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Abstract. A EU-funded project GeoPKDD develops methods and tools for 
analysis of massive collections of movement data, which describe changes of 
spatial positions of discrete entities. Within this project, we design and develop 
methods of visual analytics, which combine interactive visual displays with da-
tabase operations and computational methods of analysis. In this article, we 
demonstrate by example how visual analytics methods can help in acquiring 
knowledge about the movement behaviour of an individual from a very large 
set of movement data. 

1   Introduction 

A EU-funded project GeoPKDD - Geographic Privacy-aware Knowledge Discovery 
and Delivery (IST-6FP-014915; see http://www.geopkdd.eu) - aims at developing 
methods and tools for analysis of massive collections of movement data. Movement 
data describe changes of spatial positions of discrete entities, which preserve their 
integrity and identity, i.e. do not split or merge. Within this project, we develop meth-
ods for supporting human analysts in visual inspection of movement data and detec-
tion of characteristic patterns of movement behaviours.  

It is commonly recognised that interactive and dynamic visual representations are 
essential for gaining understanding of spatial and spatio-temporal data and underlying 
phenomena. However, visualisations alone are insufficient for exploration and analy-
sis of massive data collections. This is not only the matter of technical limitations 
such as the screen size and resolution or the speed of rendering but also of the natural 
perceptual and cognitive limitations of the humans who need to view and interpret the 
visual displays. Hence, it is necessary to combine visualisation with computational 
analysis methods, database queries, data transformations, and other computer-based 
operations.  

Recently, we have developed a theoretical basis for the creation of methods for 
visual analysis of movement data (Andrienko and Andrienko 2007). In particular, we 
have defined the possible types of behavioural patterns that can be detected by ana-
lysing movement data alone and in combination with data about other phenomena. 
Next, we have envisaged the kinds of data transformations, computations, and visu-
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alisations that could enable a human analyst to detect these pattern types in truly mas-
sive data, possibly, not fitting in a computer’s memory. On the basis of the previous 
works (Tobler 1987; Dykes and Mountain 2003; Laube, Imfeld, and Weibel 2005; 
and others), we have suggested a set of techniques where a key role belongs to aggre-
gation and summarisation of the data by means of database operations and/or compu-
tational techniques.  

For a practical verification of this choice of techniques resulting from a theoretical 
analysis, we started a prototype implementation of a visual analytics (Thomas and 
Cook 2005) toolkit for movement data. In this article, we demonstrate by example 
how visual analytics methods can help in acquiring knowledge about the movement 
behaviour of an individual from a very large set of movement data. 

2   The Example Dataset 

The example dataset consists of more than 60,000 records of positions of a car, which 
has been tracked during 5 months. The data have been recorded only when the car 
moved, i.e. there are no records for stops and still periods. The temporal spacing of 
the records is mostly 1 second; however, the records corresponding to periods of 
uniform movement (i.e. with constant speed and direction) are sparser. The data are 
stored in a relational database. 

 
Fig. 1. An attempt to display all individual data items from a large dataset is not pro-
ductive for data exploration and analysis.  

The dataset is too large for a straightforward visualisation of all data items. Fig.1 
demonstrates the result of showing all positions of the car on a map (left) and in a 
space-time cube (right), where the horizontal plane represents the geographical space 
and the vertical dimension represents the time. The map, in fact, reveals only the 
street network in the area where the car moves. It is even impossible to see which 
streets are used frequently and which only occasionally, because the symbols greatly 
overlap. Temporal filtering and display animation do not help much: the intervals of 
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movement are very short in relation to the 5-months long time period and therefore 
hard to extract through interactive filtering and hard to detect by viewing an animated 
display, where most of the time nothing happens. Hence, to be able to extract useful 
information from this mass of data, it is necessary to summarise it somehow before 
trying to visualise. 

In our work, we put a particular focus on the use of database operations for data 
summarisation and other data transformations and computations. On this basis, we 
strive at developing scalable visual analytics methods, which could be applied even to 
datasets not fitting in the computer memory. Besides database operations and visuali-
sation, we utilise data mining techniques, as will be seen from the following sections.   

