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ABSTRACT 
Mobile devices both host and collect significant amount of data 
that could be interesting to users. To make this data easily 
accessible, it has to be stored in semantic repositories using a 
well-defined ontology. Relationships between data from various 
sources should be explicit. Natural language interface to such data 
is an attractive option for information access. However, there are 
semantic gaps between the data repositories and the formal 
representation of meaning produced by language understanding 
systems. This paper describes a solution to the issues above. We 
have implemented a system that converts the mobile data into 
RDF format and annotates it with information necessary for 
efficient access via natural language. We have designed and 
implemented Natural Query system that automates the interface of 
natural language system and the semantic data repository. 
Language tags are used to map between the natural language 
meaning representation and the repository elements. Repository 
graph search is used to discover the knowledge about the 
repository structure.    

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval], H.5.2 [User 
Interfaces]: Natural language, I.2.4 [Knowledge 
Representation Formalisms and Methods]: Semantic networks  

Keywords 
Semantic annotation, query language, natural language. 

1. INTRODUCTION 
Natural language based interaction with software is 

increasingly viewed as a promising addition and sometimes even 
alternative to graphical user interfaces (GUIs), especially in the 
domain of mobile devices. Mobile devices host structured and 
semi-structured information bases, software services, and 
integrated devices such as cameras, music players, etc. Mobile 
devices also make a perfect user interface to the real-world 
environment. They are constantly carried with the user [2] 
enabling gathering of user location information. Mobile devices 

are equipped with more and more sensors including GPS 
receivers, Bluetooth transmitters and receivers, RFID receivers 
and others. They also receive and store information about such 
events as messages, phone calls, meetings, application usage and 
access to digital services. It is therefore natural to expect that this 
data should be collected and made accessible on mobile device.  

However, there are some open questions that need to be 
resolved in order to make this data useful and accessible both to 
the programs and to the mobile device users. Collected real-world 
data must be structured and integrated with other information 
available on mobile devices such as the information found in the 
user’s phone book or calendar. There also needs to be an intuitive 
interface that allows flexible access to collected information. 

Mobile devices store a rich set of structured information. The 
address book or phone book application contains names, phone 
numbers, addresses and affiliations of personal contacts. The 
calendar application contains entries for meetings with 
participants, meeting location and time. We exchange messages 
and calls with people and organizations listed as our contacts. All 
these data are related. Retrieving these data based on their relation 
could be very useful for device owners. With such retrieval 
capabilities they could learn who called them when they were in 
California, or when is their next meeting with Ann from 
Accenture. Unfortunately, the relations between different data 
items are not always recorded explicitly when the events occur or 
information is entered in some application. Therefore it is 
important to integrate the collected data by explicating its relation 
to the data available on the device. To achieve this goal, we have 
developed an extended PIM ontology that covers all relevant 
types of information available on the mobile device: from 
observed events, information from external data stores, to on-
device data from several mobile applications. Once the data was 
structured and augmented with relations, it is stored in RDF [15] 
repository.  

So far mobile applications have been designed with their 
own user interfaces, mostly GUIs, and occasional dedicated 
hardware controls. Most of the application software on the mobile 
device could benefit from a natural language interface to its 
functionality that would simplify and streamline performing 
various tasks.   

As a rule, language systems and mobile applications software 
are developed independently of each other. To recoup the 
investment in the development of a language system it must be 
capable to integrate with a broad range of information sources. 
Unfortunately information bases are not designed for interaction 
using natural language. As a result this integration process is 
mostly ad hoc, manual process. This severely limits the impact 

 



that maturing language processing technology can have on 
transforming the way we interact with the mobile devices. 

In our research, we have investigated ways of created robust 
and portable natural language interfaces to semantic repositories. 
We created a novel Natural Query (NQ) language and data access 
engine that greatly reduces the costs of providing natural language 
interfaces to semantic repositories. NQ can heuristically attach 
operational semantic interpretation to a database independent 
meaning representation of a natural language question over a 
given semantic repository. NQ enables us to provide a natural 
language interface to the integrated real-world and on-device data. 
NQ requires attaching basic linguistic information to structural 
elements of semantic repository. In this paper we give a brief 
overview of such annotations for ontology in the extended PIM 
domain. 

