
 Alternative Dynamic Network Structures for Non-linear System Modelling

K. P. Dimopoulos1 and C. Kambhampati2
1CITY Liberal Studies, Thessaloniki, Greece, Affiliated Institution of the University of Sheffield,

U.K.,
 2The University of Hull, Hull, U.K.

1k.dimopoulos@city.academic.gr, 2C.Kambhampati@hull.ac.uk

Abstract

Hopfield Neural Networks have been used as
universal identifiers of non-linear systems, because of
their inherent dynamic properties. However the design
decision of the number of neurons in the Hopfield
network is not easy to make, in order for the network
model to have the necessary complexity, extra neurons
are required. This poses a problem since the role of the
states that these neurons represent is not clear.

Adding a hidden layer in the Hopfield network
model increases the complexity of the model without
posing the extra states problem. Alternatively breaking
the problem down by having different interconnected
Hopfield networks modeling each state, also increase
the complexity of the problem.

A comparison between the three approaches
(traditional Hopfield, Hopfield with a hidden layer,
and multiple interconnected Hopfield networks)
indicates equivalence between the three structures, but
with the alternative cases having increased
connectivity in the feedback matrix, and limited
connectivity in the weight matrices.

1. Introduction

Hopfield Neural Networks (HNNs) have been very
popular in literature as universal non-linear models.
The dynamic properties of the HNNs makes them ideal
for capturing the complete non-linear dynamics of any
unknown non-linear process, as long as accurate
estimates of the process states exist. However, very
often when HNNs represent the dynamics of a process,
they often have more internal states than the process
they are representing. The extra states are hard to
initialise, as they do not represent any of the process
real states. Nevertheless, the extra complexity offered

by the extra neurons is sometimes necessary for the
HNN to approximate the process correctly.

In this paper we propose ways to increase the
complexity of the neural network model, with out
increasing the external states, thus alleviating the
problem.

2. HNNs as non-linear systems

Hopfield Neural Networks are neural networks that
exhibit dynamic properties due to internal/external
feedback. [1-5]. These properties allow for the internal
dynamics of unknown processs to be identified in
contrast to the usual input-output identification that
Feed Forward Neural Networks are limited to.
Hopfield Networks have of the form:

1

()x Bx W x u

y x

σ= − + + Γ

=

ɺ
 (1)

or in a more precisely:

1

1

()
n

i i i ij j i
j

x x w x u

y x

β σ γ
=

= − + +

=

∑ɺ
 (2)

where nx∈ℝ is a vector with the states of the

network, nx∈ɺ ℝ is the first derivative of x, n nB ×∈ℝ
is the feedback matrix (usually a diagonal matrix),

n nW ×∈ℝ is the weight matrix, nΓ∈ℝ is the input
matrix, and ()xσ is a sigmoidal function like tanh()x .

With out loss of generality, from now on it will be
assumed that 1()h x x= .

The equations that characterise a Hopfield network
are those of a non-linear control affine system:

() ()

()

x f x g x u

y h x

= +

=

ɺ
 (3)

 Therefore, Hopfield networks are a class of non-
linear control affine systems, and thus all analysis of
such systems can be also applied to them.

2.1. Relative Order of HNN

Relative order is an invariant property of physical

systems. It defines the number of times the input has to
be integrated in order to affect the output. According to
Isidori [6]:

The system (3) is said to have relative order r at a
point x0 if
• () 0k

g fL L h x = for all x in a neighbourhood of x0

and all k<r-1
• 1 0() 0r

g fL L h x− ≠ .

Where Lfh(x) is the Lie derivative of h(x) in the
direction of f(x) defined as:

1

() ()
n

f j
j j

h
L h x f x

x−

∂
=

∂∑

Since the Hopfield network is a control affine

system of the form (3), the concept of the relative
order, is also be applicable it. By applying the relative
order definition to the HNN, Dimopoulos and
Kambhampati have proved that the structure of the
HNN can determine its relative order, and vice versa
[4], and that the relative order of the HNN will be
upper limited by the number of states the neural
network has. Specifically:

Relative Order Proposition:
For the Hopfield network in (2);

• If 0, 1, (1)i i nγ = = −… , and 0nγ ≠ , the

relative order of the system is [2,]r n∈ , if the

following conditions are satisfied:

1,

1,3 1,(1) 2,

(3).(1) (3),(1) (2),

(2), (2),(1) (1),

0

, , 0

, , 0

, , 0

n

n n

r r r n r n

r r r n r n

w

w w w

w w w

w w w

−

− − − − −

− − − −

=

=

=

≠

…

⋮ ⋮ ⋮ ⋮

…

…

If 1 0γ ≠ , then the relative order r is 1.

• If 0, 1, , , 0, (1),i ji m j m nγ γ= = ≠ = +… … ,

the relative order of the system is r, with

[2, 1]r m∈ + , if the following conditions are

satisfied:

1,(1) 1,

1,3 1,(1) 2,(1) 2,

2,4 2,(1) 3,(1) 3,

(3),(1) (3),(1) (2),(1) (2),

(2), (2),(1) (1),(1)

, , 0

, , , , , 0

, , , , , 0

, , , , , 0

, , , 0

m n

n m n

n m n

r r r n r m r n

r r r n r m

w w

w w w w

w w w w

w w w w

w w w

+

− +

− +

− − − − − + −

− − − − +

=

=
=

=

≠

…

… …

… …

⋮ ⋮ ⋮ ⋮

… …

…

If 0rγ ≠ , then the relative order r will be 1.