3   Detecting important places 

A temporally ordered sequence of all positions of an entity is not a meaningful object 
for analysis since the entity does not necessarily move all the time (thus, in our data, 
the time of movement is much less than the time of stillness). It is reasonable to di-
vide the sequence into trajectories or into movement episodes. A trajectory is a se-
quence of items corresponding to a trip of an entity from one location (source) to 
another (destination) where the source and destination are defined semantically (e.g. 
home, work, shop, etc.) or according to the time the entity spends in a location. 
Movement episodes (Dykes & Mountain 2003) are fragments of trajectories where the 
movement characteristics (speed, direction, sinuosity, etc.) are relatively constant 
whereas a significant change indicates the beginning of the next episode.  

In our exercise on analysing the car movement data, we assume that we have no 
background knowledge that would allow us to divide the data into trips using seman-
tic criteria. Moreover, it is one of the tasks of our analysis to extract and interpret the 
sources and destinations of the trips. Therefore, we need to find the sources and des-
tinations on the basis of the temporal criterion, i.e. according to the time spent in a 
location. 

As we have explained, the records of the car positions have been made only when 
the car actually moved; hence, the stops and periods of stillness are present in the data 
implicitly as temporal gaps between successive records. It is easy to find such gaps 
with the use of database operations; however, it is necessary to specify the minimum 
temporal distance between records to be treated as a “gap”. This threshold can be 
chosen quite arbitrarily. Interestingly, by setting different temporal thresholds, it is 
possible to find places of different importance for the moving object, i.e. car user in 
our case. Thus, setting a threshold of several hours should result in finding places 
where the person spends much time. These will include person’s home and work. 

Fig.2 presents the spatial positions of the trip starts and ends, which have been ex-
tracted from the database using a temporal threshold of 2 hours. The positions are 
shown as small circles on a map. The map on the left shows all extracted positions. 
Surprisingly, there are much more different positions than could be expected. The 
maps in the middle and on the right show the starts and ends separately. It is easy to 
notice that the starts are much more dispersed in space than the ends. This looks very 
strange: the start position of a trip should normally coincide with the end position of 
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the previous trip. The reason for the observed discrepancy is that the GPS (Global 
Positioning System) device, which is used for collecting the data, needs some time for 
warming up, detecting satellites, and establishing connections with them. Therefore, 
the device starts recording the positions of the car not from the moment when a trip 
begins but later. Hence, our data are incomplete, and the real times and positions of 
trip starts are unavailable. This feature needs to be taken into account when analysing 
the data. 

 
Fig. 2. The positions of the starts and ends of the trips have been extracted by setting 
a temporal threshold of 2 hours. Left: all extracted positions; middle: starts; right: 
ends. 

It is reasonable to assume that the spatial positions of the trip starts are the same as 
the destinations of the previous trips. Therefore, we can ignore the extracted starts 
and look only at the ends, which are more reliable. On the right of Fig.2, we can see 5 
different places where the trip destinations are located. Naturally, we are interested 
first of all in finding frequently visited places, or, in other words, places where the 
trip destinations are clustered. A map display is not appropriate for this purpose: it is 
hard to guess how many overlapping circles there are in each place. Instead, we can 
apply computational techniques for detection of spatial clusters, which are developed 
in the research area of data mining. 

The map on the left of Fig.3 shows the result of applying a clustering tool to the 
destinations detected with the use of the temporal threshold of 2 hours. The tool has 
found two clusters; the dark circles mark the corresponding positions. The remaining 
positions, which are represented by lighter circles, were classified as noise. From the 
two clusters, the one on the north contains 118 positions and the other, which is on 
the south, contains 77 positions. It is reasonable to conclude that the larger cluster is 
located near the home of the car user and the smaller cluster is at the place where the 
person works. 

In the middle of Fig.3, the map presents the results of applying the same clustering 
tool to the trip destinations extracted using the temporal threshold of 1 hour. Addi-
tionally to the two clusters detected before, one more cluster consisting of 11 posi-
tions has been found west from the place interpreted as “home”. On the right, the 
clusters of destinations where the car user spent at least 5 minutes are shown. There 
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are five clusters, including the three previously detected clusters. Two more clusters 
have appeared in the centre of the map. 

 
Fig. 3. Results of a clustering method applied to 3 sets of trip destinations extracted 
using different values for the temporal threshold: 2 hours (left), 1 hour (middle), and 
5 minutes (right). 

The meaning of the places detected in this way can be established using back-
ground knowledge about the territory or information provided by the background 
map. Unfortunately, the available background map is just an image with a low level 
of detail. It is only possible to find out that one of the clusters (cluster 3) is located at 
a shopping centre named “Huma Einkaufspark”. However, we are familiar with the 
territory and can interpret also the clusters 4 and 5: these are located in a shopping 
area where several stores are separated by a street. 

