
dlvhex-sparql:
A SPARQL-compliant Query Engine based on dlvhex ?

Axel Polleres1 and Roman Schindlauer2

1 DERI Galway, National University of Ireland, Galway
axel@polleres.net

2 Univ. della Calabria, Rende, Italy and Vienna Univ. of Technology, Austria
roman@kr.tuwien.ac.at

Abstract. This paper describes the dlvhex SPARQL plugin, a query processor
for the upcoming Semantic Web query language standard by W3C. We report on
the implementation of this languages using dlvhex, a flexible plugin system on
top of the DLV solver. This work advances our earlier translation based on the se-
mantics by Perez et al. towards an engine which is fully compliant to the official
SPARQL specification. As it turns out, the differences between these two defini-
tions of SPARQL, which might seem moderate at first glance, need some extra
machinery. We also briefly report the status of implementation, and extensions
currently being implemented, such as handling of aggregates, nested CONSTRUCT
queries in the spirit of networked RDF graphs, or partially support of RDFS en-
tailment. For such extensions a tight integration of SPARQL query processing
and Answer-Set Programming, the underlying logic programming formalism of
our engine, turns out to be particularly useful, as the resulting programs can ac-
tually involve unstratified negation.

1 Introduction
SPARQL, the upcoming Semantic Web query language, is short before being standard-
ized by the W3C, and has just reached Candidate Recommendation Status [8]. As op-
posed to earlier versions of this specification, the formal underpinnings of the language
have been seriously improved, influenced by results from academia such as Perez et
al.’s work [6]. In [7] we presented a translation from SPARQL to Datalog following
Perez et al. and showed how we can cover even corner-cases such as non-well-designed
query patterns, where UNION and OPTIONAL patterns turned out to be particularly
tricky. In the present work we aim at bridging the gap between the formal translation
from [7] towards an actual implementation of the official W3C candidate recommen-
dation. Compared with the semantics presented in [6, 7], the recent specification shows
some differences which require additional machinery, such as the treatment of filters in
optional graph patterns, multiset semantics, and the handling of blank nodes in CON-
STRUCT queries which have an impact for practical implementations. This paper is to
? This work has been supported by the European FP6 projects inContext (IST-034718) and

REWERSE (IST 506779), by the Austrian Science Fund (FWF) project P17212-N04, by the
AECI Programa de Cooperación Interuniversitaria e Investigación Cientı́fica entre España y
los pases de Iberoamérica (PCI), by the Consejerı́a de Educación de la Comunidad de Madrid
and Universidad Rey Juan Carlos under the project URJC-CM-2006-CET-0300, as well as by
Science Foundation Ireland under the Lion project (SFI/02/CE1/I131).



be conceived as a system description: Rather by use of practical examples than repeat-
ing formal details from our earlier works, we will show how our earlier translation can
be lifted to a more spec-compliant one. Moreover, we report on implementation details
of our prototypical engine dlvhex-sparql.

We will review the basics of dlvhex and main ideas of our translation by means of
simple examples in Section 2. In Subsection 2.3 we will discuss the main differences
between our original semantics from [7] and the current SPARQL specification [8]
along with patches for our translation. Next, we will present some details about our
prototype implementation in Section 3. Finally, in Section 4 we will motivate further
why a tight integration of SPARQL query processing and answer-set programming, the
underlying logic programming of our engine, turns out to be particularly useful and will
give an outlook to future work.

2 From SPARQL to dlvhex
As shown in [7] the semantics of SPARQL SELECT queries can, to a large extent, be
translated to Datalog programs with minimal support of built-in predicates. Hence, any
logic programming engine which supports Datalog (i.e., function-free) with negation
as failure, as well as built-in functions to import triples from given RDF graphs, could
in principle serve as a SPARQL engine. We will focus here particularly on our imple-
mentation of this translation using the dlvhex engine, a flexible and extensible plugin
framework on top of the DLV system to support a wide range of external predicates.

2.1 dlvhex Basics
dlvhex 3 is a reasoner for so-called HEX-programs [11], a relatively new logic pro-
gramming language, which provides an interface to external sources of knowledge. The
definition of this interface is very general, allowing for the implementation of a wide
range of specialized tasks, such as the import of RDF data, basic string manipulation
routines, or even aggregate functions.