• If 0, [1,) (,], 0i mi m m nγ γ= ∈ ∪ ≠ , then the

relative order of the system is r, where
[2,) (,]r m m n∈ ∪ .

Proofs of the above propositions can be found in
[4].

2.2. Zero Dynamics of HNN

Zero dynamics are another invariant property of

physical systems. In many instances they play a role
exactly similar to that of the ‘zeros’ of the transfer
function in a linear system [6]. Zero dynamics are the
differential equations that describe the internal
behaviour of the non-linear system when the system’s
output is ‘forced’ to be zero.

Let us assume a Hopfield network of the form of
(2) and further assume that this network has a relative
order r<n and has the appropriate structure as defined
in the relative order proposition. Then because of the
structure of the weight matrices, the Hopfield will look
like:

1

1

1

1

() 1, ,

() 1, ,

i

i i i ij j
j

n

i i i ij j i
j

x x w x i r

x x w x u i r n

y x

β σ

β σ γ

+

=

=

= − + =

= − + + = +

=

∑

∑

ɺ …

ɺ …

Since the output of the network is the first state, and
since each of the first r states is a function of only the
first r states, then the first r states will be zero, and the
zero dynamics of the Hopfield will be given by:

1

() 1,
n

i
i i i ij rj j

j r r

x x w w x i r n
γ

β σ
γ= +

= − + − = +

∑ɺ …

In order for the inverse of the model to be stable, these
zero dynamics have to be stable. Stability of these can
be in the same way as stability of a Hopfield can be
determined; by linearising and examining the Eigen-
values. The linearised zero dynamics are given by:

z Az Bu= +ɺ

 with B=0 and A given by:

1, 1 1 1,

,

,(1) ,

() , 1,

r r r r n

i i i

n r n n n

i
ij ij rj j

r

h h

A h

h h

h w w x i j r n

β
β

β

γ
σ

γ

+ + + +

+

 −

= −
 −

′= − = +

⋯

⋮ ⋮

⋯

…

When recurrent networks represent the dynamics of

a system, they often have more internal states than the
system they are representing. Suppose that this is the
case with a network with n states that is modelling a
non-linear process of m states where r<m<n (r being
the relative order of both process and model). Then the
non-linear process will have m-r zero dynamics, while
the network model will have n-r zero dynamics.
Therefore the extra states of the network model
represent extra zero dynamics. Thus it is possible for
the network to have more zero dynamics than the
process it models. Nevertheless, training an n state
network to identify an m state process, where m<n, has
the same effect as with training the same network to
identify an n state process using limited information
(say the first m states) about the non-linear process.
Since we have no information about the last n-m states,
it is difficult not only to decide the role they play but
also how to initialise them.

3. HNN with a hidden layer

Extra neurons are needed in order to increase the

complexity of the Hopfield network, without
increasing the number of states. This can be achieved
by adding a hidden layer inside the Hopfield network.
In this case, the network is composed out of three
layers. The input and the output layer are composed of
n neurons, i.e. the number of states the network is
trying to model. The hidden layer is composed of m
neurons. It is these neurons that will provide the extra
complexity to the model. This architecture was
proposed in [7] and is described by the following
equations:

1

()x Ax C Dx E Fu

y x

σ= − + + +

=

ɺ
 (4)

where n nA ×∈ℝ is the diagonal feedback matrix, much
the same with the feedback matrix in (2), n mC ×∈ℝ
and m nD ×∈ℝ are the weight matrices, mE ∈ℝ is a
bias matrix, nF ∈ℝ is the input weight matrix and

nx∈ℝ is the state vector. In a more detailed form (4)
becomes:

1 1

1

()
m n

i i i ij ik k k i
j k

x a x c d x e f u

y x

σ
= =

= − + + +

=

∑ ∑ɺ
 (5)

3.1. Equivalence between Simple HNN and
HNN with a hidden layer

Comparing the description of the hidden layered

network in (2) with the description of the Hopfield
network of (5) it is clear that the proposed structure has
many attributes of the original structure. To begin with,
both structures utilise external feedback. Each state is
directly connected to itself, separately from the
connection with the state vector. Secondly the method
of connection of the input to the network is identical in
both structures. Finally, both structures use the
weighted sigmoid of a function of time (x(t) in the case
of the Hopfield, Dx(t)+E in the case of the hidden
layer structure). Therefore one can expect that the non-
linear properties investigated in the previous chapter
will also hold for this structure.

Consider the proposed structure for a moment.
Given that

()x Ax C Dx E Fuσ= − + + +ɺ

from (4) let us define a new auxiliary variable

, mDx Eξ ξ= + ∈ℝ . Then the derivative of this new

variable is given by Dxξ =ɺ ɺ , and substituting (4) into

this we obtain:

()DAx DC Dx E DFuξ σ= − + + +ɺ (6)

Now let us define a new state vector
[,]T n mz x ξ += ∈ℝ . By combining (4) and (6) we can

see that:

0 0
()

0 0

x A C F
z z z u

DA DC DF
σ

ξ

= = − + +

ɺ
ɺ

ɺ
(7)

But this is similar to the form of the Hopfield but
with the matrices B, W and Γ given by:

0 0
, ,

0 0

A C F
B W

DA DC DF

= = Γ =

It could be noted that the B matrix is no longer a

diagonal matrix. Although the first n states are fed-
back to themselves, the last m states are fed with only
the first n states. This hints to a special significance of
the first n states. Under closer inspection of (7) it can
be seen that the first n states are the ‘revealed’ states or
the approximations to the states that the network is
trained for.

