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Abstract 
 

Hopfield Neural Networks have been used as 
universal identifiers of non-linear systems, because of 
their inherent dynamic properties. However the design 
decision of the number of neurons in the Hopfield 
network is not easy to make, in order for the network 
model to have the necessary complexity, extra neurons 
are required. This poses a problem since the role of the 
states that these neurons represent is not clear. 

Adding a hidden layer in the Hopfield network 
model increases the complexity of the model without 
posing the extra states problem. Alternatively breaking 
the problem down by having different interconnected 
Hopfield networks modeling each state, also increase 
the complexity of the problem.  

A comparison between the three approaches 
(traditional Hopfield, Hopfield with a hidden layer, 
and multiple interconnected Hopfield networks) 
indicates equivalence between the three structures, but 
with the alternative cases having increased 
connectivity in the feedback matrix, and limited 
connectivity in the weight matrices. 
 
1. Introduction 
 

Hopfield Neural Networks (HNNs) have been very 
popular in literature as universal non-linear models. 
The dynamic properties of the HNNs makes them ideal 
for capturing the complete non-linear dynamics of any 
unknown non-linear process, as long as accurate 
estimates of the process states exist. However, very 
often when HNNs represent the dynamics of a process, 
they often have more internal states than the process 
they are representing. The extra states are hard to 
initialise, as they do not represent any of the process 
real states. Nevertheless, the extra complexity offered 

by the extra neurons is sometimes necessary for the 
HNN to approximate the process correctly.  

In this paper we propose ways to increase the 
complexity of the neural network model, with out 
increasing the external states, thus alleviating the 
problem. 
 
2. HNNs as non-linear systems 
 

Hopfield Neural Networks are neural networks that 
exhibit dynamic properties due to internal/external 
feedback. [1-5]. These properties allow for the internal 
dynamics of unknown processs to be identified in 
contrast to the usual input-output identification that 
Feed Forward Neural Networks are limited to. 
Hopfield Networks have of the form: 
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where nx∈ℝ  is a vector with the states of the 

network, nx∈ɺ ℝ  is the first derivative of x, n nB ×∈ℝ  
is the feedback matrix (usually a diagonal matrix), 

n nW ×∈ℝ  is the weight matrix, nΓ∈ℝ  is the input 
matrix, and ( )xσ  is a sigmoidal function like tanh( )x . 

With out loss of generality, from now on it will be 
assumed that 1( )h x x= . 

The equations that characterise a Hopfield network 
are those of a non-linear control affine system: 
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 Therefore, Hopfield networks are a class of non-
linear control affine systems, and thus all analysis of 
such systems can be also applied to them. 

 
2.1. Relative Order of HNN 

 
Relative order is an invariant property of physical 

systems. It defines the number of times the input has to 
be integrated in order to affect the output. According to 
Isidori [6]: 
 
The system (3) is said to have relative order r at a 
point x0 if 
• ( ) 0k

g fL L h x =  for all x in a neighbourhood of x0 

and all k<r-1 
• 1 0( ) 0r

g fL L h x− ≠ . 

Where Lfh(x) is the Lie derivative of h(x) in the 
direction of f(x) defined as: 
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Since the Hopfield network is a control affine 

system of the form (3), the concept of the relative 
order, is also be applicable it. By applying the relative 
order definition to the HNN, Dimopoulos and 
Kambhampati have proved that the structure of the 
HNN can determine its relative order, and vice versa 
[4], and that the relative order of the HNN will be 
upper limited by the number of states the neural 
network has. Specifically: 
 
Relative Order Proposition: 
For the Hopfield network in (2);  
 

• If 0, 1, ( 1)i i nγ = = −… , and 0nγ ≠ , the 

relative order of the system is [2, ]r n∈ , if the 

following conditions are satisfied: 
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If 1 0γ ≠ , then the relative order r is 1.  

 
• If 0, 1, , , 0, ( 1),i ji m j m nγ γ= = ≠ = +… … , 

the relative order of the system is r, with 
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If 0rγ ≠ , then the relative order r will be 1. 

 
• If 0, [1, ) ( , ], 0i mi m m nγ γ= ∈ ∪ ≠ , then the 

relative order of the system is r, where 
[2, ) ( , ]r m m n∈ ∪ . 