Hence, by extracting and analysing trip destinations, we have found the places 
where the car user lives, works, and shops. There are two frequently visited shopping 
areas. The car user spends more time in “Huma Einkaufspark” than in the other shop-
ping area. 

Using background knowledge about the territory and/or background map, it is pos-
sible to identify also the places visited less frequently, as, for example, post office or 
bank. 

4   Analysing trip directions 

After determining the significant places visited by the car user (these places will be 
henceforth called “places of interest”, or POIs), we would like to know how the per-
son moves between them. Thus, we can see that one of the shopping areas is located 
between the person’s home and work. Does the person visit it on the way from the 
work to home and, if so, how often? Does the car user ever go from the work to the 
other shopping area? Were there any trips from one shopping area to the other? 

In order to answer these and similar questions, it is reasonable to count the number 
of trips between each pair of POIs. However, each position in the dataset is specified 
only through a pair of coordinates (latitude and longitude), i.e. as a geographical point 
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without any semantics. In order to enable a software tool to treat the starting and 
ending positions of the trajectories as particular places of interest, it is necessary to 
specify the places explicitly as named areas surrounded by boundaries. For this pur-
pose, one can use computational functions available in geographic information sys-
tems (GIS) or spatial DBMS to build buffer zones around the positions of the trip 
starts and ends and then assign meaningful names to the zones obtained. Another 
approach is to encircle the areas on the map manually. Here, we shall use manually 
defined POIs. Besides encircling the trip destinations we could interpret, we also 
considered the extracted starting positions (Fig.2 middle) and associated some of 
them with the most probable trip sources. Thus, the start positions of many trajecto-
ries lie on the roads passing near the place of the person’s work. As we know, these 
are false starts. It is reasonable to assume that the real source of the corresponding 
trips is the place of the work. Hence, we have drawn several shapes enclosing the 
false start positions and named them “(work)*”, “(work)**”, and “(work)+”. Simi-
larly, we have defined an additional POI named “(home)*” by enclosing the false 
start positions of the trips starting, most probably, at home. Fig.4 shows the POIs we 
have specified. 

 
Fig. 4. The places of interest defined by encircling areas on a map. 

After the places of interest have been defined, a software tool can attach their 
names to the positions of the trip starts and ends lying within the areas. Then, it be-
comes possible to count the number of trips between each pair of places. The result-
ing counts can be visualised, for example, in an interactive matrix display shown in 
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Fig.5. The rows of the matrix correspond to the trip sources, the columns to the desti-
nations, and the sizes of the rectangles in the cells encode the numbers of the trips. By 
putting the mouse cursor on a cell we can learn the exact number of trips made from 
the corresponding source to the corresponding destination. 

 
Fig. 5. The numbers of trips between pairs of POIs are represented by proportionally 
sized rectangles in cells of a matrix where the rows correspond to the trip sources and 
columns to the destinations. 

Thus, during the period under the study, there were 76 trips to work, from which 
68 trips were from home (58 from the POI “home” plus 10 from the POI “(home)*” 
enclosing the false starts of the trips from home). There were 2 trips to work from the 
shopping area “Huma” and no trips starting in the other shopping area. 

Let us now look to which places the person drives from the work. There are sev-
eral source POIs associated with the place of work. For a more convenient explora-
tion, we can apply an interactive filtering tool to select only the trips starting from any 
of these POIs. The interactive matrix display reacts to setting the filter by removing 
irrelevant information (Fig.6). Now, it is more convenient to learn that there were in 
total 80 trips starting from the work, from which 50 were directly to home, 7 to 
“Huma” and 19 to the other shopping area (17 to “Hit” plus 2 to “Aldi/DM” on the 
other side of the street), 2 trips to “Siegburg station” and 2 trips back to work. 

As the matrix display lacks the geographical context, it may be useful to comple-
ment it with a map display. The map in Fig.7 shows the same summarised informa-
tion about the trips from the work by vectors (directed lines) connecting the source 
and destination locations. The widths of the lines are proportional to the numbers of 
the trips between the respective locations. Unfortunately, the map is not easy to read 
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because of the overlapping of the vector symbols. Still, the major destinations of the 
trips from the work can be grasped. 

 
Fig. 6. The matrix display shows only the information about the trips from the work. 