Another important observation is that the weight
matrix W is sparse. The ‘revealed’ states are not
directly connected here. Instead there is an indirect
connection through the auxiliary states and the
feedback matrix.

To summarise, the proposed hidden layered
architecture of n input neurons and m hidden ones is
equivalent to a Hopfield structure of N n m= +
neurons but with the feedback matrix not being
diagonal, and the weight matrix being sparse.

4. Multiple Interconnected HNNs

The proposed structure is composed of many

simple Hopfield Neural Networks, each modelling an
aspect of the problem, thus breaking the main problem
to smaller ones. This structure was inspired from
multiple or stacked networks [8-11]. These types of
networks have been successfully employed in various
applications ranging from image recognition to pattern
prediction. In some of those cases the networks where
trained to solve the same problem and the final
decision was taken by means like voting. In our case,
smaller networks are employed for different parts of
the problem, the solution to which rises from the
combination of the smaller networks.

As an example consider a system with n states,
similarly to (3):

1 1 1

2 2 2

1

() ()

() ()

() ()n n n

x f x g x u

x f x g x u

x f x g x u

y x

= +
= +

= +

=

ɺ

ɺ

⋮

ɺ

 (8)

We can consider this as n input-output problems

instead of one input-state problem with n tracking
parameters. Specifically we can train n smaller
networks each modelling one state of (8) but with n

inputs (the regular input u and the other n-1 states)
instead of just u. Therefore the resulting structure for
the kth network modelling the kth process state will look
like:

1

,1 ,1 ,1 ,(1,) ,
1

,1, ,1 ,1, 1
1

, , , ,(,) ,
1

, , ,1 , , 1
1

, , , ,(,) ,
1

, , ,1
1

()

()

()

k

k

k

k k k

k

m

k k k k j k j
j

n

k j j k n
j
j k

m

k i k i k i k i j k j
j

n

k i j j k i n
j
j k

m

k m k m k m k m j k j
j

n

k m j j k
j
j k

z z w z

z u

z z w z

z u

z z w z

z

β σ

γ γ

β σ

γ γ

β σ

γ γ

=

+
=
≠

=

+
=
≠

=

=
≠

= − +

+ +

= − +

+ +

= − +

+ +

∑

∑

∑

∑

∑

∑

ɺ

⋮ ⋮

ɺ

⋮ ⋮

ɺ

, , 1km n u+

 (9)

where mk is the number of neurons for this network and
the state of the process is modelled by the first state of
the network. In the case where the weights have three
indexes, the first one identifies the network, the second
the state, and the last the connection they belong to.
Therefore the weight w3,6,4 is a weight belonging to the
third network connecting the sixth state to the fourth
state.

Figure 1: Multiple Interconnected network structure
modeling a non-linear process

4.1. Equivalence between Simple HNN and
multiple interconnected HNNs

As it can be seen from (9), the proposed structure is

composed out of smaller Hopfield networks. As far as
each network is concerned, the process that it is trying
to model has multiple inputs and a single output.
Therefore from a collective point of view the collection
of the networks are modelling a collection of processes
each with many inputs but one output, as it can be seen
in Figure 1. This has the advantage that it is possible to
train each network independently of the rest. Since
each network structure has to model only one variable,
it is much easier to train (Figure 2).

Figure 2: Training of a multiple interconnected
network structure.

Once all the networks are trained, it is a simple

matter of putting together the building blocks to create
the complex representation required. A second
advantage of this structure is noise immunity. Given
that noise was included in the states that were fed to
the networks as inputs during training, the overall
structure will be immune to disturbances. Since each
network output will be an approximation to the real
state of the process, it can be therefore considered to be
the state of the process with some noise added. This
can be seen more clearly if we consider the following.
Let at time 1 1, ()kt x t be the kth state of the process,

and 1ˆ ()kx t be the kth state of the network. Let ()n t be

the function which defines the difference between
()kx t
⌢

 and ()kx t . Assuming that the network is trained,

then at any time this difference must be in a
neighbourhood of zero:

0 0() () (), () (,)k kx t x t n t n t tε ε− = ∈ − ∀
⌢

Solving this for ()kx t
⌢

 we get

() () ()k kx t x t n t= +
⌢

 (10)

This expresses that at any time the state

approximation of the network model equals the state of
the process plus a small value. In (10), ()n t can be

approximated by noise with zero average (Figure 2).
Now, let us consider the structure in Figure 1. Each

of the individual networks will be described by (9).
Define a state vector ξ as the composition of all the
states of the networks:

[]

1

1

1,1 1, ,1 , ,1 ,

, ,

, , , ,
k n

T

k n

T

m k k m n n mz z z z z z

ξ ξ ξ ξ=

 =

… …

… … … … …

 (11)

and let the matrices , ,ij i iC WΓ , be:

,1, 1

,1, ,1,1 ,1,
,2, 1

,

, , , ,1 , ,
, , 1

0 0

, ,

0 0

i

i i i i

i

i n

i j i i m
i n

i j i i

i m j i m i m m
i m n

w w

C W

w w

γ
γ

γ

γ
γ

+

+

+

 Γ = = =

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
⋮

⋯ ⋯

Then by combining n networks of the form (9) and

substituting for the states with (11) we get the
description:

1 12 1 1 1

21 2 2 2 2

1 2

0 0

0 0
()

0 0

n

n

n n n n n

B W C

B W C
u

B W C

ξ ξ σ ξ

Γ Γ

Γ Γ
= + +

Γ Γ

⋯ ⋯

⋯ ⋯
ɺ

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯ ⋯

(12)

This description is a Hopfield network.

Nevertheless there are subtle differences between this
representation and (2). The feedback matrix retains its
diagonal, but now there are additional feedback
connections between the states. The Γ matrices have
zero elements everywhere except the first column. This
hints to a special significance for these states. As a
matter of fact these are the first states of each network
and therefore according to our design of the multiple
structure, the approximating states to the non-linear
states. Thus each state in the new structure has
feedback connections to itself (because of the B
matrices) and to the states that approximate the states
of the process (because of the Γ matrices).
Furthermore, the weight matrix is a sparse matrix. The
distributed system approach of the multiple network
structure can be clearly seen here: the weight matrix
provides connections between ‘neighbourhoods’ of

states. In each case, these sates correspond to the states
of a network in the multiple network structure alone.
The connections between these ‘neighbourhoods’ of
states are left to weights in the feedback matrix. Finally
the input matrix is in exactly the same format as in the
original Hopfield configuration of (2).

The similarities between the two proposed
structures should be noted. In both cases, the feedback
matrices have increased in connectivity, allowing
information to pass directly from one state to the other.
On the other hand, the connectivity in the weight
matrices has been limited and fewer states are required
to pass through the sigmoid function. A first glance to
this indicates that it is not important. Nevertheless,
most neural network applications are implemented in
software rather than in hardware because of practical
implications. Calculating the sigmoid of a state and
then multiplying it with a weight is less efficient than
just multiplying the two numbers together, not just
because of the extra calculation need, but because
calculating the sigmoid (a non-linear function) of a
number is also computationally expensive.

5. Alternative Neural Networks as non-
linear systems

The network structures presented in this section are

equivalent to the Hopfield network, with the feedback
matrix no longer a diagonal matrix, and the weight
matrix being sparse. The equivalent equations (7) and
(12) of the alternative structures still describe control
affine non-linear systems and thus the concepts
discussed in the previous part still apply to them. As a
mater of fact, with little effort, that analysis can be
easily extended to cover the alternative structures.

5.1. Relative order of alternative structures

Consider the propositions about the relative order
of the Hopfield network. There the relative order is
defined from the structures of the weight and the input
matrices. In the case of simple Hopfield networks the
feedback matrix is not taken into account, because it
connects a state with itself. In order to extend the
propositions for the cases of the alternative network
structures, the effect of the feedback matrix has to be
taken into account. Here the effect of the weight matrix
in relation with that of the feedback matrix has to be
considered. The feedback matrix is associated with the
states directly, while the weight matrix is associated
with the threshold function, which is a sigmoid. So
generally, both matrices are multiplied with a function
of the states, and therefore whatever issues arise for the

structure of one, will also arise for the structure of the
other. Consider a fully connected network:

1 11 1 1 11 1 1

1 1 1 1

1 1 1 1

1

() ()

() ()

() ()

n n n n

i i in n i in n

n n nn n n nn n n

x x x w x w x

x x x w x w x

x x x w x w x u

y x

β β σ σ

β β σ σ

β β σ σ γ

= − − − + + +

= − − − + + +

= − − − + + + +

=

ɺ … …

⋮ ⋮ ⋮

ɺ … …

⋮ ⋮ ⋮

ɺ … …

which can be re-arranged as:

1 11 1 11 1 1 1

1 1 1 1

1 1 1 1

1

[()] [()]

[()] [()]

[()] [()]

n n n n

i i i in n in n

n n n nn n nn n n

x x w x x w x

x x w x x w x

x x w x x w x u

y x

β σ β σ

β σ β σ

β σ β σ γ

= − + + + − +

= − + + + − +

= − + + + − + +

=

ɺ …

⋮ ⋮ ⋮

ɺ …

⋮ ⋮ ⋮

ɺ …

Considering the above structure, it can be seen that

the network is characterised by functions of the form
()ij j ij jx w xβ σ− + . This also indicates to a similar

behaviour of the structures of the feedback and weight
matrices as far as the relative order is concerned. In
order for the relative order to belong in the region of
[2,n] the combination of the feedback matrix and the
weight matrix must give rise to a structure similar to
that of the structure of the weight matrix in the
Relative Order Proposition.

5.2. Zero dynamics of the alternative structures

Previously we demonstrated that the extra states of
a Hopfield Neural Network could describe extra zero
dynamics. It has also been demonstrated that in the
equivalent structure of the hidden layered Hopfield, the
first n states approximate the process states, and the
last m states (where m is the number of neurons in the
hidden layer) are extra states. Therefore these states
describe extra zero dynamics.