 
Proofs of the above propositions can be found in 
[4]. 
 

2.2. Zero Dynamics of HNN 
 
Zero dynamics are another invariant property of 

physical systems. In many instances they play a role 
exactly similar to that of the ‘zeros’ of the transfer 
function in a linear system [6]. Zero dynamics are the 
differential equations that describe the internal 
behaviour of the non-linear system when the system’s 
output is ‘forced’ to be zero. 

Let us assume a Hopfield network of the form of 
(2) and further assume that this network has a relative 
order r<n and has the appropriate structure as defined 
in the relative order proposition. Then because of the 
structure of the weight matrices, the Hopfield will look 
like: 
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Since the output of the network is the first state, and 
since each of the first r states is a function of only the 
first r states, then the first r states will be zero, and the 
zero dynamics of the Hopfield will be given by: 
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In order for the inverse of the model to be stable, these 
zero dynamics have to be stable. Stability of these can 
be in the same way as stability of a Hopfield can be 
determined; by linearising and examining the Eigen-
values. The linearised zero dynamics are given by: 
 

z Az Bu= +ɺ  
 

 with B=0 and A given by: 
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When recurrent networks represent the dynamics of 

a system, they often have more internal states than the 
system they are representing. Suppose that this is the 
case with a network with n states that is modelling a 
non-linear process of m states where r<m<n (r being 
the relative order of both process and model). Then the 
non-linear process will have m-r zero dynamics, while 
the network model will have n-r zero dynamics. 
Therefore the extra states of the network model 
represent extra zero dynamics. Thus it is possible for 
the network to have more zero dynamics than the 
process it models. Nevertheless, training an n state 
network to identify an m state process, where m<n, has 
the same effect as with training the same network to 
identify an n state process using limited information 
(say the first m states) about the non-linear process. 
Since we have no information about the last n-m states, 
it is difficult not only to decide the role they play but 
also how to initialise them.  

 
3. HNN with a hidden layer 

 
Extra neurons are needed in order to increase the 

complexity of the Hopfield network, without 
increasing the number of states. This can be achieved 
by adding a hidden layer inside the Hopfield network. 
In this case, the network is composed out of three 
layers. The input and the output layer are composed of 
n neurons, i.e. the number of states the network is 
trying to model. The hidden layer is composed of m 
neurons. It is these neurons that will provide the extra 
complexity to the model. This architecture was 
proposed in [7] and is described by the following 
equations: 
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where n nA ×∈ℝ  is the diagonal feedback matrix, much 
the same with the feedback matrix in (2), n mC ×∈ℝ  
and m nD ×∈ℝ  are the weight matrices, mE ∈ℝ  is a 
bias matrix, nF ∈ℝ  is the input weight matrix and 

nx∈ℝ  is the state vector. In a more detailed form (4) 
becomes: 
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3.1. Equivalence between Simple HNN and 
HNN with a hidden layer 

 
Comparing the description of the hidden layered 

network in (2) with the description of the Hopfield 
network of (5) it is clear that the proposed structure has 
many attributes of the original structure. To begin with, 
both structures utilise external feedback. Each state is 
directly connected to itself, separately from the 
connection with the state vector. Secondly the method 
of connection of the input to the network is identical in 
both structures. Finally, both structures use the 
weighted sigmoid of a function of time (x(t) in the case 
of the Hopfield, Dx(t)+E in the case of the hidden 
layer structure). Therefore one can expect that the non-
linear properties investigated in the previous chapter 
will also hold for this structure. 

Consider the proposed structure for a moment. 
Given that 

 
( )x Ax C Dx E Fuσ= − + + +ɺ  

 
from (4) let us define a new auxiliary variable 

, mDx Eξ ξ= + ∈ℝ . Then the derivative of this new 

variable is given by Dxξ =ɺ ɺ , and substituting (4) into 

this we obtain: 
 

( )DAx DC Dx E DFuξ σ= − + + +ɺ  (6) 

 
Now let us define a new state vector 
[ , ]T n mz x ξ += ∈ℝ . By combining (4) and (6) we can 

see that: 
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But this is similar to the form of the Hopfield but 
with the matrices B, W and Γ given by: 

0 0
, ,
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A C F
B W

DA DC DF
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It could be noted that the B matrix is no longer a 

diagonal matrix. Although the first n states are fed-
back to themselves, the last m states are fed with only 
the first n states. This hints to a special significance of 
the first n states. Under closer inspection of (7) it can 
be seen that the first n states are the ‘revealed’ states or 
the approximations to the states that the network is 
trained for. 

