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Abstract. Analysing human behavior is a key step in smart home appli-
cations. Many reasoning approaches utilize information of location and
posture of the occupant in qualitative assessment of the user’s status
and events. In this paper, we propose a vision-based framework to pro-
vide quantitative information of the user’s posture which can be used
to deduct qualitative representations for high-level reasoning. Further-
more, our approach is motivated by potentials introduced by interactions
between the vision module and the high-level reasoning module. While
quantitative knowledge from the vision network can either complement
or provide specific qualitative distinctions for AI-based problems, these
qualitative representations can offer clues to direct the vision network to
adjust its processing operation according to the interpretation state. The
paper outlines potentials for such interactions and describes two vision-
based fusion mechanisms. The first employs an opportunistic approach
to recover the full-parameterized human model by the vision network,
while the second employs directed deductions from vision to address a
particular smart home application in fall detection.

1 Introduction

The increasing interest in understanding human behaviors and events in a cam-
era context has heightened the need for gesture analysis of image sequences.
Gesture recognition problems have been extensively studied in Human Com-
puter Interactions (HCI), where often a set of pre-defined gestures are used for
delivering instructions to machines [1, 2]. However, “passive gestures” predom-
inate in behavior descriptions in many applications. Some traditional applica-
tion examples include surveillance and security applications, while more novel
applications arise in emergency detection in clinical environments [3], video con-
ferencing [4, 5], and multimedia and gaming applications. Some approaches to
analyzing passive gestures have been investigated in [6, 7].

In a multi-camera network, access to multiple sources of visual data often
allows for making more comprehensive interpretations of events and gestures. It
also creates a pervasive sensing environment for applications where it is imprac-
tical for the users to wear sensors. Having access to interpretations of posture
and gesture elements obtained from visual data over time enables higher-level
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Fig. 1. The relationship between vision networks and high-level AI reasoning, and a
variety of novel applications enabled by both.

reasoning modules to deduct the user’s actions, context, and behavior models,
and decide upon suitable actions or responses to the situation.

Our notion of the role a vision network can play in enabling novel intel-
ligent applications derives from the potential interactions between the various
disciplines outlined in Fig. 1. The vision network offers access to quantitative
knowledge about the events of interest such as the location and other attributes
of a human subject. Such quantitative knowledge can either complement or pro-
vide specific qualitative distinctions for AI-based problems. On the other hand,
we may not intend to extract all the detailed quantitative knowledge available
in visual data since often a coarse qualitative representation may be sufficient
in addressing the application [8]. In turn, qualitative representations can offer
clues to the features of interest to be derived from the visual data allowing the
vision network to adjust its processing operation according to the interpretation
state. Hence, the interaction between the vision processing module and the rea-
soning module can in principle enable both sides to function more effectively.
For example, in a human gesture analysis application, the observed elements of
gesture extracted by the vision module can assist the AI-based reasoning module
in its interpretative tasks, while the deductions made by the high-level reasoning
system can provide feedback to the vision system from the available context or
behavior model knowledge.

In this paper we introduce a model-based data fusion framework for human
posture analysis using opportunistic use of manifold sources of vision-based in-
formation obtained from the camera network in a principled way. The framework
spans the three dimensions of time (each camera collecting data over time), space
(different camera views), and feature levels (selecting and fusing different feature
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interactive embodiment.

subsets). Furthermore, the paper outlines potentials for interaction between the
distributed vision network and the high-level reasoning system.

The structure of the vision-based processing operation has been designed in
such a way that the lower-level functions as well as other in-node processing
operations will utilize feedback from higher levels of processing. While feedback
mechanisms have been studied in active vision areas, our approach aims to in-
corporate interactions between the vision and the AI operations as the source
of active vision feedback. To facilitate such interactions, we introduce a human
model as the convergence point and a bridge for the two sides, enabling both to
incorporate the results of their deductions into a single merging entity. For the
vision network, the human model acts as the embodiment of the fused visual data
contributed by the multiple cameras over observation periods. For the AI-based
functions, the human model acts as a carrier of all the sensed data from which
gesture interpretations can be deducted over time through rule-based methods
or mapping to training data sets of interesting gestures. Fig. 2 illustrates this
concept in a concise way.

