
machines. Each input unit corresponds to one
of the possible states of the machine (idle,
working or blocked). Only one of these units is
active.

• 1 extra input unit (setup) is used for each one
of the 2 setup machines.

• 2 units are used for each one of the 10 buffers.
The first unit represents the level of the buffer
in a continuous way and the second turns on
when the buffer is full.

• 10 one-dimensional Radial Basis Function
Units are used for each one of the 3 production
type backlogs. The backlog values, which are

covered by the RBF units, range from -14 to 4
with an interval of 2.

Totally, there are 82 inputs for the input state
representation. The backpropagation learning
algorithm is used for updating the weights of the
network.

4.2. The reward function

The implicit mapping of the reward functions to
scheduling policies has to be a monotonic function:
higher rewards should correspond to better scheduling
policies.

Taking into consideration the scheduling policy
objectives mentioned in a previous section, the reward
is calculated with the following formula:

T
TM

w
M

dp
wr tim

M

iii

bal
−

−
−

−=
∑
=1

)(max
τ

ττ

The formula consists of two scaled terms. The first
term of the formula evaluates the balance of the
production. At each time τ, the distance of the actual
production from the ideal production ττ ii dp −)(is
calculated for each product and the maximum absolute
distance is summed for the whole duration of the
production task. The result is divided by M, the total
production time (make span) for the specific episode.
Note that τ is used for simulation time to distinguish
from decision epoch (times at which the RL agent
takes decisions), which is denoted as t.

 The second term of the formula evaluates the
timeliness of the production. T is the planning
horizon, i.e. the required production should be
accomplished within this time. In the ideal case M
should be equal to T.

So, the RL agent is punished with the sum of the
maximum distance between the desired and actual
amount of production and the distance between the
total production time and the planning horizon. In the
experiments conducted we have chosen the values

2=balw and 1=timw for the parameters. The reward
is negative and its values generally range in the
interval [-1,0).

Simulation steps do not coincide with decision
epochs of the RL agent, since during the simulations,
there are states in which there is only one possible
action (for example, when the input buffer is full the
only possible action is “do nothing”). At these states
the simulation proceeds without consulting the RL
controller. However, rewards are still calculated at
each simulation step and accumulated until the next

decision epoch. The total reward accumulated and
calculated as in the formula above is returned to the
agent at the end of the episode.

4.3. Actions

The RL agent has to decide between four actions:
entering a part of type A, B or C or doing nothing.
The decision is based on the output of the neural
network, which is trained during the simulation. The
activation function for the 4 output units is a sigmoid
function translated by -1 to fit in the reward region.

4.4. RL learning algorithm

The RL agent developed employes the Sarsa(λ)
algorithm. This decision was justified by a specific
characteristic of the particular manufacturing system.
As explained earlier, some actions may be infeasible at
some time instances of an episode. For example, if the
entry machine is busy and its input buffer is full, no
part may be added to the system. In RL algorithms,
the updates of the current state-action value
estimations are based on the estimated values of the
next state. Sarsa(λ), which is an on-policy algorithm,
uses for the update the value of the next action
followed, whereas Q(λ) uses the value of the best next
action. If some actions are not possible at the next
state (fact which is not known to the agent before
visiting that state), then Q(λ) might wrongly update its
estimates by using the value of an infeasible action.
Sarsa, on the other hand, takes into account the action
selection and therefore is more suitable to this task.

4.5. RL agent parameter setting

The task of controlling the manufacturing system is
an episodic task. Each simulation ends when all
required products have been produced. Therefore, the
discount factor γ is set equal to 1 (rewards are not
discounted). Episodes are quite long (more than 1000
time steps) and the reward is provided to the agent
once at the end of the long episode. Therefore, a large
trace decay parameter λ was preferred (0.995), so that
the reward can be propagated (through the eligibility
traces) towards the actions taken at the beginning of
the episode. Past traces decay with a factor tλ where t
is the number of time steps. Figure 4 illustrates the
value of tλ for different λ and time steps. Note that for
λ=0.995 the decay trace falls below the value of 0.005
after about 1000 time steps. (Correspondingly: λ=0.90,
50 time steps; λ=0.95, 100 actions; λ=0.99, 500
actions).

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.9
0.95
0.99

0.995

Figure 4:

tλ for different values of � in
logarithmic scale.

Training the agent with randomly chosen weights

for 40,000 episodes showed that a large value of λ
(0.995) combined with relatively high alpha value
(α=0.2) produces the best results.

The action selection technique used is the ε-greedy
policy with ε equal to 0.1 (10% of the decisions are
random) to allow high exploration. The value of ε is
decaying after each episode.

4.6 RL agent training

The RL agent was trained to produce the typical
production mix under a tight planning horizon (1100
time units). The total production time and the rewards
explored by the RL agent during its training are shown
in Figure 5.

For testing purposes, the behavior of the agent
during its training was observed by requesting it to
periodically generate system loading schedules based
on the knowledge it has gathered up to that point.
Thus, every 100 episodes, the RL agent is used to
control the manufacturing system for one testing
episode. During the testing episode, the upper level
scheduling policy of the manufacturing system is
determined by the RL agent. The parameters ε and α
are set to zero during the testing episodes to disable
learning and random actions. The behavior of the RL
based controller during the testing episodes is shown
in Figure 6.