 The paper describes the mobile data conversion into RDF 
and semantic annotation (Section 2). Additional annotation and 
knowledge extraction is needed for automated natural language 
interface to the data repository (Section 3). Our experience with 
the system is presented in Section 4. We finish with the 
description of related work and conclusions. 

2. MOBILE DATA INTEGRATION INTO 
SEMANTIC REPOSITORY 

We had to deal with two major data sources: events gathered 
by data collection framework and PIM data available from PIM 
applications. This section describes data from both sources, 
necessary data conversion and integration into semantic 
repository. 

2.1     Mobile Device Data 
Data on mobile devices is owned by different applications. 

This makes it hard to establish and explicitly indicate semantic 
relationship between different data items. This situation is 
acceptable as long as the users can only interact with their data 
using the limited set of functionality provided by the applications. 
However, if we open these data for language based access, it 
becomes necessary to support access to different data items using 
their semantic relationships. Some examples are referring to 
people by their affiliations, titles, city of residence or office 
location; referring to meeting by their participants, subject, or 
location; referring to received calls by the name of caller’s 
organization. 

In our project we dealt with data that originated from the 
phone book application (sometimes also called address book) and 
the calendar application. Data in these applications are stored in 
separate Symbian data bases [6]. Since these databases cannot be 
changed without interfering with the functionality of standard 
applications we chose to integrate all data in a separate semantic 
repository. We designed an extended Personal Information 
Management (PIM) ontology that adequately represented all data 
items that we were interested in and their relationships. We 
implemented a set of Python scripts that extract the data from 
native databases and import them into the PIM ontology. We used 
RDF repository for data storage. 

We created the PIM ontology to cover all data available in 
the device. We considered using such standard ontologies as W3C 
foaf [8] and vcard [20]. However, the information available on the 

mobile device was richer than the types supported by standard 
ontologies; therefore we decided to create our own ontology. 
Vcard also uses string values for certain objects that we wanted to 
represent as full fledged RDF objects with URIs and attributes so 
they would have identities and we could add information about 
them. For example, city and country fields are represented as 
strings in vcard. However in order to represent even basic 
geographic relationships cities and countries must be represented 
as objects. 

We also considered mixing and matching types from several 
ontologies for our data. This approach has the advantage of using 
types possibly known by other systems. However this approach, 
leads to a rather incoherent architecture of the ontology. We 
decided that creating a single internally consistent ontology was 
preferable in our case. If needed, classes and properties in our 
ontology can be related to types in vcard and foaf via equivalence 
declarations using RDFS and OWL [21]. 

Main class for contacts in our ontology is the Contact class. 
It contains address, email, group, phoneNumber and URL 
attributes. Organizations and persons can be Contacts, so we have 
Organization and Person classes inheriting from the Contact 
class. In addition to inherited attributes, Organization class also 
has name and representative attributes. Person class adds 
affiliation, birthday, btDevice, familyName, givenName, and 
nickname attributes. Affiliation class showing the affiliation of a 
person with some organization has organization and title 
attributes. Part of the ontology relating these classes is shown in 
Figure 1.  

 
Figure 1. Part of Mobile PIM ontology 

Group class describes groups of contacts, such as office 
colleagues or baseball friends. It has contacts attribute that 
contains contacts belonging to the group and name attribute. 

Location is a generic class describing locations that has a 
number of subclasses: Address, Country, GPSLocation, 
GSMLocation, Locality, Pcode and Region. Address represents 
detailed addresses and contains country, locality, pcode, pobox, 
region, and street attributes. Country, Locality, Pcode and Region 
classes are simple with just a name attribute for respective objects. 
GSMLocation class describes locations as obtained from GSM 
network. It has carrier, cellTower and lac attributes. Carrier is 
the cellular network operator, cellTower has a single cell tower 
ID, and lac is a Location Area Code describing a certain region 
within the network. GPSLocation specifies locations using 
latitude and longitude attributes.  