Another important observation is that the weight 
matrix W is sparse. The ‘revealed’ states are not 
directly connected here. Instead there is an indirect 
connection through the auxiliary states and the 
feedback matrix. 

To summarise, the proposed hidden layered 
architecture of n input neurons and m hidden ones is 
equivalent to a Hopfield structure of N n m= +  
neurons but with the feedback matrix not being 
diagonal, and the weight matrix being sparse. 

 
4. Multiple Interconnected HNNs 

 
The proposed structure is composed of many 

simple Hopfield Neural Networks, each modelling an 
aspect of the problem, thus breaking the main problem 
to smaller ones. This structure was inspired from 
multiple or stacked networks [8-11]. These types of 
networks have been successfully employed in various 
applications ranging from image recognition to pattern 
prediction. In some of those cases the networks where 
trained to solve the same problem and the final 
decision was taken by means like voting. In our case, 
smaller networks are employed for different parts of 
the problem, the solution to which rises from the 
combination of the smaller networks. 

As an example consider a system with n states, 
similarly to (3): 
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We can consider this as n input-output problems 

instead of one input-state problem with n tracking 
parameters. Specifically we can train n smaller 
networks each modelling one state of (8) but with n 

inputs (the regular input u and the other n-1 states) 
instead of just u. Therefore the resulting structure for 
the kth network modelling the kth process state will look 
like: 
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where mk is the number of neurons for this network and 
the state of the process is modelled by the first state of 
the network. In the case where the weights have three 
indexes, the first one identifies the network, the second 
the state, and the last the connection they belong to. 
Therefore the weight w3,6,4 is a weight belonging to the 
third network connecting the sixth state to the fourth 
state. 
 

Figure 1: Multiple Interconnected network structure 
modeling a non-linear process 



4.1. Equivalence between Simple HNN and 
multiple interconnected HNNs  

 
As it can be seen from (9), the proposed structure is 

composed out of smaller Hopfield networks. As far as 
each network is concerned, the process that it is trying 
to model has multiple inputs and a single output. 
Therefore from a collective point of view the collection 
of the networks are modelling a collection of processes 
each with many inputs but one output, as it can be seen 
in Figure 1. This has the advantage that it is possible to 
train each network independently of the rest. Since 
each network structure has to model only one variable, 
it is much easier to train (Figure 2). 

 

Figure 2: Training of a multiple interconnected 
network structure. 

 
Once all the networks are trained, it is a simple 

matter of putting together the building blocks to create 
the complex representation required. A second 
advantage of this structure is noise immunity. Given 
that noise was included in the states that were fed to 
the networks as inputs during training, the overall 
structure will be immune to disturbances. Since each 
network output will be an approximation to the real 
state of the process, it can be therefore considered to be 
the state of the process with some noise added. This 
can be seen more clearly if we consider the following. 
Let at time 1 1, ( )kt x t  be the kth state of the process, 

and 1ˆ ( )kx t  be the kth state of the network. Let ( )n t  be 

the function which defines the difference between 
( )kx t
⌢

 and ( )kx t . Assuming that the network is trained, 

then at any time this difference must be in a 
neighbourhood of zero: 
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⌢

 

 

Solving this for ( )kx t
⌢

 we get 

 
( ) ( ) ( )k kx t x t n t= +
⌢

 (10) 

 
This expresses that at any time the state 

approximation of the network model equals the state of 
the process plus a small value. In (10), ( )n t  can be 

approximated by noise with zero average (Figure 2). 
Now, let us consider the structure in Figure 1. Each 

of the individual networks will be described by (9). 
Define a state vector ξ as the composition of all the 
states of the networks: 
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and let the matrices , ,ij i iC WΓ , be: 
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Then by combining n networks of the form (9) and 

substituting for the states with (11) we get the 
description: 
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This description is a Hopfield network. 

