
OnEQL: An Ontology Efficient Query Language
Engine for the Semantic Web

Edna Ruckhaus and Eduardo Ruiz and Maŕıa Esther Vidal

Universidad Simón Boĺıvar
Caracas, Venezuela

{ruckhaus,eruiz, mvidal}@ldc.usb.ve

Abstract. In this paper we describe the OnEQL system, a query en-
gine that implements optimization techniques and evaluation strategies
to speed up the evaluation time of querying and reasoning services in
the Semantic Web. To identify execution plans that reduce the cost of
evaluating a query, we developed a twofold optimization strategy that
combines cost-based optimization and Magic Sets techniques. In the first
stage, a dynamic programming-based algorithm is used to identify an or-
dering of predicates in the query that minimizes its estimated evaluation
cost. In the second stage, Magic Sets techniques are used to push down
query selections into the OnEQL ontology representation, in order to re-
duce the number of facts inferred during query evaluation. Additionally,
we developed three physical operators that execute the sideways passing
of bindings during the evaluation of the execution plan. To illustrate the
advantages of this approach, we report the results of an experimental
study over the most popular health ontologies.

1 Introduction

Ontologies play an important role in the Semantic Web, and provide the basics
for the definition of concepts and relationships that make global interoperability
possible. Knowledge represented in ontologies can be used to annotate data,
distinguish similar concepts, and generalize and specialize concepts.

A great number of ontologies have become available under the umbrella of
the Semantic Web. In particular, for the health domain, large ontologies have
been defined, for example, MeSH [15], Disease [4], Galen [6], and EHR RM [5],
which are commonly used by the health and bioinformatics community to find
solutions for a variety of problems. These ontologies are specified in different
standard languages such as XMLSchema [25], OWL [14] or RDFS [2]; and re-
gular requirements are expressed using query languages such as SPARQL [17]
or RQL [12]. OWL is a markup language that extends the graph-based model
used by RDF and provides complex structures and different levels of comple-
xity on top of XML. OWL is commonly used to share and publish information
encoded in an ontology. On the other hand, SPARQL is an RDF-based query
language that enables users to select portions of an ontology that satisfy certain
patterns or conditions. In the Semantic Web, OWL and SPARQL have become



standards to publish and query data, respectively. In this paper, we propose the
OnEQL system which interoperates between different ontology representations
and query languages. In the current version of OnEQL, we consider OWL Lite
ontologies, and a subset of SPARQL that includes basic patterns; we do not
consider optional patters, union of patterns and filters.

In OnEQL, an ontology is represented in a canonical form which is inde-
pendent of the specific language used to define it. Accordingly, each ontology
is modeled as a deductive database called a Deductive Ontology Base (DOB)
composed by an extensional base EOB and an intensional base IOB. Knowledge
explicitly described in the ontology is represented in the EOB, while knowledge
implicitly encoded is modeled by a set of deductive rules that comprise the IOB.
Additionally, to diminish the impact of large sets of explicit and implicit onto-
logy facts in the performance of reasoning and querying tasks, OnEQL provides
query optimization and evaluation techniques.

The OnEQL query optimization technique is a twofold strategy that combines
cost-based optimization and Magic Sets approaches. The idea of this technique
is to first identify an ordering which corresponds to an optimal top-down eval-
uation of the query, and then apply Magic Sets to transform the DOB into a
program specific for the query. The evaluation of the rewritten DOB imitates
a top-down computation using a bottom-up strategy [18]. During a bottom-up
computation, each fact is computed once. Therefore, if intermediate facts in a
query are inferred several times, the bottom-up computation of the rewritten
DOB w.r.t. the optimal ordering, can be more efficient than the top-down com-
putation of this ordering.

To identify an optimal ordering of a query, the cost-based optimization tech-
nique is defined in terms of a dynamic programming algorithm. To traverse the
space of the plans of a query, the algorithm uses a cost model that estimates the
cost of evaluating a plan. The cost is defined as an estimate of the number of
facts inferred during the execution of the corresponding plan [21].

On the other hand, the Magic Sets approach transforms the DOB into a
program where the selections in the query are pushed down into the program,
and the number of intermediate facts required to answer the query is minimized.