The crucial feature of HEX-programs are external atoms, which are of the form

&g [Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn is a list of predicates and terms and X1, . . . , Xm is a list of terms
(called input list and output list, respectively), and g and output arities n and m fixed
for g. Intuitively, an external atom provides a way for deciding the truth value of an
output tuple depending on the extension of a set of input predicates and terms. Note
that this means that external predicates, unlike usual definitions of built-ins in logic
programming, can not only take constant parameters but also (extensions of) predicates
as input.

A rule is of the form

h :- b1, . . . , bm,not bm+1, . . .not bn (1)

where h and bi (1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or external
atoms, and ‘not’ is the symbol for negation as failure.

The semantics of dlvhex generalizes the well-known answer-set semantics [4] by
extending it to external atoms. One distinguished feature of the answer-set semantics is

3 Available on http://www.kr.tuwien.ac.at/research/dlvhex/.



its ability to generate multiple minimal models for a single problem specification. Its
treatment of negation as failure qualifies it as an intuitive way to deal with unstratified
negation in logic programming. Answer-set programming is particularly suitable for
combinatorial search problems and their applications.

In our implementation we translate SPARQL queries to HEX-programs with a set of
dedicated external atoms, only two of which we mention here explicitly. Further exter-
nal atoms and built-in functions are necessary to deal with complex FILTER expressions
as defined in [8, Sec. 11.3], where we refer to [7, 9] for further details.

RDF Import The access on RDF knowledge is realized through the &rdf predicate. It
is of the form &rdf [i](s, p, o), where both the input term i as well as the output terms
s, p, o are constants The external atom &rdf [i](s, p, o) is true if (s, p, o) is an RDF triple
entailed by the RDF graph which is accessibly at IRI i. Here, we consider simple RDF
entailment [5] only.

Skolemizing Blank Nodes In order to properly deal with blank nodes in CONSTRUCTs
(see Subsection 2.3), we need to be able to generate fresh blank node identifiers. The
idea here is similar to Skolemization. The external predicate &sk[id , v1, . . . , vn](skn+1)
computes a unique, new “Skolem”-like term id(v1, . . . , vn), from its input parameters.

As widely known for programs without external predicates, safety [12] guarantees
that the number of entailed ground atoms is finite. Though, by external atoms in rule
bodies, new, possibly infinitely many, ground atoms could be generated, even if all
atoms themselves are safe. In order to avoid this, the notion of strong safety [11] for
HEX-programs, constrains the use of external atoms in cyclic rules and guarantees finite-
ness of models as well as finite computability of external atoms.

2.2 From SPARQL to dlvhex by Example
In this section, we exemplify our translation by means of some illustrating sample
SPARQL queries. We assume basic familiarity of the reader with RDF and SPARQL,
and will only briefly intoduce some basics here: We define a SPARQL query as a tuple
Q = (R,P,DS ) where R is a result form, P a graph pattern, and DS a dataset.4 For a
SELECT query, a result form R is simply a set of variables, whereas for a CONSTRUCT
query, the result form R is a set of triple patterns.

We assume the pairwise disjoint, infinite sets I , B, L and Var , which denote IRIs,
blank node identifiers, RDF literals,5 and variables respectively.
Graph patterns are recursively defined as follows:

– s p o. is a graph pattern where s, o ∈ I ∪B ∪ L ∪Var and p ∈ I ∪Var .
– A set of graph patterns is a graph pattern.
– Let P, P1, P2 be graph patterns, R a filter expression, and i ∈ I ∪ V ar, then

P1 OPTIONAL P2,P1 UNION P2,GRAPH i P , and P FILTER R are graph patterns.

For any pattern P , we denote by vars(P ) the set of all variables occurring in P and
by vars(P ) the tuple obtained by the lexicographic ordering of all variables in P . As
atomic filter expression, we allow here the unary predicates BOUND (possibly with

4 We will ignore solution modifiers for the purpose of this paper, since they can be added by
post-processing results of our translation.

5 For sake of brevity, we only cover plain (i.e., untyped, not language tagged) literals here.



variables as arguments), isBLANK, isIRI, isLITERAL, and binary comparison predicates
‘=’, ‘<’, ‘>’ with arbitrary safe built-in terms as arguments. Complex filter expressions
can be built using the connectives ‘¬’, ‘∧’, and ‘∨’.