Nevertheless there are subtle differences between this 
representation and (2). The feedback matrix retains its 
diagonal, but now there are additional feedback 
connections between the states. The Γ matrices have 
zero elements everywhere except the first column. This 
hints to a special significance for these states. As a 
matter of fact these are the first states of each network 
and therefore according to our design of the multiple 
structure, the approximating states to the non-linear 
states. Thus each state in the new structure has 
feedback connections to itself (because of the B 
matrices) and to the states that approximate the states 
of the process (because of the Γ matrices). 
Furthermore, the weight matrix is a sparse matrix. The 
distributed system approach of the multiple network 
structure can be clearly seen here: the weight matrix 
provides connections between ‘neighbourhoods’ of 



states. In each case, these sates correspond to the states 
of a network in the multiple network structure alone. 
The connections between these ‘neighbourhoods’ of 
states are left to weights in the feedback matrix. Finally 
the input matrix is in exactly the same format as in the 
original Hopfield configuration of (2). 

The similarities between the two proposed 
structures should be noted. In both cases, the feedback 
matrices have increased in connectivity, allowing 
information to pass directly from one state to the other. 
On the other hand, the connectivity in the weight 
matrices has been limited and fewer states are required 
to pass through the sigmoid function. A first glance to 
this indicates that it is not important. Nevertheless, 
most neural network applications are implemented in 
software rather than in hardware because of practical 
implications. Calculating the sigmoid of a state and 
then multiplying it with a weight is less efficient than 
just multiplying the two numbers together, not just 
because of the extra calculation need, but because 
calculating the sigmoid (a non-linear function) of a 
number is also computationally expensive. 

 
5. Alternative Neural Networks as non-
linear systems 

 
The network structures presented in this section are 

equivalent to the Hopfield network, with the feedback 
matrix no longer a diagonal matrix, and the weight 
matrix being sparse. The equivalent equations (7) and 
(12) of the alternative structures still describe control 
affine non-linear systems and thus the concepts 
discussed in the previous part still apply to them. As a 
mater of fact, with little effort, that analysis can be 
easily extended to cover the alternative structures. 

 
5.1. Relative order of alternative structures 
 

Consider the propositions about the relative order 
of the Hopfield network. There the relative order is 
defined from the structures of the weight and the input 
matrices. In the case of simple Hopfield networks the 
feedback matrix is not taken into account, because it 
connects a state with itself. In order to extend the 
propositions for the cases of the alternative network 
structures, the effect of the feedback matrix has to be 
taken into account. Here the effect of the weight matrix 
in relation with that of the feedback matrix has to be 
considered. The feedback matrix is associated with the 
states directly, while the weight matrix is associated 
with the threshold function, which is a sigmoid. So 
generally, both matrices are multiplied with a function 
of the states, and therefore whatever issues arise for the 

structure of one, will also arise for the structure of the 
other. Consider a fully connected network: 
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which can be re-arranged as: 
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Considering the above structure, it can be seen that 

the network is characterised by functions of the form 
( )ij j ij jx w xβ σ− + . This also indicates to a similar 

behaviour of the structures of the feedback and weight 
matrices as far as the relative order is concerned. In 
order for the relative order to belong in the region of 
[2,n] the combination of the feedback matrix and the 
weight matrix must give rise to a structure similar to 
that of the structure of the weight matrix in the 
Relative Order Proposition. 
 
5.2. Zero dynamics of the alternative structures 
 

Previously we demonstrated that the extra states of 
a Hopfield Neural Network could describe extra zero 
dynamics. It has also been demonstrated that in the 
equivalent structure of the hidden layered Hopfield, the 
first n states approximate the process states, and the 
last m states (where m is the number of neurons in the 
hidden layer) are extra states. Therefore these states 
describe extra zero dynamics. 

Similarly, in the equivalent form of the multiple 
interconnected networks, only the first state of each 
network approximates a state of the non-linear process. 
Since the remaining states in each network also appear 
in the equivalent structure, they must also describe 
extra zero dynamics. 

Generally, from the point of view of a Hopfield 
network with more states than the process it is 
modelling, we can say that the Hopfield network is 
trying to model a process with an equal number of 



states but with using limited knowledge of the process 
states to train. In the case of the HNN with a hidden 
layer, the extra states are internal, and do not appear in 
the output of the network. Therefore no matter the 
number of hidden neurons, the network will always try 
to model a process with the same number of observable 
states. Similarly, in the multiple interconnected 
Hopfield structure, each sub-network is modelling a 
state of the process and it is that state that is used to 
connect it to the other sub-networks. The other states 
of each sub-network only appear in that network and 
not in the output of the resulting structure. Therefore, 
the resulting structure will always model a process 
with the correct number of states. 