In this paper we explain the mechanisms implemented in OnEQL, and report
their behavior for the ontologies Galen and EHR RM. The paper is composed of
four additional sections. In Section 2, OnEQL is described. Section 3 reports our
experimental results for query and reasoning tasks in synthetic and real-world
ontologies. In Section 4, we compare existing approaches. Finally, we give our
conclusions in Section 5.

2 The OnEQL System

The OnEQL system develops evaluation strategies, and cost-based and heuristic-
based optimization techniques for Web ontologies. Its main features are the fol-
lowing:



– Ontologies may be loaded and browsed. The interface is based on the SWOOP
Mindswap Project [11].

– Ontologies are translated to the DOB canonical form according to the lan-
guage in which the ontology is defined. Currently we work the OWL Lite
[14] ontology language.

– It offers two modes for queries: SPARQL queries written by the user, or
queries expressed in the canonical form. With SPARQL, a user can query
RDF triples that encode ontologies written in OWL Lite. The query en-
gine does inference during query evaluation when it encounters the (trans-
lated) intensional IOB meta-predicates. To test the OnEQL optimization
techniques, the system presents fifty randomly-generated DOB queries which
the user may execute. The original and optimized queries are presented, and
also their evaluation cost. Additionally, the number of results is indicated
and the first fifty results are displayed.

In Figure 1, we present the OnEQL architecture. The techniques implemented
in this system have been previously reported in [21].

The OnEQL architecture is comprised of two main components: a query
engine and an ontology manager. The query engine evaluates user queries against
a specific OWL ontology, and outputs the set of facts that satisfy the query in
the input ontology. It is composed of a query parser, a query optimizer and an
execution engine. On the other hand, the ontology manager translates OWL
ontologies into the OnEQL canonical representation and extracts the statistics
that describe the ontologies.

In OnEQL, an OWL ontology is modeled as a deductive database of meta-
level predicates called a Deductive Ontology Base (DOB). The extensional data-
base comprises all the ontology statements that represent the explicit ontology
knowledge. The intensional database corresponds to the set of deductive rules
that define the semantics of the ontology language. Specifically, we represent an
OWL Lite ontology as a DOB knowledge base, and a SPARQL query as a DOB
query. It should be noted that our current version of OnEQL only considers
SPARQL basic patterns.

Table 1 illustrates the EOB and IOB built-in predicates for an OWL Lite
subset1. Note that some predicates refer to domain concepts (e.g., isClass,

areClasses), and some to instances (e.g., isIndividual, areIndividuals).
There are two catalogs: one stores the DOB, and the other maintains statis-

tics that describe the facts encoded in the DOB. Among the statistics we can
mention: cost of inferring implicit facts, cardinality of explicit and implicit facts,
and number of different values of each attribute. The Analyzer extracts these
statistics from the ontology for explicit and implicit facts, and stores them into
the catalog.

A hybrid cost model is used to estimate the cardinality and evaluation cost of
the DOB predicates that represent the ontology’s explicit and implicit facts [21].
Explicit fact estimates are computed using traditional relational database cost
1 We assume that the class owl:Thing is the default value for the domain and range

of a property.



Optimizer

Cost-Based 
Magic-Sets

Execution
Engine

Evaluation 
Strategies
Nested-Loop 

Block Nested-Loop
Hash

Ontologies

Statistics

Efficient query 
evaluation plan

QueryQuery answer

Query Engine

Hybrid Cost 
Model

:
System R

Adaptive 
Sampling

Parser

DOB query

Domain

 Ontology

Individuals

Analyzer
Explicit 

Knowledge
System R

Implicit 
Knowledge 
Adaptive 
Sampling

Ontology Manager

Ontology 
Translator

Fig. 1. The OnEQL Architecture



EOB PREDICATE DESCRIPTION
isOntology(O) An ontology has an Uri O
isImpOntology(O1,O2) Ontology O1 imports ontology O2