In order to evaluate the balance of the production,
we display the policy generated by the agent in a
representative testing episode having a total production
time of 1150 and reward -0.4 (Figure 7). The ideal
cumulative productions (shown in the Figure 7 as three
straight lines, one for each part type) may be compared
with the production generated by the RL algorithm
which (shown in the figure as three stepwise
functions).

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

T
IM

E

Episodes

Make-span
Moving Average

(a)

-1

-0.8

-0.6

-0.4

-0.2

 0

 1000 1100 1200 1300 1400 1500

R
ew

ar
d

Episodes

TIME-reward

(b)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

R
ew

ar
d

Episodes

Episode reward
Moving Average

(c)

Figure 5 : The behavior of the RL agent
during training: (a) The total production
time (b) The combination of reward –
total production time (c) The reward
achieved at each training episode.

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

T
IM

E

Episodes

Make-span
Moving Average

(a)

-1

-0.8

-0.6

-0.4

-0.2

 0

 1000 1100 1200 1300 1400 1500

R
ew

ar
d

Episodes

TIME-reward

(b)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

R
ew

ar
d

Episodes

Episode reward
Moving Average

(c)

Figure 6. The behavior of the RL agent
during testing: (a) The total production
time (b) The combination of reward –
total production make span (c) The
reward achieved at each testing episode.

 It can be observed (Figure 7) that the RL agent
produces a schedule that is sub-optimal in the sense
that it does not achieve the ideal production for part
types A and C. However, the production schedule
generated for the part type A is consistently higher
than the ideal production, while the production for part
type C is consistently lower than its corresponding
ideal production. The deviation of the actual
productivity from the ideal one that is noticed in the
schedule generated by the RL agent is compensated by
a considerable productivity: for a time horizon equal to
1100 time units, 19 parts of type A, 4 parts of type B
and 19 parts of C are produced – instead of the 20, 5
and 30 parts required. This production is the 95% of
the required. It is reminded that the heuristic controller
for the same planning horizon produced 80% of the
required parts (16 parts of type A, 4 parts of type B
and 24 part of type C). In general, the RL agent
produced a schedule which has a total production time
close to the planning horizon while not sacrificing the
requirement for an acceptable balance.

0

5

10

15

20

25

30

35

79 13
6

19
3

27
5

30
5

39
5

45
3

50
6

55
9

58
9

67
3

75
5

80
8

86
6

95
2

98
2

10
67

10
97

11
55

Type C Type B Type A

Figure 7. Actual and ideal cumulative
production achieved by the RL agent.

4.7. Comparison of the RL scheduler to the
heuristic controller

In this section the performance of the RL scheduler

is compared to that of a heuristic controller for a range
of planning horizons. The average reward achieved
(after training) for each time horizon shown in Table 5.

It is observed that for planning horizons shorter
than 1300 time steps the heuristic controller fails to
respect the planning horizon in favor of a completely

balanced production mix. On the other hand, the RL
agent achieves schedules considerably closer to the
planning horizon (table 5, Figure 9). Considering the
achieved reward values, the RL agent supersedes the
heuristic controller for planning horizons 1100 and
1150 while for longer planning horizons, the heuristic
controller is able to produce much better results
(Figure 8).

Table 5. Average rewards and total
production times for the heuristic
controller and the RL Agent.

HEURISTIC

CONTROLLER
RL

AGENT

PL
A

N
N

IN
G

H

O
R

IZ
O

N

M
A

K
ES

PA
N

R
EW

A
R

D

A
V

ER
A

G
E

M
A

K
ES

PA
N

A
V

ER
A

G
E

R
EW

A
R

D

1100 1374 -0,59 1150 -0,4
1150 1398 -0,54 1163 -0,45
1200 1398 -0,44 1210 -0,47
1300 1302 -0,16 1290 -0,39

-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1

0

1100 1150 1200 1300

Planning horizon

R
ew

ar
d

Heuristic Controller RL Agent

Figure 8: The rewards achieved by the
heuristic controller and the RL agent for
different values of the planning horizon.

-50

0

50

100

150

200

250

300

1100 1150 1200 1300

Planning horizon

D
iff

er
en

ce
 o

f t
ot

al

pr
od

uc
tio

n
tim

e
fr

om

pl
an

ni
ng

 h
or

iz
on

Heuristic controller RL agent

Figure 9: The distance of the total
production time from the planning
horizon for the Heuristic controller and
the RL agent for different values of the
planning horizon.