The dataset DS = (G, {(g1, G1), . . . , (gk, Gk)}) of a SPARQL query is defined
by a default graph G plus a set of named graphs, i.e., pairs of IRIs and corresponding
graphs. Without loss of generality (there are other ways to define the dataset such as in
a SPARQL protocol query), we assume G given as the merge of the graphs denoted by
the IRIs explicitly given in a set of FROM clauses and the named graphs g1, . . . , gk are
specified in the form of FROM NAMED clauses.

For the following example queries, we assume the datasets consisting of two RDF
graphs with the URIs http://alice.org and http://ex.org/bob which contain
some information about Alice and Bob encoded in the commonly used FOAF6 vocab-
ulary. For instance, the following SELECT query Q = (R,P,DS ) selects all persons
who know somebody, and the names of these persons.7

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . ?X foaf:knows _:x . }

Here, P is a simple set of triple patterns, also called basic graph pattern in SPARQL. R
is the set of variables {?X, ?Y }, DS = ({ex.org/bob, alice.org}, ∅), i.e., the default
graph being the merge of the two graphs and an empty set of named graphs, since no
FROM NAMED clause is given. Using the RDF-plugin of dlvhex such queries can be
translated to a simple HEX-program:8

(1) tripleQ(S,P,O,def) :- &rdf["http://ex.org/bob"](S,P,O).
(2) tripleQ(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
(3) answerP (X,Y,BLANK x,DS) :- triple(X,rdf:type,foaf:Person,DS),

triple(X,foaf:name,Y,DS),
triple(X,foaf:knows,BLANK x,DS).

(4) answerQ(X,Y) :- answerP (X,Y,BLANK x,def).

Here, rules (1)+(2) “collect” the dataset by merging the two source graphs in the pred-
icate tripleQ, where the constant def in last parameter denotes the triples of the de-
fault graph. Disambiguation of possible overlapping blank node ids in the source graphs
is taken care of by the RDF plugin, i.e., during import the &rdf predicate gives a fresh
id to any blank node. As we can see in rule (3), basic graph patterns basically boil
down to simple conjunctive queries over the predicate tripleQ of which the results
are collected in the predicate answerP(vars(P ),DS). The variable DS denotes the part
of the dataset the pattern refers to (see the next example for more details). Blank nodes
in P are simply treated as special variables, which is a quite standard procedure (see
e.g., [3].9 The projection to the variables in R and restriction to results from the default
graph takes place in rule (4), which finally collects all solution tuples for the query in
the dedicated predicate answerQ.

6
http://xmlns.com/foaf/spec/

7 As usual in SPARQL or Turtle [2], the predicate ‘rdf:type’ is abbreviated with ‘a’.
8 dlvhex uses the common PROLOG style notation where unquoted uppercase terms denote

variables and all other terms denote constants. We simplify here from the notation used in the
actual implementation, where some encoding is necessary in order to distinguish RDF literals,
IRIs, blank nodes, etc.

9 For the treatment of blank nodes in R, i.e., in CONSTRUCTs, we refer to Section 2.3 below.



More complex, possibly nested patterns are handled by introducing, for each sub-
pattern of P , new auxiliary predicates answer1P , answer2P , answer3P , etc. We ex-
emplify this by the following GRAPH query which selects creators of graphs and the
persons they know.

SELECT ?X ?Y
FROM <http://alice.org>
FROM NAMED <http://alice.org>
FROM NAMED <http://ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y . ?Y a foaf:Person . } }

This query is translated to a HEX-program as follows:

(1) tripleQ(S,P,O,def) :- &rdf["http://alice.org"](S,P,O).
(2) tripleQ(S,P,O,"http://alice.org") :- &rdf["http://alice.org"](S,P,O).
(3) tripleQ(S,P,O,"http://ex.org/bob") :- &rdf["http://ex.org/bob"](S,P,O).
(4) answer1P (X,Y,DS) :- tripleQ(G,foaf:maker,X,DS), answer2(X,Y,G), G != def.
(5) answer2P (X,Y,DS) :- tripleQ(X,foaf:knows,Y,DS),

tripleQ(X,rdf:type,foaf:Person,DS).
(6) answerQ(X,Y) :- answer1P (X,Y,def).

Here, again the first rules (1)-(3) import the dataset, now also involving named graphs.
The GRAPH subpattern is computed by predicate answer2P , and we see that the last
parameter in the triple predicate carries over bindings to particular named graphs or
via the constant def to the default graph. Note that the inequality atom G != def in
rule (4) serves to restrict answers for the GRAPH subpattern to only refer to named
graphs, according to SPARQL’s semantics.