isClass(C,O) C is a class in ontology O

isOProperty(P,D,R) P is an object property with domain D and range R

isDProperty(P,D) P is a datatype property with domain D

isTransitive(P) P is a transitive property
subClassOf(C1,C2) C1 is a subclass of C2
AllValuesFrom(C,P,D) C has property P with all values in D

isIndividual(I,C) I is an individual belonging to class C

isStatement(I,P,J) I is an individual that has property P with value J

IOB PREDICATE DESCRIPTION
areSubClasses(C1,C2) C1 are the direct and indirect subclasses of C2
areImpOntologies(O1,O2) O1 import the ontologies O2 directly and indirectly
areClasses(C,O) C are all the classes of an ontology and its imported ontologies O

areIndividuals(I,C) I are the individuals of a class and all of its direct and indirect
superclasses C; or
I are the individuals that participate in a property and belong to
its domain or range C, or are values of a property with all values in C

Table 1. Some built-in EOB and IOB Predicates for a subset of OWL Lite

models. Conversely, to estimate the cost and cardinality of data that do not
exist a priori, which is the case of the implicit facts, sampling techniques are
applied. In our cost model, evaluation cost is measured in terms of the number
of intermediate inferred predicates, and the cardinality corresponds to the num-
ber of valid instantiations of the predicate. This model estimates the cost and
cardinality of explicit and implicit facts, as follows :

– To estimate the cardinality and cost of the intensional predicates that re-
present implicit facts, we have applied the Adaptive Sampling Technique [13].
This method does not need to extract, store or maintain information about
the data that satisfy a particular predicate, and does not make any as-
sumptions about statistical characteristics of the data, such as distribution.
Sampling stop conditions are defined to ensure that the estimates are within
an appropriate confidence level.

– To estimate the cardinality and cost of the extensional predicates, and the
cost of a query plan, we use a cost model à la System R [23]. Similarly
to System R, we store information about the number of ground facts cor-
responding to an extensional predicate, and the number of different values
(constants) of each predicate variable. Regarding queries, the formulas for
computing the cost and cardinality are similar to the different physical join
formulas in relational queries.

Once a query is received by OnEQL, the parser checks if it is correct. If
so, the query is translated into the OnEQL canonical form: the patterns in
the WHERE clause of a SPARQL query are translated to a conjunctive query,
where each pattern corresponds to an EOB or IOB predicate, and the join or
conjunction between two predicates represents the ’.’ (AND) SPARQL operator.

The DOB query is then passed to the optimizer. The optimizer implements
a twofold optimization technique and uses the statistics stored in the catalog to
identify an efficient query execution plan. Next, the plan is given to the query



engine which evaluates it against the ontology. Facts that satisfy the conditions
expressed in the query are returned to the user.

The twofold optimization technique combines cost-based optimization and
Magic Sets techniques. In the first stage, the cost-based optimization technique
extends the System R dynamic-programming algorithm by identifying orderings
of the EOB and IOB predicates in a query. During each iteration of the algorithm,
the best intermediate sub-plans are chosen based on the cost and the cardinality
that were estimated using our hybrid cost model. In the last iteration of the
algorithm, final plans are constructed and the best plan is selected in terms
of the estimated cost. This optimal ordering reflects the minimization of the
number of intermediate inferred facts using a top-down evaluation strategy. For
more details refer to [21].

In the second stage, OnEQL applies Magic Set optimization techniques [19]
to the execution plan obtained in the first stage. Magic Sets combines the be-
nefits of both, top-down and bottom-up evaluation strategies and tries to avoid
repeated computations of the same subgoals, and unnecessary inferences. The
DOB program is rewritten w.r.t. the optimal execution plan, and then evaluated
with a bottom-up strategy. ”Magic predicates” are inserted into the program
to represent bounded arguments in the query, and ”Supplementary predicates”
are included to represent sideways information-passing in rules. It should be
noted that we implemented the general Magic Sets technique for Datalog with
the two improvements suggested by [1] to eliminate the first and last redundant
supplementary predicates, and to merge consecutive sequences of EOB predicates
in rule bodies.