5. Conclusions

RL is an approach that allows an autonomous agent
to learn through interaction with its environment to
select the proper actions in order to achieve its goal.
The approach has been adopted with success in various
fields and more recently it has been employed to
address production scheduling problems related to the
machine-level control of a manufacturing system. In
this work we employ RL in order to develop a system
level controller which determines the time and the type
that a product must be introduced into the
manufacturing system. The aim of the controller is to
load product parts into the manufacturing system in
such a way, that the production is accomplished within
a time horizon, while the part types produced follow an
ideal production rate. This is a demanding task and
although it bears some similarities with research
reported in the literature, the particular problem has
not been addressed. Due to the large state space, the
value function required by the RL agent is
approximated by a neural network. Experimental
results show that the RL agent learns to produce the
required production mix within the given time horizon
while consistently approaching the ideal production
rates. Furthermore, simulation results show that under
strict planning horizons the RL agent outperforms, in
terms of productivity, a heuristic controller that has
been used to control the manufacturing system. In such
cases, the heuristic controller produces a very close to
ideal balance production mix but fails to satisfy the
production requirement. On the contrary, the RL agent
is able to increase system productivity without

sacrificing production balance. This may have
important practical implications in cases where small
deviations from the ideal production rates are
acceptable if combined with considerable gains in
productivity.

Acknowledgment

This Project is co-funded by the European Social
Fund and National Resources - (EPEAEK-II)
ARHIMIDES

References
[1] T. E Morton,. and D. W Pentico,. Heuristic Scheduling
Systems With Applications to Production Systems and
Project Management, J. Wiley, 1993.

[2] M. Pinedo, Scheduling Theory, Algorithms, and Systems,
Prentice Hall, 1995.

[3] R. Akella , YF Choong, SB Gershwin, Performance of
hierarchical production scheduling policy, IEEE Trans.
Components Hybrids Manufacturing Technology, Vol 7, No.
3, 1984, pp. 225-240.

[4] R. Graves, Hierarchical scheduling approach in flexible
assembly systems, Proceedings of the 1987 IEEE Conference
on Robotics and Automation, Raleigh, NC, Vol. 1, 1987, pp.
118-123.

[5] C.J. Watkins, P. Dayan. Q-learning. Machine Learning,
8, 1992, pp. 279-292.

[6] R. S. Sutton, Generalization in reinforcement learning:
Successful examples using sparse coarse coding, in
Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.,
editors, Advances in Neural Information Processing Systems:
Proceedings of the 1995 Conference, Cambridge, MA. MIT
Press, 1996, pp. 1038-1044.

[7] D.E. Rumelhart, G.E. Hinton., and R.J. Williams,
Learning internal representations by error propagation, in
Rumelhart, D. E. and McClelland, J. L., editors, Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, vol.1: Foundations. Bradford Books/MIT Press,
Cambridge, MA., 1986.

[8] G. Tesauro, TD-Gammon, a Self-Teaching Backgammon
Program, Achieves Master-Level Play, Neural Computation
6, 1994, pp. 215-219.

[9] RS Sutton, Learning to predict by the methods of
temporal differences, Machine Learning, 3, 1988, pp. 9-44.

 [10] R. Crites, A. Barto, Improving Elevator Performance
Using Reinforcement Learning. Touretzky DS, Mozer MC,
Hasselmo ME, eitors, Advances in Neural Information Pro-
cessing Systems 8, MIT Press, 1996.

[11] Dietterich, Zhang. A reinforcement-learning approach
to job-shop scheduling. Proceedings of the 14th International
Joint Conference on Artificial Intelligence, 1995.

[12] S. Mahadevan, N Marchalleck, TK Das, A Gosavi, Self-
improving factory simulation using continuous-time average-
reward reinforcement learning, Proceedings of the 13th
International Conference on Machine Learning, 1996, pp.
202-210.

[13] S. Mahadevan, and G. Theocharous, G. Optimizing
Production Manufacturing using Reinforcement Learning.
The 11th International FLAIRS Conference, AAAI Press,
1988, pp.372-377.

 [14] H. Liu, and J. Dong, Dispatching Rule Selection Using
Artificial Neural Networks for Dynamic Planning and
Scheduling. Journal of Intelligent Manufacturing, 7, 3, 1996,
pp.243-150.

[15] Y.C. Wang, J.M. Usher, Application of reinforcement
learning for agent-based production scheduling, Engineering
Applications of Artificial Intelligence, 18, 2005, pp.73-78.

[16] M. Emin Aydin a, Ercan Öztemel Dynamic job-shop
scheduling using reinforcement learning agents, Robotics
and Autonomous Systems 33, 2000, pp. 169–178.

[17] D. Dranidis, E. Kehris, Z. Doulgeri, Using
reinforcement learning for scheduling an assembly plant,
17th International Logistics Congress, Thessaloniki, October
2001, pp. 81 – 89.

[18] D. Dranidis, E. Kehris, A production scheduling
strategy for an assembly plant based on reinforcement
learning, In Proceedings of the 5th World MultiConference
on Circuits, Systems, Communications & Computers, Crete,
July 2001.

[19] E. Kehris, Z. Doulgeri. An FMS simulation development
environment for real time control strategies. XVI European
Conference of Operational Research, Brussels, 1998.

[20] K. Tocher, The Art of Simulation, Van Nostrand
Company, Princeton NJ, 1963.

 [21] Z. Doulgeri, E. Kehris, Effect of Workstation Loading
on the Objective of the System’s Entry Policy in FMS,
Integrated Manufacturing Systems, Vol 14, No. 3, 2003, pp.
293 – 304.