Similarly, in the equivalent form of the multiple
interconnected networks, only the first state of each
network approximates a state of the non-linear process.
Since the remaining states in each network also appear
in the equivalent structure, they must also describe
extra zero dynamics.

Generally, from the point of view of a Hopfield
network with more states than the process it is
modelling, we can say that the Hopfield network is
trying to model a process with an equal number of

states but with using limited knowledge of the process
states to train. In the case of the HNN with a hidden
layer, the extra states are internal, and do not appear in
the output of the network. Therefore no matter the
number of hidden neurons, the network will always try
to model a process with the same number of observable
states. Similarly, in the multiple interconnected
Hopfield structure, each sub-network is modelling a
state of the process and it is that state that is used to
connect it to the other sub-networks. The other states
of each sub-network only appear in that network and
not in the output of the resulting structure. Therefore,
the resulting structure will always model a process
with the correct number of states.

5.3. Which network?

We have argued that a Hopfield network can be
used to model the dynamics of a non-linear process.
When extra complexity in the network model is
needed, there exist three alternatives. The first is to use
a Hopfield network but with extra neurons. This gives
rise to the problem of identifying the role of the extra
neurons when these do not represent extra zero-
dynamics. If the number of neurons of the network is
N, then the number of variables (VS) that need training
(and therefore the dimensionality of the training
problem) is: N variables from the feedback matrix,
N×N variables from the weight matrix, and N variables
from the input matrix, a total of:

2 2SV N N N N N N= + × + = +

A second solution is to add a hidden layer to the

Hopfield model, thus increasing its complexity. This
structure has been seen to be equivalent to the first,
with the number of input / output neurons and the
hidden ones equal to the total number of neurons in the
first case. i.e. a hidden layer Hopfield with n input /
output neurons and m hidden (where n is also the
number of states of the process), is equivalent in form
to a simple Hopfield with N n m= + neurons. But
because the equivalent structure is sparse, the number
of variables that need training (VL) can be seen from
(4) as n variables from the A matrix, n×m variables
from the C matrix, m×n from the D matrix, m from the
E matrix, and n from the F matrix. A total of

2 2()LV n n m m n m n n m nm= + × + × + + = + +

But since m N n= − the total number of variables

in terms of number of modelled states and equivalent
neurons is

2

2

2 2[()] 2 2 2

2 2
L

L

V n N n n N n n N n Nn n

V n N Nn n

= + − + − = + − + − ⇒

= + + −

Figure 3: The three cases with varying number of
neurons in their equivalent forms, when the process has

2 states

Finally, the third option is to use many simpler

interconnected Hopfield networks, each modelling one
state of the process. Assuming that each sub-network
has m neurons, then the overall structure is equivalent
to the first case, with the total number of neurons in the
equivalent form N m n= ⋅ where n is again the number
of states of the process (and consecutively number of
sub-networks in the structure). Then the number of
variables that need training (VM) are the number of sub-
networks times the number of variables in each sub-
network:

()2
2

2

2

2
2

2

M

M

M

V n m m
N N

V nN n nm
n

N
V N

n

= ⋅ +

⇒ = ⋅ + ⇒
=

= +

These three equations have serious implications on

the choice of network model. In the first case the
number of variables can be seen to be independent of
the number of process states, but it is proportional to
the square of the number of neurons in the network.
Therefore as the number of extra neurons increases, the
number of variables that need training increases
proportionally to the square of that value. In the second
case, the relation between the number of variables that
need training and the total number of neurons in all
layers is of a first degree, but is also proportional to the

square of the number of process states. Finally, in the
case of the multiple interconnected networks, the
number of variables that need training is proportional
to the square of total number of neurons in all the
networks, but is inversely proportional to the number
of states of the process. The implications of these can
be seen more clearly in Figure 3 and Figure 4.

Figure 4: The three cases with varying number of
states in the process, when their equivalent forms have

36 neurons.

Where the number of states in the process that will

be modelled are not many, but increased complexity is
needed, the most efficient structure in terms of number
of variables that need training is the Hopfield with the
hidden layer. Then the effect of a small n in the
equation will be minimal, and at the same time it is
possible to increase the complexity of the model by
adding neurons in the hidden layer since their effect is
linear.

On the other hand, where increased complexity is
needed in modeling a process with many states, the
multiple interconnected network structure would be
most efficient, since the number of variables that need
training will be inversely proportional to the number of
states.

At this point we should note that while minimising
the number of variables that need training is desirable,
there should be a limit in the minimisation. As
someone would expect there is a trade off between
number of variables and complexity of the model.

6. Simulations

To test the modelling abilities of the proposed
structures, a well-known non-linear process is selected,

and multiple neural networks of different
configurations were trained as models for this process.