In Section 2 we outline the different interactions between the vision and AI
modules as well as the temporal and spatial model-based feedback mechanisms
employed in our vision analysis approach. Section 3 presents details and exam-
ples for our model-based and opportunistic feature fusion mecahnisms in human
posture analysis. In Section 4 an example collaborative vision-based scheme for
deriving qualitative assessment for fall detection is described. Section 5 offers
some concluding remarks and the topics of current investigation.

2 The Framework

Fig. 3 shows the relationship between the low-level vision processing, which oc-
curs in the camera nodes, the instantaneous state resulting from camera collab-
oration in the visual domain, and the high-level behavior interpretation which is
performed in the AI module. The feedback elements provided by the AI module
help the vision processing system to direct its processing effort towards handling
the more interesting features and attributes.

The concept of feedback flow from higher-level processing units to the lower-
level modules also applies when considering the vision network itself. Within
each camera, temporal accumulation of features over a period of time can for
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example enable the camera to examine the persistence of those features, or to
avoid re-initialization of local parameters. In the network of cameras, spatial
fusion of data in any of the forms of merged estimates or a collective decision,
or in our model-based approach in the form of updates from body part tracking,
can provide feedback information to each camera. The feedback can for example
be in the form of indicating the features of interest that need to be tracked by
the camera, or as initialization parameters for the local segmentation functions.
Fig. 4 illustrates the different feedback paths within the vision processing unit.

3 Collaborative Vision Network

We introduce a generic opportunistic fusion approach in multi-camera networks
in order to both employ the rich visual information provided by cameras and
incorporate learned knowledge of the subject into active vision analysis. The
opportunistic fusion is composed of three dimensions, space, time and feature
levels. For human gesture analysis in a multi-camera network, spatial collabo-
ration between multi-view cameras naturally facilitates solving occlusions. It is
especially advantageous for gesture analysis since human body is self-occlusive.
Moreover, temporal and feature fusion help to gain subject-specific knowledge,
such as the current gesture and subject appearance. This knowledge is in turn
used for a more actively directed vision analysis.

3.1 The 3D Human Body Model

Fitting human models to images or videos has been an interesting topic for
which a variety of methods have been developed. Usually assuming a dynamic
model (such as walking)[9, 10] will greatly help us to predict and validate the
posture estimates. But tracking can easily fail in case of sudden motions or other
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movements that differ much from the dynamic model. Therefore we always need
to be aware of the balance between the limited dynamics and the capability
to discover more diversified postures. For multi-view scenarios, a 3D model can
be reconstructed by combining observation from different views [11, 12]. Most
methods start from silhouettes in different cameras, then points occupied by the
subject can be estimated, and finally a 3D model with principle body parts is
fit in the 3D space [13]. The approach above is relatively “clean” since the only
image component it is based on are the silhouettes. But at the same time the 3D
voxel reconstruction is sensitive to the quality of the silhouettes and accuracy
of camera calibrations. It is not difficult to find situations where background
subtraction for silhouettes suffers for quality or is almost impossible (clustered,
complex background, and the subject is wearing clothes with similar colors to the
background). Another aspect of the human model fitting problem is the choice
of image features. All human model fitting methods are based on some image
features as targets to fit the model. Most of them are based on generic features
such as silhouettes or edges [14, 12]. Some use skin colors but those methods
are prone to failure in some situations since lighting usually has big influence in
colors and skin color varies from person to person.

In our work, we aim to incorporate appearance attributes adaptively learned
from the network for initialization of segmentation, because usually color or
texture regions are easier to find than generic features such as edges. Another
emphasis of our work is that images from a single camera are first reduced to
short descriptions and then reconstruction of the 3D human model is based on
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descriptions collected from multiple cameras. Therefore concise descriptions are
the expected outputs from image segmentation.

In our approach a 3D human body model embodies up-to-date information
from both current and historical observations of all cameras in a concise way.
It has the following components: 1. Geometric configuration: body part lengths,
angles. 2. Color or texture of body parts. 3. Motion of body parts. The three
components are all updated from the three dimensions of space, time and features
of the opportunistic fusion.