Mobile device Calendar application contains information 
about meetings.  Meeting class has subject, location, participants, 
start and end attributes. 

Message class objects represent messages. They indicate 
messageSubject, messageBody, receiver and sender. 

One of the goals of semantic web is developing standard 
universal ontologies. Unfortunately, neither the existing 
ontologies, nor the one we used in our project can be claimed to 
be standard. Attributes and data in different applications and 
domains vary significantly. For example, some calendar 
applications may specify participants, while others don’t. Some 
address book applications may allow specifying birthdays for 
contacts, but others do not. Ontologies seem to follow in their 
structure the applications or uses that their creators considered at 
the ontology creation time. Classes are created based on particular 
use cases. Attributes are chosen based on data availability and 
planned use of that data. Rather than focusing on the 
standardization, we discovered that an important value of RDF 
ontology is its extensibility – ability to accommodate new types 
and attributes at any time. 

2.2 Event Data 
For data collection on mobile devices, we have used one of 

the frameworks available within Nokia to collect events that occur 
on a mobile device: phone calls, SMS messages, nearby Bluetooth 
devices, and GSM locations. All of these events are tagged with a 
timestamp when they occur. For phone calls the device records 
the phone number called (or the phone number that called the 
user) and call duration. For messages, the phone number and the 
message text is recorded. A GSM location change event is 
recorded when the cell tower associated with the phone changes. 
Finally, the phone periodically scans for Bluetooth devices in its 
vicinity and records their names and IDs. All observations are 
stored in the objects of Observation subclasses: 
BTDeviceObserved, CallObserved, MessageObserved, and 
LocationObserved. 

Although the gathered data is interesting by itself, it becomes 
even more useful when properly linked to the data already 
available in the device. For example, user may want to know 
where the person who called them lives. This information could 
be found by relating the call log to the phone book on the device 
that maintains the association of phone numbers to people and 
their addresses. To enable this connection, it is important to 
collect and preserve semantically relevant information. The 
connection of gathered information to other data can be achieved 
through time and location relationships, phone numbers, email 
addresses, Bluetooth IDs and other inverse functional properties. 
Time and location can be used to relate data items that are either 
associated with same time period or the same location.  All event 
data is time stamped, which makes such associations relatively 
simple. Location can be related to time stamped data items 
through location observed during the same period of time. 
Unfortunately for establishing some other relationships however 
there might be no generic approach. For example in order to 
connect phone call and message data to other data associated with 
the phone number, the phone number has to be known in a 
standard form URI. We used the standard international form of 
the phone number with country code and long distance code, for 
example +1 555 555-5555. However, data processing may be 

needed to infer and attach these codes to some phone numbers 
that enter the system without such codes. For example, the phone 
number supplied via caller ID does not always include the country 
code. Custom code has to be written for many data items to 
convert them on entry into the form required by the semantic 
repository. 

The attributes of Observation objects connect with other 
objects of the repository. For example, the phoneNumber attribute 
of a CallObserved is of type PhoneNumber, which is also used in 
the attribute phoneNumber of a Person or Organization class. 
Therefore the gathered data semantically integrates with the on-
device data. Common classes are basis for building relations 
between data classes belonging to different applications.   

Another area where observed data integrates with on-device 
data is the location information. GSM locations gathered on the 
phone can be related to geographical locations, such as cities, 
states or countries. Some data processing and additional relations 
in the RDF repository are needed for this. We use the partOf 
relation between different objects to represent geographic or 
organizational inclusions. For example, a relation can indicate that 
Boston is a part of Massachusetts, which in turn is a part of the 
USA. This attribute is also used to describe the GSM location 
containment within a certain geographical object. Since GSM 
locations are somewhat imprecise, we have chosen to associate 
them with town or city level geographical entities. This provides 
sufficient information in most cases. If a more precise location can 
be determined, it could be associated with a city neighborhood, 
street, house or even part of the office building. 