6.1. The non-linear process

The process selected for the simulations is a well-

known, well-used non-linear system [3, 4, 12-18]. The
Single Link Manipulator (SLM) is essentially a
pendulum, and the control problem is to control at any
point in time, its position and velocity. Given a
weightless rod of length l, a dimensionless mass m is
placed at one end and the other is pivoted to a fixed
point in space in such way as to allow the rod to move
in only one direction. The friction coefficient at the
pivot point is ν. This system is illustrated in Figure 5.
Given an input torque u at the pivot, then at an angle θ,
using Newton’s Laws we can get:

sin

1
sin

T I u mgl v ml

v
g u

ml ml

θ θ θ θ

θ θ θ

= ⋅ ⇔ − − = ⇔

= − − +

∑ ɺɺ ɺ ɺɺ

ɺɺ ɺ

Figure 5: The Single Link Manipulator

Transferring the above equation in to state space by

setting x1 equal to the position and x2 equal to the
velocity, and by setting m=2kg, l=1m and v=6kg m2/s
we get:

1 2

2 1 2

1

9.8sin 3 0.5

x x

x x x u

y x

=

= − − +
=

ɺ

ɺ (14)

This system has a relative order of 2. Once the

system is linearised around the equilibrium point
(,) (0,0)o ox u = , we see that the system is stable, and

that it has eigenvalues at 1.5 2.748j− ± .

6.2. Specifying the training algorithm

In order to compare the proposed neural network

structures with simple HNN, five sets of training

experiments were performed using a simple Genetic
Algorithm (GA). Each set composed of ten trials for
the same structure, with each trial starting from a
different random number (seed for the random number
generator). The same ten seeds were used for all sets.
In all tests direct encoding was used to design the gene
sequences that encode the neural networks: The
sequence was composed out of real values, each
uniquely corresponding to a weight in the matrices.

In all cases, the fitness was defined based on the
Normalised Mean Square Error (NMSE) [4] of the
states as defined by:

2

1 1

(max min)1
100 ()

N P
p mi i
ij ij

i j

NMSE x x
N P= =

 −
= −

∑ ∑

Where N is the number of states of the system, P is

the number of training patterns, maxi is the maximum
output value of output i, mini is the minimum value
output of output i, xp is the system output and xm is the
model output.

Furthermore, training was stopped when either the
NMSE of the best network dropped bellow 5×10-6, or
when the algorithm finished the 300th generation,
whichever criteria was reached first. This was because
from preliminary tests it was observed that the NMSE
did not improve significantly after 300 generations. In
all cases a population of 50 networks was used. A
mutation rate of 40% was used in all GA simulations.
Although this percentage seems large for a mutation
rate for a GA, it is not the percentage for each gene in
the gene sequence, but it is the possibility that one gene
in the gene sequence will mutate. This ensures that at
most only one gene in a genotype will mutate. This is
wanted because in many cases the genomes are sort in
length, and therefore if two genes mutate, a large
percentage of the genome changes.

The pseudo-code describing the training algorithm
follows:

1. Create and initialise a new population
of 50 networks.

2. For every network in the population,
test it and calculate the NMSE.

3. Short the population from smallest
NMSE to largest.

4. If the stopping criteria are reached
END SIMULATION. Else go to 5.

5. Do crossover and mutation operations
using the 10 networks with the lowest
NMSE, creating 18 new networks
substituting the 18 networks with the
highest NMSE. Go to 2.

The stopping criteria are described above.

6.3. Training the models

The first set of experiments involved training
simple HNNs with five neurons, as models of the
SLM. This way the network model has more states
than the process. This will form the basis of
comparison with the proposed structures. The results of
this set are displayed in table T1, in the appendix.
Figure 6, shows the phase portrait of the best network
in this set.

In order to test the Hopfield network with the
hidden layer, a network with two output neurons (one
for each process state) and three nodes in the hidden
layer was used. As we have seen this is equivalent to
the five-neuron simple HNN. For this set of
simulations a GA was used to train the network
similarly to the previous case. For reasons of
comparison, the same random number seeds where
used to produce ten networks. The results for this set
are presented in table T2, in the appendix. Figure 7,
shows the phase portrait of the best network in this set.

Figure 6: The phase portrait of the best 5-neuron
network compared with the process, for different initial

conditions.

In the final set of simulations the multiple networks

architecture was tested. Since the non-linear process
has two states, a double Hopfield network was trained
with each network modelling a state. Training the
networks was done with a GA, with each sub-network
trained not separately, but in parallel with each other.
Similarly with all previous sets, the training procedure
was repeated ten times with ten different initial seeds
for the random number generator. The results for this
set are presented in the appendix, table T3. Figure 8,
shows the phase portrait of the best network in this set.

6.4. Discussion of results

In Figure 6, Figure 7 and Figure 8, the phase
portraits of the best networks of each set, are illustrated
for different initial conditions. In order to illustrate the
ability of the networks to extrapolate, the initial
conditions used in the phase portraits are outside the
region used for training the networks. This region is
illustrated in the attached detail, in each figure.

We can clearly see how the networks are quite
capable of imitating the phase portraits of the process
in the region they were trained in, while outside that
region they do not perform as well. In particular, the
five-neuron network originally seems to perform very
well inside the training region, but on a closer look,
one can clearly see that the performance is not as good
as those in the next two cases.

In the case of the Hopfield network with hidden
layer, the performance is equally good in both regions
(Figure 7). Using networks of this type does not
compromise the ability to identify the non-linear
dynamics between the two regions.

Figure 7: The phase portrait of the best Hopfield
with a hidden layer compared with the process, for

different initial conditions.

Furthermore, in Figure 8 the phase portrait of the

best double network structure is illustrated (case T2-1).
Comparing this with the previous phase portraits the
advantages of this structure become evident. This
network outperforms all the previous cases, inside and
outside the training regions.