Next, let us turn to a query that involves a UNION pattern, asking for persons and
their names or nicknames.

SELECT ?X ?Y ?Z FROM ...
WHERE { ?X a foaf:Person { { ?X foaf:name ?Y. } UNION { ?X foaf:nick ?Z. } } }

Alternatives can be modeled by splitting off the branches in a UNION pattern into sev-
eral rules with the same answer head predicate:

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (X,Y,Z,DS) :- tripleQ(X,rdf:type,foaf:Person,DS), answer2P (X,Y,Z,DS).
(3) answer2P (X,Y,null,DS) :- tripleQ(X,foaf:name,Y,DS).
(4) answer2P (X,null,Z,DS) :- tripleQ(X,foaf:nick,Z,DS).
(6) answerQ(X,Y,Z) :- answer1P (X,Y,Z,def).

Since we bind names and nicknames to different variables Y and Z here, the answers for
the non-occurring variable will be unbound in the respective branch of the UNION. We
emulate such unboundedness in our translation by null values [7] in the rules (3)+(4).

Let us turn to OPTIONAL patterns by the following example query which selects all
persons and optionally their names:

SELECT * WHERE { ?X a foaf:Person. OPTIONAL { ?X foaf:name ?N } }

OPTIONALs can be emulated again by null values and using negation as failure.

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (N,X,DS) :- tripleQ(X,rdf:type,foaf:Person,DS), answer2P (N,X,DS).
(3) answer1P (null,X,DS) :- tripleQ(X,rdf:type,foaf:Person,DS),

not answer2’P (X,DS).
(4) answer2P (N,X,DS) :- tripleQ(X,foaf:name,N,DS).
(5) answer2’P (X,DS) :- answer2P (N,X,DS).
(6) answerQ(N,X) :- answer1P (N,X,def).



In rules (3)+(5) we cover the case where the optional part has no solutions for X by a
rule with head predicate answer2’P which projects away all variables only occurring
in the optional part (answer2P ) and which we negate in rule (3).

As for the treatment of FILTER expressions, we made the restricting assumption
in [7] that each variable appearing in a FILTER expression needs to be bound in a triple
pattern in the same scope as the FILTER expression, since otherwise our recursive trans-
lation given in [7] would construct possible unsafe rules. Take for instance the pattern
P = { ?X foaf:mbox ?M . FILTER(?Age > 30) }. In our translation without
further modification, such a pattern this would yield a rule like:

answerP (Age,M,X,DS) :- tripleQ(X,foaf:mbox,M,DS), Age > 30.

where Age is an unsafe variable occurring in a built-in atom. however, it turns out that
the safety restriction for variables in FILTERs is unnecessary, since we could remedy
the situation by replacing all unsafe variables in a FILTER simply by the constant null
again, which yields for our example pattern P :

answerP (null,M,X,DS) :- tripleQ(X,foaf:mbox,M,DS), null > 30.

As expected, this rule can never fire, since the built-in atom null > 30 is always false.
Finally, let us turn our attention to CONSTRUCT queries. We suggested in [7] that

we can allow CONSTRUCT queries of the form Q = (R,P, DS) where R consists of
bNode-free triple patterns. We can model these by adding a rule

tripleQ(s, p, o,res) :- answerQ(vars(P )).

for each triple pattern s p o. in R10 to the translated program. The result graph res is
then naturally represented in the answer set of the extended program, namely by those
tuples in the extension of the predicate tripleQ having res as the last parameter and
representing valid RDF triples.

Apart from some extra-machinery, which is needed in the case of non-well-designed
graph patterns [6], the examples in this section should cover the basic ideas behind our
translation which had been described in [7], and we refer the interested reader to this
work for further details. The present paper is rather focused on implementation specific
aspects concerning the latest official specification of SPARQL and some difficulties
which arise from particular decisions taken by the W3C Data Access working group.
We will cover these issues in the next subsection.

2.3 Full SPARQL Compliance

In order to arrive at a SPARQL compliant translation, we face the following difficulties:

1. How to deal with solution modifiers.
2. SPARQL defines a multi-set semantics.
3. SPARQL allows FILTER expressions in OPTIONAL patterns to refer to variables

bound outside the enclosing OPTIONAL pattern.
4. SPARQL allows blank nodes in the result form of CONSTRUCT queries.