 
Fig. 7. The same information as in Fig.6 is shown on a map by vectors. 

Besides filtering by trip origin, it is possible to set various other filter conditions. 
For instance, two screenshots of the matrix display presented in Fig.8 show the results 
of filtering the trips according to the time of the day when a trip begins. On the left, 
we see the summarised information about the trips starting from 8 to 11 hours, and on 
the right – from 17 to 20 hours. Most of the morning trips are from home to work, but 
the evening trips are much more varied. Analogously, it is possible to compare the 
trips made on working days with the trips made on weekends (Fig.9). 
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Fig. 8. Filtering of the movement data by the time of the day allows us to compare the 
major trip directions in the morning  (left) and in the evening (right). 

 
Fig. 9. Left: trips made on the week days from Monday to Friday. Middle: trips made 
on Saturdays. Right: trips made on Sundays. 

5   Analysing trajectories 

Both in the matrix display and in the map with vectors (Fig.7) the information about 
the trips is highly summarised: it is only possible to see the origins and destinations 
and the numbers of the trips. In studying movement behaviours of individuals, it is 
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also important to investigate their trajectories, or, in other words, the routes they use. 
For example, in our case we would like to know what routes the person chooses on 
the way from home to work and back. If the person uses different routes, it is interest-
ing to find out when which route is preferred and to make plausible guesses about the 
reasons for choosing this or that route. 

For such investigations, we need a detailed representation of the person’s trajecto-
ries in the geographical context, i.e. on a map or in a space-time cube. However, the 
representation of all trajectories at once results in an unreadable display similar to 
what can be seen in Fig.1. A reasonable approach is to explore the trajectories by 
interpretable portions with the use of the tool for interactive filtering. In particular, it 
is useful to select subsets of trajectories according to the sources and destinations of 
the trips. Thus, the map in Fig.10A shows only the trajectories starting from the work 
and ending at home (the trajectories have been defined using a 2 hour temporal 
threshold for dividing the sequence of positions). The trajectories are represented as 
polygonal lines, their starting points are marked by hollow squares (Fig.10B) and end 
points by filled squares (Fig.10C). It is hard to estimate the number of overlapping 
lines, but the filtering tool informs us that there are 74 trajectories from work to home 
among 201 trajectories in total. 

 
Fig. 10. A) The trajectories from work to home are represented on a map as polygo-
nal lines. B) The start points of the trajectories are marked by hollow squares. C) The 
end points of the trajectories are marked by filled squares. 

As the lines severely overlap, it is hardly possible to understand what routes the 
person uses for driving from work to home. It is necessary to group trajectories with 
similar shapes and to look at each group separately. One of the possibilities for grop-
ing is by interacting with the map display. Clicking on a position on the map selects 
all lines passing through this position or close to it. From the lines selected in this 
way one can make a group, or class. By clicking on different roads, it is possible to 
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make several selections and to form several classes. Thus, in our case, we have de-
fined 6 classes of trajectories from work to home differing in shape (Fig.11), three of 
which consist of singular trajectories (classes 4, 5, and 6 in the lower row in Fig.11). 
The most frequently followed route (upper left of Fig.11) is by the road on the east of 
the territory; the person used it 43 times. The second frequent route (upper middle), 
which was used 21 times, passes the shopping area in the middle of the territory. 

 
Fig. 11. By interacting with the map display, we have detected 6 different routes from 
work to home. 

 
Fig. 12. Statistics of the trip duration for the different routes shown in Fig.11. 

It is useful to look at various statistics about the classes of the trajectories. Thus, 
Fig.12 shows the statistics of the trip duration, in seconds: minimum, first quartile, 
median, third quartile, maximum, average, and standard deviation. The upper row of 
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the table corresponds to the whole set of trajectories, the next 6 rows correspond to 
the groups of the trips from work to home we have defined, and the last row corre-
sponds to the remaining trajectories. We can see that the route of class 1 takes the 
least time. This can be explained by the absence of POIs that could be visited on this 
way. It is highly probable that the routes corresponding to classes 2 and 3 are chosen 
when the person needs to visit one of the shopping areas. In order to check this, we 
would need a tool computing the time spent in each POI during each trip; however, 
such a tool is not available at the moment of writing this paper.  