Comparing the results obtained from training a
HNN with a hidden layer and that of its equivalent
five-neuron network, it can be seen that on average the
Hopfield with the hidden layer performs worst than the
equivalent five-neuron case. Under closer examination
though, it becomes evident that more networks of the

first case have test errors in the order of 10-4 than in the
second.

Figure 8: The phase portrait of the best double
Hopfield compared with the process, for different

initial conditions.

A second alternative is to use multiple

interconnected networks, each modelling a state of the
process. Earlier it was shown that this structure is also
equivalent to a larger Hopfield network. In order to
investigate the approximating properties of this
structure a number of double networks were trained to
approximate the process. In each case, the each sub-
network was composed of two neurons, and was
trained to model a state of the process. This structure is
roughly equivalent to the five-neuron case, and the
Hopfield with the hidden layer. Comparing this case
with its equivalents, one can see that on average the
double structure outperforms both previous cases, for
both train and test input sets.

By inspection of the tables T1, T2 and T3 located at
the appendix, we can see that the simple HNN with 5
neurons has the largest average training error, followed
by the HNN with the hidden layer. The best average
training error (lowest value) is achieved by the double
HNNs. Under closer inspection, we can see that the
training error of all double HNNs is located in the
range of 10-5, while this is also true about most HNN
with a hidden layer. In contrast, there is only 1 case
(case 4 of table T1) of a simple HNNs where the
training error is so low. This is a clear indication that
the alternative networks structures are easier to train.

In order to ensure that the networks are not over-
trained (perform very well only for data used during
training, and not very well for other data), a test error
for all networks is calculated, using data unseen during
training. It is usual to assume that if a Neural Network
(NN) has a small training error but a large test error,

then the NN has over-trained since it no longer
performs well with other data from what it was trained
with.

By inspecting table T3 we can clearly see that the
double HNN structure again outperforms the other two
structures, having an average test error in the range of
10-4, while the average training error is in the range of
10-5. This is true for all double HNNs, indicating that
none of the double HNNs have over-trained.

The average test error of the HNN with the hidden
layer is above that of the simple HNN, and after closer
inspection of tables T2 we can see that there are five
cases where the test error is much larger than the
training error (cases 2, 5, 7, 9 and 10). Therefore in
these five cases the networks have over-trained.

Finally, in table T1, there is only one case when the
test error in much larger than the test error (case 4). It
is very interesting to observe case 9 in table T1. In this
case, the test error is very high in respect to all other
cases. However this is also true about the training
error. Therefore in this case the network has not over-
trained; rather it not trained very well.

The test errors indicate that there multiple HNN
structures are also harder to over-train, than simple
HNNs and HNNs with a hidden layer. However, the
opposite can be claimed about HNNs with a hidden
layer.

7. Conclusions

It has been shown that any extra states of a

network trained as a model of a non-linear process, are
connected to the non-linear zero dynamics, and are
therefore essential for a good approximation. This has
the effect of making the training more difficult by
increasing the dimensions of the search space, and
therefore the number of iterations for the training
algorithm necessary to lower the training error to a
satisfactory point. One way of perceiving the effect of
training an m state network to identify an n state
process, where m>n, is similar to training the same
network to identify an m state process using limited
information (say the first n states) about the non-linear
process. Since we have no information about the last
m-n states, it is difficult not only to decide what the
roles of the extra states are, but also how to initialise
them.

Two alternatives have been proposed. The first is
to use a Hopfield network with as many states as the
process, but to increase its complexity with the use of a
hidden layer. It was shown that, a structure like this is
equivalent to a simple HNN with a total number of
neurons equal to the number of neurons in both input
and hidden layers of the proposed structure. However,

only some of the neurons are directly connected. The
advantage of this network type is that while it increases
the complexity of the network, the problem associated
with choosing initial conditions is no longer present.

The second alternative investigated, was to use
multiple interconnected networks, each modelling a
single state of the process, thus breaking down the
problem. Such a structure with n networks and m
neurons was found to be equivalent to a single
Hopfield neural network with n times m neurons but
with the feedback matrix including extra feedback
between the states, and the weight matrix being sparse.

In a comparison of the number of variables needed
to be trained in equivalent forms in each case, it was
found that in all cases as the number of equivalent
neurons increase the number of variables increase with
a higher rate in the case of the simple HNN, with a
slower rate in the Hopfield with the hidden layer, and
with much slower rate in the case of the interconnected
Hopfield networks.

Experimental results indicated that both proposed
structures (multiple interconnected Hopfield networks
and HNN with hidden layer) have better approximation
capabilities than the Simple Hopfield network of
equivalent number of neurons, and better extrapolation
capabilities. In addition multiple HNN structures are
easier to train and harder to over-train, while HNNs
with hidden layer are easy to train, but there is a high
probability that the network will over-train.