 
5.3. Which network? 
 

We have argued that a Hopfield network can be 
used to model the dynamics of a non-linear process. 
When extra complexity in the network model is 
needed, there exist three alternatives. The first is to use 
a Hopfield network but with extra neurons. This gives 
rise to the problem of identifying the role of the extra 
neurons when these do not represent extra zero-
dynamics. If the number of neurons of the network is 
N, then the number of variables (VS) that need training 
(and therefore the dimensionality of the training 
problem) is: N variables from the feedback matrix, 
N×N variables from the weight matrix, and N variables 
from the input matrix, a total of: 

 
2 2SV N N N N N N= + × + = +  

 
A second solution is to add a hidden layer to the 

Hopfield model, thus increasing its complexity. This 
structure has been seen to be equivalent to the first, 
with the number of input / output neurons and the 
hidden ones equal to the total number of neurons in the 
first case. i.e. a hidden layer Hopfield with n input / 
output neurons and m hidden (where n is also the 
number of states of the process), is equivalent in form 
to a simple Hopfield with N n m= +  neurons. But 
because the equivalent structure is sparse, the number 
of variables that need training (VL) can be seen from 
(4) as n variables from the A matrix, n×m variables 
from the C matrix, m×n from the D matrix, m from the 
E matrix, and n from the F matrix. A total of 
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But since m N n= −  the total number of variables 

in terms of number of modelled states and equivalent 
neurons is 
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Figure 3: The three cases with varying number of 
neurons in their equivalent forms, when the process has 

2 states 

 
Finally, the third option is to use many simpler 

interconnected Hopfield networks, each modelling one 
state of the process. Assuming that each sub-network 
has m neurons, then the overall structure is equivalent 
to the first case, with the total number of neurons in the 
equivalent form N m n= ⋅  where n is again the number 
of states of the process (and consecutively number of 
sub-networks in the structure). Then the number of 
variables that need training (VM) are the number of sub-
networks times the number of variables in each sub-
network: 
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These three equations have serious implications on 

the choice of network model. In the first case the 
number of variables can be seen to be independent of 
the number of process states, but it is proportional to 
the square of the number of neurons in the network. 
Therefore as the number of extra neurons increases, the 
number of variables that need training increases 
proportionally to the square of that value. In the second 
case, the relation between the number of variables that 
need training and the total number of neurons in all 
layers is of a first degree, but is also proportional to the 



square of the number of process states. Finally, in the 
case of the multiple interconnected networks, the 
number of variables that need training is proportional 
to the square of total number of neurons in all the 
networks, but is inversely proportional to the number 
of states of the process. The implications of these can 
be seen more clearly in Figure 3 and Figure 4. 

 

Figure 4: The three cases with varying number of 
states in the process, when their equivalent forms have 

36 neurons. 

 
Where the number of states in the process that will 

be modelled are not many, but increased complexity is 
needed, the most efficient structure in terms of number 
of variables that need training is the Hopfield with the 
hidden layer. Then the effect of a small n in the 
equation will be minimal, and at the same time it is 
possible to increase the complexity of the model by 
adding neurons in the hidden layer since their effect is 
linear. 

On the other hand, where increased complexity is 
needed in modeling a process with many states, the 
multiple interconnected network structure would be 
most efficient, since the number of variables that need 
training will be inversely proportional to the number of 
states. 

At this point we should note that while minimising 
the number of variables that need training is desirable, 
there should be a limit in the minimisation. As 
someone would expect there is a trade off between 
number of variables and complexity of the model. 
 
6. Simulations 
 

To test the modelling abilities of the proposed 
structures, a well-known non-linear process is selected, 

and multiple neural networks of different 
configurations were trained as models for this process.  