Finally, three different physical operators or evaluation strategies can be
used by OnEQL to implement the sideways passing of bindings between two
predicates in an execution plan: nested-loop join, block nested-loop join and hash
join [18]. The nested-loop join corresponds to a top-down Datalog evaluation
strategy where the join variables in the second predicate are instantiated through
the sideways passing of information. In the worst case, all of the predicate will
be searched; however, more efficient search options may index the predicates
by one or more of their arguments. The hash join strategy takes into account
the availability of a hash function; it limits the number of pairs of predicate
instantiations that need to be compared; nevertheless, it is restricted by the
amount of main memory available. These algorithms were developed in the same
spirit of relational join operator algorithms; accordingly, relational cost formulas
have been modified to reflect the behavior of our operators and to measure the
number of intermediate inferred facts; also, implementation details like the use
of main memory and pipelining, and the availability of physical structures were
represented in these formulas [21]:

– Nested-Loop Join
For each valid instantiation in the first predicate, we retrieve the matching
instantiations in the second predicate, i.e., the join arguments2 are instanti-
ated in the second predicate through the sideways passing of bindings.

2 The join arguments are the common variables in the two predicates.



– Block Nested-Loop Join
The first predicate is evaluated into blocks of fixed size, and then each block
is joined with the second predicate.

– Hash Join
A direct access table is built for the first predicate according to its join
argument values. The valid instantiations of both predicates with the same
key are joined.

We illustrate the functionality of OnEQL with the following example. In Fig.
2, we present a portion of the Galen ontology expressed in OWL and visualized
using the OnEQL interface. A portion of the Galen translated DOB ontology
can be seen in Table 2.

DOB predicate
isClass(’factkb:Abdomen’,’Ontologies:galen.owl’)
isClass(’factkb:AbdominalAorta’,’Ontologies:galen.owl’)
isFunctional(’factkb:hasAbnormalityStatus’)
isProperty(’factkb:actsOn’,’Ontologies:galen.owl’)
isTransitive(’factkb:hasCause’)
someValuesFrom(’factkb:AdhesivePericarditis’,’factkb:hasOutcome’,’factkb:Adhesion’)
subClassOf(’factkb:AdductorMagnus’,’factkb:NAMEDMuscle’)
subClassOf(’factkb:AdductorTubercle’,’factkb:Eminence’)
subPropertyOf(’factkb:hasLayer’,’factkb:StructuralPartitiveAttribute’)
subPropertyOf(’factkb:hasLeftRightSelector’,’factkb:hasPositionalSelector’)

Table 2. Portion of Galen DOB Ontology

Consider the simple query: ”Name all the drugs that act on the pathologies
caused by the Helicobacter Pylori bacteria”. The SPARQL representation of this
query is as follows:

PREFIX rdfs:<http://www.rdf.org/0.1/>

PREFIX galen:<http://example.org/factkb#>

SELECT ?y

WHERE {galen:actsOn rdfs:domain ?y.

galen:actsOn rdfs:range ?x.

galen:isCauseOf rdfs:domain galen:HelicobacterPylori.

galen:isCauseOf rdfs:range ?x}

This example can be expressed as the following DOB query:
q(Y )← isDomProperty(′actsOn′, Y ), isRanProperty(′actsOn′, X),

isDomProperty(′isCauseOf ′,′ HelycobacterPylori′),

isRanProperty(′isCauseOf ′, X).

The WHERE clause is comprised of four triple patterns: the first and second pat-
terns denote the relationship between a drug and a pathology, and the third and
the fourth patterns represent the relationship between the pathologies caused by
the Helicobacter Pylori bacteria. The result of the query evaluation is a set of
solutions, i.e., the matchings of the query patterns and the RDF data.

Considering the triples encoded in Galen, and without taking into account
any optimization technique, the evaluation of this simple query will require



Fig. 2. Galen in OnEQL

727,547 intermediate inferred facts. In this naive plan, first all the combina-
tions of drugs and pathologies are considered, and then the pathologies caused
by the Helicobacter Pylori are selected. To reduce the number of intermediate
computed facts, a cost-based optimization technique estimates the cost of the
different orderings of the evaluation of the query, and recognizes a better way to
evaluate the query. Therefore, it produces an execution plan where first, the dif-
ferent pathologies caused by the Helicobacter Pylori are selected; following this,
the drugs that act on these pathologies are projected out. On the one hand, there
are seventeen instances of the relationship between drugs and pathologies that
require 726,980 inferences to be produced; on the other hand, the Helicobacter
Pylori is only related to five pathologies and 72,743 inferences are needed to
project out these pathologies. Thus, this new execution plan is less expensive in
time and in the number of intermediate inferred facts, 291,371.