8. References

[1] J. J. Hopfield, "Neural Networks and Physical Systems
With Emergent Collective Computational Abilities,"
Proceedings of the National Academy of Sciences of the
United States of America-Biological Sciences, vol. 79, pp.
2554-2558, 1982.
[2] K. P. Dimopoulos and C. Kambhampati, "Apriori
Information in Network Design," in Dealing with
Complexity: A Neural Network Approach., M. Karny, K.
Warwick, and V. Kurkova., Eds., 1998.
[3] K. P. Dimopoulos and C. Kambhampati, "Multiple
Interconnected Hopfield Networks for Intelligent Global
Linearising Control," presented at IJCNN, Washington D.C.
USA, 1999.
[4] K. P. Dimopoulos, C. Kambhampati, and R. J. Craddock,
"Efficient recurrent neural network training incorporating a
priori knowledge," Mathematics and Computers in
Simulation, vol. 52, pp. 137-162, 2000.
[5] N. J. Dimopoulos, "A study of the asymptotic-behavior of
neural networks," IEEE Transactions On Circuits and
Systems, vol. 36, pp. 687-694, 1989.
[6] A. Isidori, Nonlinear Control Systems. An Introduction,
2nd ed: Springer-Verlag, 1989.
[7] C. Kambhampati, A. Delgado, J. D. Mason, and K.
Warwick, "Stable Receding Horizon Control Based on

Reccurent Networks," presented at IEE Control Theory
Applications, 1997.
[8] S. W. Lee and S. Y. Kim, "Integrated segmentation and
recognition of handwritten numerals with cascade neural
network," IEEE Transactions On Systems Man and
Cybernetics Part C- Applications and Reviews, vol. 29, pp.
285-290, 1999.
[9] J. Lis, "The synthesis of the ranked neural networks
applying genetic algorithm with the dynamic probability of
mutation," From Natural to Artificial Neural Computation,
vol. 930, pp. 498-504, 1995.
[10] D. H. Wolpert, "Stacked Generalization," Neural
Networks, vol. 5, pp. 241-259, 1992.
[11] D. V. Sridhar, R. C. Seagrave, and E. B. Bartlett,
"Process modeling using stacked neural networks," Aiche
Journal, vol. 42, pp. 2529-2539, 1996.
[12] A. Delgado and C. Kambhampati, "Differential
Geometric Control of Non-linear System with Recurrent
Neural Networks," Department of Cybernetics, University of
Reading, Reading 1994 1994.
[13] A. Delgado, C. Kambhampati, and K. Warwick,
"Approximation of non-linear systems using dynamic
recurrent neural networks," presented at International
conference on identifications in engineering systems, Univ.
of Wales, Swansea, U.K., 1996.
[14] A. Delgado and C. Kambhampati, "Global linearising
control using recurrent networks," presented at European
Robotics and Intelligent systems Conference (EURICON),
Malaga, Spain, 1994.
[15] A. Delgado, "Input/output linearisation of control affine
systems using neural networks," in Department of
Cybernetics. Reading: University of Reading, 1996.
[16] A. Delgado, C. Kambhampati, and K. Warwick,
"Input/output linearization using dynamic recurrent-neural
networks," Mathematics and Computers in Simulation, vol.
41, pp. 451-460, 1996.
[17] C. Kambhampati, R. J. Craddock, M. Tham, and K.
Warwick, "Internal model control of nonlinear systems
through the inversion of recurrent neural networks," World
Congress on Computational Intelligence, Alaska., 1998.
[18] A. Delgado, C. Kambhampati, and K. Warwick,
"Dynamic recurrent neural networks for system identification
and control," IEE Proc. Control Theory Appl., vol. 142, pp.
307 - 314., 1995.

9. Appendix

T1. Simple HNN with 5 neurons

TEST Seed train error test error Epochs

1 4534 2.435E-04 1.625E-03 300

2 456 1.591E-04 3.465E-03 300

3 1514 3.994E-04 2.058E-03 300

4 1534 4.231E-05 6.959E-03 300

5 4210 9.162E-04 9.884E-03 300

6 53 1.059E-03 7.134E-03 300

7 2731 1.877E-04 7.421E-04 300

8 1102 1.054E-04 3.125E-03 300

9 273 2.633E-03 1.165E-02 300

10 666 1.681E-03 9.343E-03 300

 Aver 7.426E-04 5.599E-03 300

T2. HNN with 3 Hidden neurons

TEST Seed train error test error Epochs

1 4534 7.016E-05 4.062E-04 300

2 456 3.179E-05 6.462E-02 300

3 1514 2.680E-05 9.659E-04 300

4 1534 4.770E-05 6.611E-04 300

5 4210 7.588E-05 1.910E-03 300

6 53 5.707E-04 3.750E-03 300

7 2731 3.718E-05 6.734E-03 300

8 1102 6.692E-04 8.315E-03 300

9 273 4.215E-05 1.256E-02 300

10 666 5.007E-05 6.255E-03 300

 Aver 1.622E-04 1.062E-02 300

T3. Double HNN with 2 neurons in each network

TEST Seed train error test error Epochs

1 4534 1.67E-05 1.22E-04 300

2 456 1.47E-05 1.02E-04 300

3 1514 2.03E-05 1.40E-04 300

4 1534 3.86E-05 2.90E-04 300

5 4210 1.47E-05 1.08E-04 300

6 53 2.81E-05 2.30E-04 300

7 2731 2.54E-05 1.94E-04 300

8 1102 2.22E-05 1.59E-04 300

9 273 3.99E-05 2.46E-04 300

10 666 3.46E-05 1.98E-04 300

 Aver 2.55E-05 1.79E-04 300