 
6.1. The non-linear process 

 
The process selected for the simulations is a well-

known, well-used non-linear system [3, 4, 12-18]. The 
Single Link Manipulator (SLM) is essentially a 
pendulum, and the control problem is to control at any 
point in time, its position and velocity. Given a 
weightless rod of length l, a dimensionless mass m is 
placed at one end and the other is pivoted to a fixed 
point in space in such way as to allow the rod to move 
in only one direction. The friction coefficient at the 
pivot point is ν. This system is illustrated in Figure 5. 
Given an input torque u at the pivot, then at an angle θ, 
using Newton’s Laws we can get:  
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θ θ θ θ

θ θ θ
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Figure 5: The Single Link Manipulator 

 
Transferring the above equation in to state space by 

setting x1 equal to the position and x2 equal to the 
velocity, and by setting m=2kg, l=1m and v=6kg m2/s 
we get: 
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This system has a relative order of 2. Once the 

system is linearised around the equilibrium point 
( , ) (0,0)o ox u = , we see that the system is stable, and 

that it has eigenvalues at 1.5 2.748j− ± . 
 

6.2. Specifying the training algorithm 
 
In order to compare the proposed neural network 

structures with simple HNN, five sets of training 



experiments were performed using a simple Genetic 
Algorithm (GA). Each set composed of ten trials for 
the same structure, with each trial starting from a 
different random number (seed for the random number 
generator). The same ten seeds were used for all sets. 
In all tests direct encoding was used to design the gene 
sequences that encode the neural networks: The 
sequence was composed out of real values, each 
uniquely corresponding to a weight in the matrices.  

In all cases, the fitness was defined based on the 
Normalised Mean Square Error (NMSE) [4] of the 
states as defined by: 
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Where N is the number of states of the system, P is 

the number of training patterns, maxi is the maximum 
output value of output i, mini is the minimum value 
output of output i, xp is the system output and xm is the 
model output. 

Furthermore, training was stopped when either the 
NMSE of the best network dropped bellow 5×10-6, or 
when the algorithm finished the 300th generation, 
whichever criteria was reached first. This was because 
from preliminary tests it was observed that the NMSE 
did not improve significantly after 300 generations. In 
all cases a population of 50 networks was used. A 
mutation rate of 40% was used in all GA simulations. 
Although this percentage seems large for a mutation 
rate for a GA, it is not the percentage for each gene in 
the gene sequence, but it is the possibility that one gene 
in the gene sequence will mutate. This ensures that at 
most only one gene in a genotype will mutate. This is 
wanted because in many cases the genomes are sort in 
length, and therefore if two genes mutate, a large 
percentage of the genome changes. 

The pseudo-code describing the training algorithm 
follows: 

1. Create and initialise a new population 
of 50 networks. 

2. For every network in the population, 
test it and calculate the NMSE. 

3. Short the population from smallest 
NMSE to largest. 

4. If the stopping criteria are reached 
END SIMULATION. Else go to 5.   

5. Do crossover and mutation operations 
using the 10 networks with the lowest 
NMSE, creating 18 new networks 
substituting the 18 networks with the 
highest NMSE. Go to 2. 

The stopping criteria are described above.  
 
 

 

6.3. Training the models 
 

The first set of experiments involved training 
simple HNNs with five neurons, as models of the 
SLM. This way the network model has more states 
than the process. This will form the basis of 
comparison with the proposed structures. The results of 
this set are displayed in table T1, in the appendix. 
Figure 6, shows the phase portrait of the best network 
in this set. 

In order to test the Hopfield network with the 
hidden layer, a network with two output neurons (one 
for each process state) and three nodes in the hidden 
layer was used. As we have seen this is equivalent to 
the five-neuron simple HNN. For this set of 
simulations a GA was used to train the network 
similarly to the previous case. For reasons of 
comparison, the same random number seeds where 
used to produce ten networks. The results for this set 
are presented in table T2, in the appendix. Figure 7, 
shows the phase portrait of the best network in this set. 

Figure 6: The phase portrait of the best 5-neuron 
network compared with the process, for different initial 

conditions. 

 
In the final set of simulations the multiple networks 

architecture was tested. Since the non-linear process 
has two states, a double Hopfield network was trained 
with each network modelling a state. Training the 
networks was done with a GA, with each sub-network 
trained not separately, but in parallel with each other. 
Similarly with all previous sets, the training procedure 
was repeated ten times with ten different initial seeds 
for the random number generator. The results for this 
set are presented in the appendix, table T3. Figure 8, 
shows the phase portrait of the best network in this set. 