The histogram in Fig.13 shows the distribution of the trips by days of week, from 
Monday to Sunday. The light grey bars correspond to the entire set of trips. The 
black, dark grey, and medium grey segments show the proportions of the trips from 
the classes 1, 2, and 3, respectively. It is notable that the route corresponding to class 
2 is most often (7times) chosen on Wednesdays but is used also in other working 
days of the week. The route corresponding to class 3 was used 3 times on Thursdays, 
3 times on Fridays, only once on Monday, and never in the other days of the week.  

 
Fig. 13. The histogram shows the distribution of the trips by days of week. 

Not only interactive techniques can be used to group trajectories by similarity but 
also methods for computational clustering, which are preferable in case of great over-
laps between trajectories and/or complex shapes with loops and self-crossings. Auto-
matic clustering of any items requires a method that computes the degree of dissimi-
larity (also called “distance”; this term is used in a wider sense than purely distance in 
space) between a given pair of items. Such a method is called “distance function”. 
Clustering algorithms and distance functions suitable for trajectories are now under 
development within the project GeoPKDD. For the car movement data we have, we 
have implemented a simple distance function that takes into account the incomplete-
ness of the trajectories: it compares trajectories starting from their ends and ignores 
differences in the lengths. Fig.14 presents a result of automatic clustering of the tra-
jectories from work to home (it should be noted that clustering results may differ 
depending on the choice of clustering parameters, in our case, the distance threshold 
– the maximum allowed distance between members of a cluster). The clusters agree 
very well with the results of our interactive grouping: clusters 1 and 2 are exactly the 
same as our classes 1 and 2, cluster 3 includes all trajectories from our class 3 plus 
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the single trajectory we have put in class 5, and the remaining two trajectories are 
treated as “noise”, i.e. as too dissimilar to the other trajectories. 

 
Fig. 14. A result of automatic clustering of the trajectories from work to home. Pa-
rameters: the distance threshold is 300 meters and the minimum number of cluster 
members is 3. 

Let us now utilise the clustering tool to investigate how the car user goes from 
home to work. One of possible results of clustering is presented in Fig.15. 
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Fig. 15. A result of automatic clustering of the trajectories from home to work. Pa-
rameters: the distance threshold is 500 meters and the minimum number of cluster 
members is 3. 

 
Fig. 16. The composition of cluster 1 from the previous figure. 
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As can be seen from Fig.15, the person takes almost always the eastern road for 
driving from home to work. The trajectories following this road are united in cluster 
1. Fig.16 shows the composition of this cluster in some more detail. On the left, there 
are 60 trajectories of very similar shapes. In the middle, there are 2 trajectories where 
the person first visited the shopping area “Huma”, then returned home, and then 
drove to work. On the right, there is a single trajectory where the person visited the 
POI “Siegburg station” before going to work. 

From the other trajectories from home to work, 4 go along the western road (clus-
ter 2) and 3 trajectories use the diagonal road (cluster 3). Cluster 3 contains one pecu-
liar trajectory: the person first drove half way along the eastern road and then re-
turned back and took the diagonal road. Perhaps, there was some obstacle on the 
eastern road that day. 

It can be noticed that the single trajectory marked as “noise” (bottom right of 
Fig.15) has the same shape as the standard trajectories in cluster 1 (Fig.16 left). This 
exposes a weakness of the distance function we use. For some unclear reason, the 
trajectory marked as “noise” consists of 525 different positions, which is much more 
than in the standard trajectories of cluster 1 (from 189 to 300). Our distance function 
cannot properly cope with such a difference and, evidently, requires improvement. At 
least two important implications can be derived from this observation. First, peculiari-
ties of data to be analysed must be properly taken into account in designing and/or 
choosing methods for automated analysis. Second, a careful and critical examination 
of the results of automated methods is absolutely necessary. Interactive visual inter-
faces are appropriate instruments for this. 

6   Conclusion 

The main objective of this article was to demonstrate the use of interactive visual 
tools combined with database processing and computation for the exploration and 
analysis of large spatio-temporal datasets, more specifically, data about changes of 
spatial positions of discrete entities. We have shown how patterns of individual 
movement behaviour can be extracted from a very large number of position records 
and semantically interpreted. We could continue this investigation and learn much 
more about the person’s life style and habits. Such a possibility raises serious con-
cerns about the privacy of individuals. Therefore, one of the main objectives of the 
project GeoPKDD is to develop mechanisms for preventing the disclosure of sensi-
tive private information. Such mechanisms need to be incorporated both in computa-
tional and in visual tools for analysis. 
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