The optimal DOB query ordering follows:
q(Y )← isDomProperty(′isCauseOf ′,′ HelycobacterPylori′),

isRanProperty(′isCauseOf ′, X),

isDomProperty(′actsOn′, Y ), isRanProperty(′actsOn′, X).

Once an optimal query ordering has been selected, query bindings can be
used to rewrite the canonical representation of the ontology and simulate the
pushing of selections that occurs in a top-down evaluation strategy. In this ex-
ample, the query has nine bindings, e.g., ”rdfs:domain” and ”galen:actsOn” in



the first pattern. Besides rewriting the program with supplementary and Magic
predicates, the query is also rewritten to include the ”seed” that represents the
variable bindings. The rewritten program and query are then evaluated using a
semi-naive bottom-up evaluation strategy. The Magic Sets rewritten DOB of the
optimal ordering required 111,071 intermediate inferred facts during the bottom-
up evaluation, while the top-down evaluation of this ordering required 291,371
inferred facts.

3 Experimental Results

In this section we report the behavior of the OnEQL query techniques in ontolo-
gies commonly used in the health domain. We consider the ontologies Galen [6]
and EHR RM [5].

The Galen ontology is a repository of medical terms and procedures. It pro-
vides a set of modeling conventions and patterns that have proved sufficiently
robust to be applied in practical developments such as surgical terminologies,
drug information and data entry systems. Particularly, it has been used for the
development of the French national classification of surgical procedures CCAM
[20] and for the development of the drugs ontology in the UK [24].

The EHR RM ontology is a controlled vocabulary for electronic health records
that maintains all the information required to facilitate the flow needed for pa-
tient care. EHR RM is comprised of two levels: level one corresponds to a set
of classes and relationships that represent properties in the whole world; level
two is composed of a set of clinical concepts which are related to the general
concepts in level one.

In Table 3, these ontologies are described in terms of the number of classes,
the average properties associated with a class, the maximal fan out, the height
of the ontology, and the number of parents. We can observe that Galen is a
hierarchy of concepts where each class can have a large number of sub-classes;
almost no relationships or properties are associated with each class. EHR RM is
simpler and there are some relationships and properties related to a class. These
characteristics impact on the evaluation cost of queries that require recursive
traversals of the data.

Ontology #Classes Fan out Height # Parents

Galen 2749 18 2 13

EHR RM 187 2 2 7

Table 3. Ontology descriptions

We conducted an experimental study to analyze the behavior of our query
techniques on synthetic ontologies and the above-mentioned real-world ontolo-
gies. A synthetic ontology document was generated with ten related ontologies
and a total of 4350 basic facts. Each ontology has between twenty to thirty



classes, around twenty relationships, three to five attributes for each class, and
around sixty sub-class relationships. All the numbers described above were ran-
domly chosen following a uniform distribution. Additionally, we randomly gen-
erated sixteen chain queries3 for each ontology. Experiments were executed on a
Sun Fire V440 equipped with two UltraSPARC IIIi processors running at 1.593
GHZ with 16 GB RAM. The OnEQL system was implemented in Java 1.4 and
SWI-Prolog 5.6.1. In this paper we report the predictive capability of the cost
model, and cost improvements from using the twofold optimization strategy.

First, we report the correlation between the estimated cost of the top-down
evaluation of 3844 orderings, and the actual cost of evaluating the Magic Sets
rewritings w.r.t. these orderings using a bottom-up strategy. The idea is to mea-
sure if the estimated cost of the top-down ordering is correlated to the actual
cost of applying Magic Sets to this ordering, i.e., Magic Sets emulates a top-
down evaluation strategy but tries to avoid repeated computations of the same
subgoals. The correlation for the real-world ontology Galen is 0.53, while for
EHR RM it is 0.43.