For some other data, programs or users have to add 
information to facilitate integration. Bluetooth device IDs need to 
be associated with specific persons, since such association is not 
usually available in the mobile device phone book. For this reason 
we added btDevice attribute to the Person class. It has to be filled 
in with concrete values in order to associate the 
BTDeviceObserved observation to a specific person carrying a 
Bluetooth device. 

2.3 Discussion 
In a number of cases we had to decide whether to represent 

particular entities as strings or as objects using URIs. It seems that 
constructing an object is almost always worthwhile, since such 
objects can be later used for inter-object relations. For example, 
by having Country, Region and City objects, we are able to 
indicate partOf relations between them. Also a single URI for a 
particular object, for example, city, allows to detect such 
connections as people living or working in a single city. 

Overall, we found that our RDF repository is significantly 
more flexible than a relational database. It naturally supports 
multiple classes of contacts, multiple affiliations per person, and 
supports a sophisticated typing system. 

3. NATURAL LANGUAGE INTERFACE  
Although the repository of integrated real-world and in-

device data can be used in a variety of ways, for example, via 
querying it using SPARQL [19], we were interested to provide an 
intuitive and flexible user interface to it. A general natural 
language interface to a rich data set could be more effective than a 
GUI based application.   



As a rule, information bases and language systems are 
developed independently of each other. Therefore information 
bases are not designed for interaction using natural language and 
their integration process is mostly ad hoc, manual process. Figure 
2 is a sketch of a typical architecture that is used to provide a 
natural language interface to databases and other back-end or 
native services. 

 
Figure 2. Architecture sketch of Natural Language Interface 
to Services 

The speech recognition and generation components translate 
between text and speech modalities. The language understanding 
component converts the text into a formal representation of 
meaning sometimes called semantic frame [17]. The language 
generation component converts the formal meaning representation 
to a natural language text [1]. The dialog manager uses the 
context of conversation to complete frames received from the 
language understanding module or created by the custom 
integration code from responses of backend services. The custom 
integration code also translates meaning representation frames it 
receives from the dialog manager into a standard database query 
or backend specific API requests. 

Let us assume the user asks the system about contacts in 
some organization and geographical location: 

Who do I know at IBM Ulm? 
Who are my contacts at IBM in Ulm? 
What are the names of my contacts at IBM in Ulm?1 

The operational semantics of these questions can be 
adequately represented with a database query. Let us consider 
how this request would need to be posed to an RDF repository. 
SPARQL [19] query corresponding to our example question over 
the ontology shown on Figure 1 looks as follows: 

                                                                 
1 The name of the organization and the city were selected for 

shortness and carry no other information 

SELECT DISTINCT $person ?givenName ?familyName 
FROM <http://localhost/pim.rdf> 
WHERE { $person a pim:Person; pim:givenName 

?givenName; pim:familyName ?familyName; pim:affiliation 
?affiliation; pim:address ?person_address. 

$affiliation pim:organization $organization. 
$organization pim:address ?organization_address; 

pim:name “IBM”. 
{?person_address pim:locality “Ulm”} UNION 
{?organization_address pim:locality “Ulm”}} 

Unfortunately in order for a language system to generate 
such semantic representation from the original questions, the 
language system must contain a large amount of information 
about the structure of the database and its content. Such 
information includes the facts that IBM is a name of an 
organization and Ulm is a name of a city, cities can be related to 
organization through their addresses, organizations are related to 
people through their affiliations, people are related to cities 
through their home and office addresses, and all these 
relationships and objects are represented by the specific structures 
and entities of the database. 

Entering such information into a language system is a tedious 
and costly process that is not only domain dependent but also is 
sensitive to specific choices of database organization. There is an 
obvious advantage in maintaining some independence between 
the database and the language system. One way to achieve this 
independence is to have the language system generate semantic 
representations of the questions that are as independent of the 
database organization as possible. 