10 Analogously to the FILTER example, we can replace variables unbound in P but occurring in
R by null again in order to ensure safety.



As for 1, we do not yet treat solution modifiers such as ORDER BY and OFFSET in our
current prototype, but these can be easily added by post-processing the results obtained
from our translation fed into dlvhex. Issue 2 is somewhat harder to solve. Note that
our current translation, as well as the SPARQL semantics defined by Perez et al. [6]
creates sets of solutions, i.e., each query is treated as if it was a DISTINCT query. Take
for instance a variation of our UNION example from above:

SELECT ?N FROM ... WHERE { { ?X foaf:name ?N. } UNION { ?X foaf:nick ?N. } }

and assume the source graph

:bob foaf:name "Bob" ; foaf:nick "Bobby" .
:alice foaf:knows _:a .
_:a foaf:name "Bob"; foaf:nick "Bob"; foaf:nick "Bobby" .

The naive translation of the above query to a HEX-program is as follows:

(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (N,X,DS) :- tripleQ(X,foaf:name,N,DS).
(3) answer1P (N,X,DS) :- tripleQ(X,foaf:nick,N,DS).
(4) answerQ(N) :- answer1P (N,X,def).

This program (in a bottom-up evaluation such as the one underlying the dlvhex system)
would result in two answers answerQ("Bob") and answerQ("Bobby"). According
to the official SPARQL semantics, however, the above query has four solutions bind-
ing variable ?N three times to "Bob" and twice to "Bobby". If we observe where
the duplicates get “lost” in our translation, we can see that only (i) the final projection
in predicate answerQ and (ii) duplicates due to UNION patterns cause us to lose du-
plicates. We can remedy this easily by (i) always carrying over all the variables in all
subpatterns to the answerQ predicate and only projecting out the non-selected vari-
ables during postprocessing, and (ii) adding an extra variable for each UNION pattern
which models possible branches a solution stems from. The such modified version of
our translated program looks as follows:

(1) tripleQ(S,P,O,def) :- ...
(2’) answer1P (N,X,1,DS) :- tripleQ(X,foaf:name,N,DS).
(3’) answer1P (N,X,2,DS) :- tripleQ(X,foaf:nick,N,DS).
(4’) answerQ(N,X,Union1) :- answer1P (X,N,Union1,def).

Here, the constants 1 and 2 mark the branches of the union in rules (2’)+(3’), and
are carried over to the end result in rule (4’) by the extra variable Union1. Indeed, this
modified program has four answers answerQ("Bob",:bob,1), answerQ("Bobby",
:bob,2), answerQ("Bobby", :a,2), and answerQ("Bob", :a,2).

Regarding issue 3, let us consider a query involving the above mentioned FILTER
condition:

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL { ?X foaf:mbox ?M . FILTER(?Age > 30) } }

Here, we want to select names of persons and only output email addresses (foaf:mbox)
of those ones older than 30. The possibility of FILTERs within OPTIONALs to refer to
variables bound outside the enclosing OPTIONAL pattern is an interesting feature of
SPARQL for such queries, however, our original translation would treat filters strictly
local to their pattern:



(1) tripleQ(S,P,O,def) :- ...
(2) answer1P (Age,N,M,X,DS) :- tripleQ(X,foaf:name,N,DS), tripleQ(X,:age,Age,DS),

answer2P (Age,M,X,DS).
(3) answer1P (Age,N,null,X,DS) :- tripleQ(X,foaf:name,N,DS),

tripleQ(X,:age,Age,DS),
not answer2’P (Age,X,DS).

(4) answer2P (null,M,X,DS) :- tripleQ(X,foaf:mbox,M,DS), null > 30.
(5) answer2’P (Age,X,DS) :- answer2P (Age,M,X,DS).
(6) answerQ(N,M) :- answer1P (Age,N,M,X,def).

Since the use of variable Age in rule (4) would be unsafe, our original translation re-
places it by null, thus not returning any email addresses (i.e., bindings for N) for the
overall query. The solution is now to modify the translation in order to draw FILTERs in
the scope of OPTIONALs upwards in the pattern tree, yielding a modified translation:

(1) tripleQ(S,P,O,def) :- ...
(2’) answer1P (Age,N,M,X,DS) :- tripleQ(X,foaf:name,N,DS), tripleQ(X,:age,Age,DS),

answer2P (M,X,DS), Age > 30.
(3a’) answer1P (Age,N,null,X,DS) :- tripleQ(X,foaf:name,N,DS),

tripleQ(X,:age,Age,DS),
answer2P (M,X,DS), not Age > 30.