 



6.4. Discussion of results 
 

In Figure 6, Figure 7 and Figure 8, the phase 
portraits of the best networks of each set, are illustrated 
for different initial conditions. In order to illustrate the 
ability of the networks to extrapolate, the initial 
conditions used in the phase portraits are outside the 
region used for training the networks. This region is 
illustrated in the attached detail, in each figure. 

We can clearly see how the networks are quite 
capable of imitating the phase portraits of the process 
in the region they were trained in, while outside that 
region they do not perform as well. In particular, the 
five-neuron network originally seems to perform very 
well inside the training region, but on a closer look, 
one can clearly see that the performance is not as good 
as those in the next two cases.  

In the case of the Hopfield network with hidden 
layer, the performance is equally good in both regions 
(Figure 7). Using networks of this type does not 
compromise the ability to identify the non-linear 
dynamics between the two regions. 

Figure 7: The phase portrait of the best Hopfield 
with a hidden layer compared with the process, for 

different initial conditions. 

 
Furthermore, in Figure 8 the phase portrait of the 

best double network structure is illustrated (case T2-1). 
Comparing this with the previous phase portraits the 
advantages of this structure become evident. This 
network outperforms all the previous cases, inside and 
outside the training regions. 

Comparing the results obtained from training a 
HNN with a hidden layer and that of its equivalent 
five-neuron network, it can be seen that on average the 
Hopfield with the hidden layer performs worst than the 
equivalent five-neuron case. Under closer examination 
though, it becomes evident that more networks of the 

first case have test errors in the order of 10-4 than in the 
second. 

Figure 8: The phase portrait of the best double 
Hopfield compared with the process, for different 

initial conditions. 

 
A second alternative is to use multiple 

interconnected networks, each modelling a state of the 
process. Earlier it was shown that this structure is also 
equivalent to a larger Hopfield network. In order to 
investigate the approximating properties of this 
structure a number of double networks were trained to 
approximate the process. In each case, the each sub-
network was composed of two neurons, and was 
trained to model a state of the process. This structure is 
roughly equivalent to the five-neuron case, and the 
Hopfield with the hidden layer. Comparing this case 
with its equivalents, one can see that on average the 
double structure outperforms both previous cases, for 
both train and test input sets. 

By inspection of the tables T1, T2 and T3 located at 
the appendix, we can see that the simple HNN with 5 
neurons has the largest average training error, followed 
by the HNN with the hidden layer. The best average 
training error (lowest value) is achieved by the double 
HNNs. Under closer inspection, we can see that the 
training error of all double HNNs is located in the 
range of 10-5, while this is also true about most  HNN 
with a hidden layer. In contrast, there is only 1 case 
(case 4 of table T1) of a simple HNNs where the 
training error is so low. This is a clear indication that 
the alternative networks structures are easier to train. 

In order to ensure that the networks are not over-
trained (perform very well only for data used during 
training, and not very well for other data), a test error 
for all networks is calculated, using data unseen during 
training. It is usual to assume that if a Neural Network 
(NN) has a small training error but a large test error, 



then the NN has over-trained since it no longer 
performs well with other data from what it was trained 
with.  

By inspecting table T3 we can clearly see that the 
double HNN structure again outperforms the other two 
structures, having an average test error in the range of 
10-4, while the average training error is in the range of 
10-5. This is true for all double HNNs, indicating that 
none of the double HNNs have over-trained.  

The average test error of the HNN with the hidden 
layer is above that of the simple HNN, and after closer 
inspection of tables T2 we can see that there are five 
cases where the test error is much larger than the 
training error (cases 2, 5, 7, 9 and 10). Therefore in 
these five cases the networks have over-trained.  

Finally, in table T1, there is only one case when the 
test error in much larger than the test error (case 4). It 
is very interesting to observe case 9 in table T1. In this 
case, the test error is very high in respect to all other 
cases. However this is also true about the training 
error. Therefore in this case the network has not over-
trained; rather it not trained very well. 

The test errors indicate that there multiple HNN 
structures are also harder to over-train, than simple 
HNNs and HNNs with a hidden layer. However, the 
opposite can be claimed about HNNs with a hidden 
layer. 