Additionally, we studied the benefits of the twofold optimization strategy.
For each query we applied Magic Sets to all its orderings, and we compared:

– The percentile of the Magic Sets optimal ordering actual cost, i.e., the cost
of applying Magic Sets to the optimal ordering. For the three ontologies we
can observe that the cost of the Magic Sets optimal ordering falls in at least
the 74th percentile, indicating that three quarters of all the orderings are
worse than this cost (Table 4).

– The average ratio of the cost of the Magic Sets optimal ordering to the worst
cost (resp. median cost), i.e., the number of times the worst cost (resp. me-
dian cost) contains the optimal cost; it is expressed as a percentage (Figures
3 and 4).

Ontology Percentile

Synthetic 74th

Galen 77th

EHR RM 75th

Table 4. Percentile of the cost of the optimal ordering

For the synthetic ontologies, the average of the ratio of the optimal cost with
respect to the worst-case is 45%; Galen and EHR RM have averages of 15%
and 32%, respectively. The averages of the ratio of the optimal cost with re-
spect to the median are 74%, 63% and 81% for synthetic, Galen and EHR RM
ontologies respectively. From these results we can conclude that the cost of an
optimal ordering is always better than the median cost, while the optimal cost
3 Queries where bindings are propagated from left to right in a chain-like fashion
4 Each of the sixteen queries has four sub-goals, 16× 4! = 384



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Synthetic EHR_RM Galen

A
v
g

(C
o

st
 O

p
ti

m
a
l 
M

a
g

ic
 S

e
t 

O
rd

./
C

o
st

 W
o

rs
t 

M
a
g

ic
 S

e
t 

O
rd

.)

Fig. 3. Average ratio of the cost of the Magic Sets optimal ordering to the worst cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Synthetic EHR_RM Galen

A
v
g

(C
o

st
 O

p
ti

m
a
l 
M

a
g

ic
 S

e
t 

O
rd

./
C

o
st

 M
e
d

ia
n

 M
a
g

ic
 S

e
t 

O
rd

.)

Fig. 4. Average ratio of the cost of the Magic Sets optimal ordering to the median cost



corresponds to a small fraction of the worst cost. To explain these results, recall
that classes in Galen are more connected than classes in EHR RM and, in con-
sequence, the same fact may be generated several times during the computation
of the transitive closure of Galen’s subsumption relationship. Therefore, our pro-
posed optimization techniques may have a better chance of causing an impact on
queries against Galen (by minimizing the number of intermediate and duplicated
inferred facts), than on queries against simpler ontologies like EHR RM.

4 Related Work

Efficient query evaluation techniques against ontologies have been proposed in
[3, 7–10, 16, 21, 22]. In [3, 8, 9], relational query techniques and Description Logics
reasoning services have been combined to efficiently solve querying and reasoning
tasks over individuals of an ontology stored in a database. These systems are
built upon relational DBMS and they do not develop optimization techniques
that use the semantics encoded in the ontology to identify good evaluation plans.

In [22], ontology segmentation techniques are proposed to approach the prob-
lem of querying large ontologies such as Galen. These techniques exploit the
semantic connections between ontology terms to enable users to create new sub-
ontologies with the portion of the original ontology that is relevant to the appli-
cation or query. On the other hand, the projects described in [10, 16] developed
Magic Sets query rewriting techniques to generate new programs that evaluate
the input query more efficiently. In none of these two techniques cost or cardi-
nality estimations are considered, and the new portion of the ontology or the
evaluation strategy may be inefficient depending on the shape of the ontology.

5 Conclusions and Future Work

In this paper we have described OnEQL, a tool that evaluates SPARQL queries
against OWL Lite ontologies. We implemented these two standards because they
achieve good trade-offs between expressiveness and computational tractability.

To enhance the performance of the reasoning and querying tasks, we propose
a twofold optimizer which combines the benefits of cost-based and Magic Sets
approaches. Additionally, a hybrid cost model is implemented. This cost model
integrates estimation techniques used in traditional relational DBMSs [18, 23]
with adaptive sampling to estimate the cost or cardinality of explicit and implicit
classes [13]; the cost model allows the precise estimation of these metrics.