(3b’) answer1P (Age,N,null,X,DS) :- tripleQ(X,foaf:name,N,DS),
tripleQ(X,:age,Age,DS), not answer2’P (X,DS).

(4’) answer2P (M,X,DS) :- tripleQ(X,foaf:mbox,M,DS).
(5’) answer2’P (X,DS) :- answer2P (M,X,DS).
(6’) answerQ(N,M) :- answer1P (Age,N,M,X,def).

Rules (2’)-(3b’) now exactly reflect the case distinction for OPTIONALs by the def-
inition of the LeftJoin operator in [8, Section 12.4]. As an interesting side-note, we
remark that the non-local behavior of filter expressions only applies to FILTERs on the
top level of OPTIONALs: The reader might easily convince herself by the definitions in
the current SPARQL specification that a slightly modified query

SELECT ?N ?M WHERE { ?X foaf:name ?N . ?X :age ?Age .
OPTIONAL {?X foaf:name ?N { ?X foaf:mbox ?M . FILTER(?Age > 30) } } }

is not semantically equivalent to the original query although the triple ?X foaf:name
?N inside the OPTIONAL seems to be redundant at first glance. In fact, the difference
here is that FILTERs which are nested within a group graph pattern will be evaluated
local to this pattern, not taking bindings from outside the OPTIONAL into account.

Finally, let us turn to issue 4, namely the translation of CONSTRUCT queries in-
volving blank nodes in the result form. We consider an example query which constructs
foaf:maker relations for people authoring a document, expressed by the Dublin Core
property dc:creator. We assume that in the source graph all values for dc:creator
are literals denoting the authors’ names. Thus, we want to create bNodes for each au-
thor, since the foaf:maker of a document should be a foaf:Agent:

CONSTRUCT { _:b a foaf:Agent. _:b foaf:name ?N. ?Doc foaf:maker _:b. } FROM ...
WHERE { ?Doc dc:creator ?N. }

The idea to implement the SPARQL semantics properly here is to use the external
predicate &sk mentioned in Subsection 2.1 to generate new blank node identifiers for
each solution binding for var(P ) similar in spirit to Skolemization . We simply use the
original bNode identifier b in R as “Skolem function”:



(1) tripleRes(S,P,O,def) :- ...
(2) answer1P (Doc,N,DS) :- tripleQ(Doc,dc:creator,N,DS).
(3) tripleRes(BLANK b,rdf:type,foaf:Agent,res) :- answer1P (Doc,N,def),

&sk[b,Doc,N](BLANK b).
(4) tripleRes(BLANK b,foaf:name,N,res) :- answer1P (Doc,N,def),

&sk[b,Doc,N](BLANK b).
(5) tripleRes(Doc,foaf:maker,BLANK b,res) :- answer1P (Doc,N,def),

&sk[b,Doc,N](BLANK b).

Note that, since we use different predicates tripleRes and tripleQfor the result
triples and dataset triples here, the resulting program stays in principle non-recursive
and thus strong safety as discussed in Subsection 2.1 is guaranteed, despite the genera-
tion of new values by means of the external predicate &sk.

3 Prototype Implementation
We implemented a prototype of a SPARQL engine based on the dlvhex solver, called
dlvhex-sparql. The external atoms in HEX-programs are provided by so-called plugins,
which are dynamically loaded at run-time by the evaluation framework of dlvhex. A
plugin may also supply a rewriting module, which is executed prior to the model gener-
ation algorithm and allows for a conversion of the input data into a valid HEX-program.
The prototype exploits the rewriting mechanism of the dlvhex framework, taking care
of the translation of a SPARQL query into the appropriate HEX-program, as laid out in
Subsection 2.2. The system implements external atoms used in the translation, namely
(i) the &rdf-atom for data import aggregate atoms, and (ii) a string manipulation atom
implementing the &sk-atom for blank node handling. The default syntax of a dlvhex
results corresponds to the usual answer format of logic programming engines, i.e., sets
of facts, from which we generate an XML representation that can subsequently be trans-
formed easily to a valid RDF syntax by an XSLT to export solution graphs.

Note that the support of complex FILTER expressions is only rudimentary at the
moment and subject to ongoing work. As mentioned before, we will need a dedicated
set of additional external atoms in order to support the full extent of FILTER expressions
as described in [8, Sec. 11.3].