In the example above semantic information contained in the 
question and independent of database organization amounts to the 
following meaning representation: 

contact.name: ? 
organization: IBM 
city: Ulm 

It is possible to have the language system produce such 
database independent meaning representation of questions.  But is 
the information in such meaning representation of the question 
sufficient to perform the requested operation?   Obviously there 
are several information gaps between this database independent 
meaning representation and the database specific semantic 
representation of the question in the form of a formal query. 

The first gap is due to different names used to refer to the 
same elements in the language system and the repository. For 
example, the category called “city” in the language system 
corresponds to the attribute locality of the Address class. 
Therefore there is a need to maintain the mapping between the 
two naming systems. 

The second kind of gap between the two systems is that one 
element in the language system may correspond to multiple 
elements in the repository and vice versa. In our example the 
reference to the address can map to home address, work address, 
or the organization address of the contact. This is partly due to the 
ambiguity of the natural language, which is not the main focus of 
our discussion in this paper. There are also situations where the 
granularity of categorization is different between natural language 
and repository representations. This happens when several 



different concepts exist in the repository for objects which are 
viewed as instances of the same concept in natural language. In 
our example this gap required the UNION in the query to 
represent the original natural language request.  

Third and the most important source of the information gap 
between the meaning representation of the natural language 
request and the SPARQL query is due to the fact that the query 
must specify the navigation to the information in the repository 
using the repository structure. This information about the 
repository organization is entirely absent from the natural 
language question and cannot appear in a database independent 
semantic representation. 

We have designed and implemented the Natural Query (NQ) 
language and engine [14] that bridges the gaps identified above 
thus opening a way for portable (database independent) natural 
language interfaces to semantic repositories. NQ can 
automatically map meaning representation produced by language 
systems into precise queries. NQ employs two mechanisms: 
language tags and data graph search to return requested data using 
only the information in the database-independent meaning 
representation of the user request. 

3.1 Language Tags 
Language tags are words, expressions, and linguistic tokens 

attached to database elements such as classes and properties. 
Multiple tags can be attached to a single element and a single tag 
can be attached to multiple elements. Language tags are the names 
of the corresponding categories used by the language system(s). 
When a language system produces a form like the one in our 
example, 

contact.name: ? 
organization: IBM 
city: Ulm 

under the NQ system its interpretation is:  

find the attributes tagged as “name” of an instance of the 
class tagged as “contact” related through properties tagged as 
“organization” and “city” to values “IBM” and “Ulm” 
respectively 

First name

City

Last nameName

Contact

in

Address

First name

City

Last nameName

Contact

in

Address

 
Figure 3. Language tags for database elements 

Language tags provide an opportunity for a semantic 
annotation additional to the class names and their properties. In a 
natural language system accessing an RDF repository data, we 
have three layers of semantic information: database-independent 

meaning representation, the data and ontology, and the language 
tags. It could be argued that if there were correspondence between 
the categories of database-independent meaning representation 
and the data and ontology, the language tags would not be needed. 
Unfortunately, if the ontology and language system are to be 
developed independently, there is no way to maintain or ensure 
such match. Thus language tags provide the many-to-many 
mapping between the two independent systems of categorizations 
and eliminate the first and second kind of information gaps 
between the meaning representation and semantic repositories. 

Figure 3 illustrates language tags associated with a part of 
our PIM ontology. A generalization like “Contact” can be 
attached to specific classes like “Person” and “Organization”.   A 
general reference like “Name” can be attached to multiple 
elements like “givenName”, “familyName”, and so on. In our RDF 
repository of real-world and in-device data, we added language 
tags to the RDF objects using a subproperty of RDFS label field.   

3.2 Graph search 
The third gap that exists between the database independent 

meaning representation of the natural language request and the 
formal query that actuates it over a given database is the 
information about the organization of the data repository. In order 
to navigate from the given attributes of an object to the target of 
the query, SPARQL queries need to know the specific path that 
connects them on the database graph. In current language systems, 
this path is encoded by the query and stored in the custom 
integration code for every different type of query. Thus a query 
defines a subgraph with given properties some of which are 
specified in the database-independent meaning representation of 
the natural language request and some are encoded in the custom 
integration code component. 