 
7. Conclusions 

 
It has been shown that any extra states of a 

network trained as a model of a non-linear process, are 
connected to the non-linear zero dynamics, and are 
therefore essential for a good approximation. This has 
the effect of making the training more difficult by 
increasing the dimensions of the search space, and 
therefore the number of iterations for the training 
algorithm necessary to lower the training error to a 
satisfactory point. One way of perceiving the effect of 
training an m state network to identify an n state 
process, where m>n, is similar to training the same 
network to identify an m state process using limited 
information (say the first n states) about the non-linear 
process. Since we have no information about the last 
m-n states, it is difficult not only to decide what the 
roles of the extra states are, but also how to initialise 
them. 

Two alternatives have been proposed. The first is 
to use a Hopfield network with as many states as the 
process, but to increase its complexity with the use of a 
hidden layer. It was shown that, a structure like this is 
equivalent to a simple HNN with a total number of 
neurons equal to the number of neurons in both input 
and hidden layers of the proposed structure. However, 

only some of the neurons are directly connected. The 
advantage of this network type is that while it increases 
the complexity of the network, the problem associated 
with choosing initial conditions is no longer present. 

The second alternative investigated, was to use 
multiple interconnected networks, each modelling a 
single state of the process, thus breaking down the 
problem. Such a structure with n networks and m 
neurons was found to be equivalent to a single 
Hopfield neural network with n times m neurons but 
with the feedback matrix including extra feedback 
between the states, and the weight matrix being sparse. 

In a comparison of the number of variables needed 
to be trained in equivalent forms in each case, it was 
found that in all cases as the number of equivalent 
neurons increase the number of variables increase with 
a higher rate in the case of the simple HNN, with a 
slower rate in the Hopfield with the hidden layer, and 
with much slower rate in the case of the interconnected 
Hopfield networks. 

Experimental results indicated that both proposed 
structures (multiple interconnected Hopfield networks 
and HNN with hidden layer) have better approximation 
capabilities than the Simple Hopfield network of 
equivalent number of neurons, and better extrapolation 
capabilities. In addition multiple HNN structures are 
easier to train and harder to over-train, while HNNs 
with hidden layer are easy to train, but there is a high 
probability that the network will over-train.  
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9. Appendix 
 

T1. Simple HNN with 5 neurons 

TEST Seed train error test error Epochs 

1 4534 2.435E-04 1.625E-03 300 

2 456 1.591E-04 3.465E-03 300 

3 1514 3.994E-04 2.058E-03 300 

4 1534 4.231E-05 6.959E-03 300 

5 4210 9.162E-04 9.884E-03 300 

6 53 1.059E-03 7.134E-03 300 

7 2731 1.877E-04 7.421E-04 300 

8 1102 1.054E-04 3.125E-03 300 

9 273 2.633E-03 1.165E-02 300 

10 666 1.681E-03 9.343E-03 300 

 Aver 7.426E-04 5.599E-03 300 

 
T2. HNN with 3 Hidden neurons 

TEST Seed train error test error Epochs 

1 4534 7.016E-05 4.062E-04 300 

2 456 3.179E-05 6.462E-02 300 

3 1514 2.680E-05 9.659E-04 300 

4 1534 4.770E-05 6.611E-04 300 

5 4210 7.588E-05 1.910E-03 300 

6 53 5.707E-04 3.750E-03 300 

7 2731 3.718E-05 6.734E-03 300 

8 1102 6.692E-04 8.315E-03 300 

9 273 4.215E-05 1.256E-02 300 

10 666 5.007E-05 6.255E-03 300 

 Aver 1.622E-04 1.062E-02 300 

 
T3. Double HNN with 2 neurons in each network 

TEST Seed train error test error Epochs 

1 4534 1.67E-05 1.22E-04 300 

2 456 1.47E-05 1.02E-04 300 

3 1514 2.03E-05 1.40E-04 300 

4 1534 3.86E-05 2.90E-04 300 

5 4210 1.47E-05 1.08E-04 300 

6 53 2.81E-05 2.30E-04 300 

7 2731 2.54E-05 1.94E-04 300 

8 1102 2.22E-05 1.59E-04 300 

9 273 3.99E-05 2.46E-04 300 

10 666 3.46E-05 1.98E-04 300 

 Aver 2.55E-05 1.79E-04 300 

 