In our experiments we observed that correlations between estimated and
actual values are not greater than 0.53. From these values, we can conclude that
our cost model overestimates the cost if the top-down evaluation produces a
large number of repeated inferences, because the actual cost of applying Magic
Sets emulates a top-down evaluation without repeated inferences.

Also, the implemented optimization techniques allow the identification of
optimal query plans whose cost is less than 45% of the cost of the worst plan.



In the future, we plan to conduct experiments on other large ontologies, and
to define cost metrics that provide a better estimate of the behavior of the Magic
Sets technique.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, 1995.

2. D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, 2004.

3. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tailoring
OWL for data intensive ontologies. In Proc. of the Workshop on OWL: Experiences
and Directions, 2005.

4. Disease Ontology. http://diseaseontology.sourceforge.net.
5. EHRRM Ontology. http://trajano.us.es./ isabel/EHR/EHRRM.owl.
6. GALEN Common Reference Model. http://www.openclinical.org/dld galenCRM.html.
7. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Com-

bining Logic Programs with Description Logic. In Proc. of the WWW2003: World
Wide Web Conference, 2003.

8. I. Haarslev and R. Moller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents, First results. In Proc. of KR2004: International
Conference on the Principles of Knowledge Representation and Reasoning, 2004.

9. I. Horrocks and D. Turi. The OWL Instance Store: System description. In Proc.
of CADE2005: International Conference on Automated Deduction, 2005.

10. U. Hustadt and B. Motik. Description Logics and Disjunctive Datalog The Story
so Far. In Proc. of DL 2005 - International Workshop on Description Logics, 2005.

11. A. Kalyanpur and E. Sirin. SWOOP - A Hypermedia-based Featherweight OWL
Ontology Editor. http://www.mindswap.org/2004/SWOOP/, 2004.

12. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proc. of the WWW2002: World
Wide Web Conference, 2002.

13. R. Lipton and J. Naughton. Query size estimation by adaptive sampling (extended
abstract). In Proc of SIGMOD1990: Special Interest Group on Management of
Data Conference, 1990.

14. D. McGuinness and F. van Harmelen. OWL Web Ontology language overview.
W3C Recommendation, 2004.

15. Medical Subject Heading (MeSH). http://www.nlm.nih/gov/mesh.
16. B. Motik, R. Volz, and A. Maedche. Optimizing Query Answering in Descrip-

tion Logics using Disjunctive Deductive Databases. In Proc. of the KRDB2003:
International Workshop on Knowledge Representation meets Databases, 2003.

17. E. Prudhommeaux and A. Seaborne. SPARQL Query Language for RDF. In
http://www.w3.org/TR/rdf-sparql-query, 2006.

18. R. Ramakrishnan and J. Gehrke. Database Management Systems. Mc Graw Hill,
2003.

19. R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive Database
Systems. Journal of Logic Programming, 23(2):125–149, 1993.

20. J. Rodrigues, B. Trombert-Paviot, R. Baud, J. Wagner, P. Rusch, and F. Meusnier.
Galen-In-Use: an EU Project applied to the development of a new national coding
system for surgical procedures: NCAM. In Medical Informatics Europe, 1997.



21. E. Ruckhaus, E. Ruiz, and M. Vidal. Query Evaluation and Optimization in the
Semantic Web. In Proc. of ALPSWS2006: International Workshop on Applications
of Logic Programming to the Semantic Web and Semantic Web Services, 2006.

22. J. Seidenberg and A. Rector. Web Ontology Segmentation Analysis, Classification
and Use. In Proc. of WWW2006: World Wide Web Conference, 2006.

23. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path
Selection in a Relational Database Management System. Proc. of SIGMOD1979:
Special Interest Group on Management of Data Conference, 1979.

24. M. Stearns. SNOMED clinical terms: overview of the development process and
project status. In Proc. of AMIA2001: American Medical Informatics Association
(AMIA) Symposium, 2001.

25. XML Schema. http://www.www.w3.org/XMLSchema.