While a formal query defines a connected subgraph as 
illustrated on Figure 4, the database-independent meaning 
representation only identifies some nodes and edges of this 
subgraph. Identified fragment might be disconnected. In the 
example above it identifies “Person” and  
“Organization” classes as well as “Ulm” value of “locality” 
property (by reference to its language tag “city”) and “IBM” as a 
value of “name” property of an instance of “Organization” class. 
This leads to an important idea: that the knowledge embedded in 
the formal queries that know the database organization, can be 
also extracted from the natural language meaning representation 
and the data repository itself. 

 
Figure 4. Answering query via graph search 



In Figure 4 it is possible to notice that for a given set of 
elements identified by a meaning representation of natural 
language request it is possible to identify the query subgraph by 
searching the database. In other words, a program could find paths 
connecting the nodes known from the meaning representation, 
such as “Person”, “name”, “Organization”, “City”, “Ulm”, and 
“IBM”.  One of such paths is highlighted in the picture. 

Therefore while traditional approaches to semantic analysis 
of natural language questions over databases rely on hand crafted 
code or data for representing the information about the 
organization of the database, NQ extracts such knowledge from 
the data repository by using graph search. Given a question “Who 
are my contacts at IBM in Ulm?”, NQ finds paths connecting the 
nodes known from the database independent meaning 
representation, such as “Person”, “name”, “Organization”, 
“City”, “Ulm”, and “IBM”.   

3.3 NQE Discussion 
NQE may find multiple subgraphs that connect all given 

elements. In such cases we apply heuristic ranking of these 
subgraphs in order to determine the most relevant ones. So far we 
experimented with several ranking mechanisms all of which are 
variations on path length (weight) between the elements specified 
by the meaning representation. In all our experiments the results 
retrieved by the system in response to natural language questions 
correspond well with intuition of human subjects. 

The results returned by NQE are designed to support the 
needs of conversational interfaces. If no results are found that 
match the elements specified in the meaning representation, NQE 
returns best matches that include only a subset of elements in the 
query. For example, if no contacts at IBM in Ulm can be found, 
contacts at IBM in other cities would be returned as well as 
contact from Ulm that are not affiliated with IBM 

NQE can perform basic reasoning over type hierarchy. A 
“Person” is substitutable for a “Contact”, a 
“MobilePhoneNumber” for a “PhoneNumber”, but the opposite is 
not true. NQE supports organizational and geographic inclusion 
and can perform corresponding reasoning. When a calendar 
application lists meetings in Helsinki and Oulu, NQE can answer 
questions regarding meetings in Finland, where these cities are 
located. Similarly information about organizational structure can 
be used to answer questions about Nokia while the database only 
records Nokia’s internal organizations like Multimedia or 
Enterprise Solutions. Finally NQE creates structures that can be 
used to produce explanations regarding how the answers relate to 
the questions. 

We have created a proof of concept implementation of NQ in 
Python [12] that runs on S60 [16] mobile phones. Full description 
of the Natural Query system implementation is outside the scope 
of this paper. 

4. EXPERIENCE WITH THE SYSTEM 
We tested our system on a PIM test data set containing 550 

contacts with about 150 meetings and 250 phone calls, which is 
normal for executives with many active contacts and frequent 
meetings. The repository contained over 11000 RDF triples. We 
asked over 50 natural queries corresponding to over 600 
parameterized questions. 

The system can answer questions ranging from “What is the 
email of John?” to “Where does Ann work?” to “My meetings next 
week in Cambridge with John from MIT” and “Who called me 
yesterday during the meeting with Ann?”. Some of these 
questions would convert to quite complex relational or SPARQL 
queries. For example for the query “Who called me yesterday”, we 
need to find all telephone numbers of calls that occurred yesterday 
and then find all people who have these telephone numbers. NQ 
query for this is very simple: “:select ‘Person’ :where ("Received 
Call", Time ('yesterday'))”. 