We also implemented a rudimentary Web service interface making our engine acces-
sible as a general purpose SPARQL endpoint. This was realized by XSL transforming
the XML output of dlvhex into the result format prescribed by the SPARQL protocol11

and is accessible via a SOAP interface at http://apolleres.escet.urjc.es:
8080/axis/services/SparqlEvaluator?wsdl.

4 Extensions and Next Steps
While the current implementation efforts around dlvhex-sparql described here were fo-
cused on conceptually proving the feasibility of a fully SPARQL compliant query en-
gine on top of dlvhex, our intentions behind go well beyond this sheer exercise. We are
currently working on extensions such as allowing aggregate and built-in functions in
the result form of queries, which allows computations of new values. Such an exten-
sion is crucial for instance for mapping between different, overlapping RDF vocabular-
ies [1]. In this context, we plan to support the use of CONSTRUCT queries as part of
the dataset which allows to express such mappings12 or interlinked, implicit RDF meta-
data13. The embedding of such extensions into our translation comes mostly without
11

http://www.w3.org/TR/2006/CR-rdf-sparql-protocol-20060406/
12

www.rdfweb.org/topic/ExpertFinder_2fmappings
13

www.w3.org/2005/rules/wg/wiki/UCR/Publishing_Rules_for_Interlinked_Metadata



additional costs, since the respective query translations for both the actual query as well
as mapping rules and views in the form of CONSTRUCTs can be translated into a single
dlvhex program and evaluated at once. Here is where the power of answer-set program-
ming comes into play, since such combined programs may involve unstratified recur-
sion which can be dealt with flexibly under brave or cautions reasoning, respectively.
We should mention here related approaches such as [10], which alternatively suggest
the use of the well-founded semantics for such scenarios, but with a similar intention to
create networks of RDF graphs (possibly recursively) linked by CONSTRUCT queries.
Moreover, we did not yet conduct extensive performance evaluations, but we would
not expect to be necessarily competitive with special-purpose SPARQL engines. How-
ever, the power of our approach lies in its natural combination of RDF with the rules
world, which for instance allows us to plug-in on the fly Datalog rulesets which emulate
RDF(S) entailment (see for instance[3]).

References
1. B. Aleman-Meza, U. Bojars, H. Boley, J. G. Breslin, M. Mochol, L. J. Nixon, A. Polleres,

and A. V. Zhdanova. Combining RDF vocabularies for expert finding. In Proceedings of
the 4th European Semantic Web Conference (ESWC2007), number 4519 in Lecture Notes in
Computer Science, pages 235–250, Innsbruck, Austria, June 2007. Springer.

2. D. Beckett. Turtle - Terse RDF Triple Language, Apr. 2006. Available at http://www.
dajobe.org/2004/01/turtle/.

3. J. de Bruijn and S. Heymans. RDF and logic: Reasoning and extension. In Proceedings
of the 6th International Workshop on Web Semantics (WebS 2007), in conjunction with the
18th International Conference on Database and Expert Systems Applications (DEXA 2007),
Regensburg, Germany, September 3–7 2007. IEEE Computer Society Press.

4. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

5. P. Hayes. RDF semantics. Technical report, W3C, February 2004. W3C Recommendation.
6. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. In International

Semantic Web Conference (ISWC 2006), pages 30–43, 2006.
7. A. Polleres. From SPARQL to rules (and back). In Proceedings of the 16th World Wide Web

Conference (WWW2007), Banff, Canada, May 2007.
8. E. Prud’hommeaux and A. Seaborne (eds.). SPARQL Query Language for RDF, June

2007. W3C Candidate Recommendation, available at http://www.w3.org/TR/
2007/CR-rdf-sparql-query-20070614/.

9. S. Schenk. A SPARQL Semantics Based on Datalog. In KI2007, Osnabrck, Germany, 2007.
10. S. Schenk and S. Staab. Networked RDF Graphs. Tech. rep., Univ. Koblenz, 2007. http:

//www.uni-koblenz.de/˜sschenk/publications/2006/ngtr.pdf.
11. R. Schindlauer. Answer-Set Programming for the Semantic Web. PhD thesis, Vienna Uni-

versity of Technology, Dec. 2006.
12. J. Ullman. Principles of Database & Knowledge Base Systems. Comp. Science Press, 1989.