If we classified questions according to domains, one domain 
would contain questions about the personal information data from 
an address book application, for example “Who works as a real 
estate broker?”. Another set of questions is about meetings, for 
example, “When are my meetings next month at MIT?”. Yet 
another set is about calls and messages, for example, “Who called 
me last Friday?”. Finally there are questions spanning multiple 
domains, for example, “What are emails of people who 
participated in a meeting on Monday?”, “Who called me when I 
was in Finland?”, and so on. All these types of queries were 
successfully created and executed on the extended PIM data store. 

We found out that we could easily ask questions both about 
the in-device data and the collected real-world data. Semantic 
integration of multiple data sources enhanced our question 
answering capability significantly, allowing such questions as 
“Who called me when I was in Helsinki?”, “Which messages did I 
receive during the meeting with Juha?”, etc. Although an out-of-
pattern detection of someone’s Bluetooth device is a weak 
indication the phone user met the owner of the Bluetooth device, 
in our experiments we assumed such implication. This allowed us 
to ask questions such as “Who did I meet last week?” or “At what 
time did I meet Ann last Saturday?” 

 

 
Figure 5. Example question and answer 

Test NQ queries mostly returned expected answers (96% 
recall, 92% precision) (Figure 5) including the approximate 
answers where the exact answers were not available. For example, 
the question “When was my meetings with Sam last month?” had 
no exact answers, so the system returned approximate answers of 



meetings with Sam that did not occur last month as well as the 
meetings that occurred last month, but did not include Sam. 

The performance of the system was acceptable with answers 
taking from less than a second to several seconds. The system 
implementation is a prototype written in Python that was not 
optimized for memory or speed. The detailed evaluation of system 
performance is outside the scope of this paper. We are planning to 
optimize the system performance in the near future. 

5. RELATED AND FUTURE WORK 
Mobile data storage in RDF repositories is investigated by 

ConnectingMe [9] project at Nokia Research Center. We have 
collaborated with ConnectingMe in the ontology and repository 
development. Some tools for data extraction and conversion are 
shared between our two projects. 

Semantic markup and annotation of web [7][4] and media 
[3] data is a topic of active research. Our research is related to the 
mobile media data annotation. There has been a lot of research on 
ontology creation tools. We used one of such tool—Protégé [11] 
to design our extended PIM ontology. 

Event data has been gathered on mobile devices by a number 
of projects including Context [13] and Reality Mining [5]. In our 
work, we have extended one of the data gathering frameworks 
available at Nokia. 

We have not discovered any research directly corresponding 
to the Natural Query approach.  The Precise system by Popescu et 
al. [10] attaches language tokens to database elements in a way 
very similar to language tags of NQ. Also the query derivation 
approach of Precise is based on database graph search. NQ uses a 
more flexible data model, supports incomplete answers, and 
collects data for explanations.  

In the future, we plan to connect our system to such natural 
language and speech systems as TINA [17] and Galaxy [18]. We 
plan to perform user trials to evaluate our system and its user 
interface to real world data. We will collect additional data such 
as email messages, songs listened, and pictures viewed and taken.  
We will also optimize the current prototype implementation. 

6. CONCLUSIONS 
Mobile devices are now able to continuously collect various 

events interesting to the user. Mobile devices also host structured 
and semi-structured information bases. We have demonstrated the 
integration of all this data using a flexible and powerful RDF 
repository and a common ontology. We have designed and 
implemented a query language and engine NQ that can 
automatically map meaning representation produced by language 
systems into formal queries on RDF repositories. We have used 
language tags for mapping of the meaning representation to the 
data classes. NQ uses graph search to extract the information 
about the repository’s structure. Our experience shows that 
semantic data annotation and knowledge extraction significantly 
improves the capability of natural languages interfaces to mobile 
data. 
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