Apart from providing flexibility in gesture interpretations, the 3D human
model also plays significant roles in the vision analysis process. First, the total
size of parameters to reconstruct the model is very small compared to the raw
images, and affordable through communication. For each camera, only segment
descriptions are needed for collaboratively reconstructing the 3D model. Second,
the model is a converging point of spatiotemporal and feature fusion. All the pa-
rameters it maintains are updated from the three dimensions of space, time and
features of the opportunistic fusion. In sufficient confidence levels, parameters of
the 3D human body model are again used as feedback to aid subsequent vision
analysis. Third, although predefined appearance attributes are generally not reli-
able, adaptively learned appearance attributes can be used to identify the person
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Fig. 6. Algorithm flowchart for 3D human skeleton model reconstruction.

or body parts. Those attributes are usually more distinguishable than generic
features such as edges once correctly discovered.

The 3D model maps to the Gesture Elements layer in the layered architecture
for gesture analysis (lower left part of Fig. 5) we proposed in [15]. However, here
it not only assumes spatial collaboration between cameras, but also connects
decisions from history observations with current observations.

3.2 The Opportunistic Fusion Mechanisms

The opportunistic fusion framework for gesture analysis is shown in Fig. 5. On
the top of Fig. 5 are spatial fusion modules. In parallel is the progression of the
3D human body model. Suppose now it is t0, and we have the model with the
collection of parameters as M0. At the next instance t1, the current model M0

is input to the spatial fusion module for t1, and the output decisions are used to
update M0 from which we get the new 3D model M1.

Now we look into a specific spatial fusion module (the lower part of Fig. 5)
for the detailed process. In the bottom layer of the layered gesture analysis, im-
age features are extracted from local processing. Distinct features (e.g. colors)
specific for the subject are registered in the current model M0 and are used
for analysis, which may be much easier than always looking for patterns of the
generic features (arrow 1© in Fig. 5). After local processing, data is shared be-
tween cameras to derive for a new estimate of the model. Parameters in M0

specify a smaller space of possible M1’s. Then decisions from spatial fusion of
cameras are used to update M0 to get the new model M1 (arrow 2© in Fig. 5).
Therefore for every update of the model M , it combines space (spatial collabora-
tion between cameras), time (the previous model M0) and feature levels (choice
of image features in local processing from both new observations and subject-
specific attributes in M0). Finally the new model M1 is used for high-level gesture
deductions in a certain scenario (arrow 2© in Fig. 5).

An implementation for the 3D human body posture estimation is illustrated
in Fig. 6. Local processing in single cameras include segmentation and ellipse
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fitting for a concise parametrization of segments. For spatial collaboration, el-
lipses from all cameras are merged to find the geometric configuration of the 3D
skeleton model.

3.3 In-Node Feature Extraction

The goal of local processing in a single camera is to reduce raw images/videos to
simple descriptions so that they can be efficiently transmitted between cameras.
The output of the algorithm will be ellipses fitted from segments and the mean
color of the segments. As shown in the upper part of Fig. 6, local processing
includes image segmentation for the subject and ellipse fitting to the extracted
segments.

We assume the subject is characterized by a distinct color distribution. Fore-
ground area is obtained through background subtraction. Pixels with high or
low illumination are also removed since for those pixels chrominance may not
be reliable. Then a rough segmentation for the foreground is done either based
on K-means on chrominance of the foreground pixels or color distributions from
the known model. In the initialization stage when the model hasn’t been well
established, or when we don’t have a high confidence in the model, we need
to start from the image itself and use a method such as K-means to find color
distribution of the subject. However, when a model with a reliable color distri-
bution is available, we can directly assign pixels to different segments based on
the existing color distribution. The color distribution maintained by the model
may not be accurate for all cameras, since in different cameras illumination may
change. Also the subject’s appearance may change due to the movement or light-
ing conditions. Therefore the color distribution of the model is only used for a
rough segmentation in initialization of the segmentation scheme. Then an EM
(expectation maximization) algorithm is used to refine the color distribution for
the current image. The initial estimated color distribution plays an important
role because it can prevent EM from being trapped in local minima.

Suppose the color distribution is a mixture of N Gaussian modes, with pa-
rameters Θ = {θ1, θ2, . . . , θ3}, where θl = {µl, Σl} are the mean and covariance
matrix of the modes. Mixing weights of different modes are A = {α1, α2, . . . , α3}.
The EM algorithms aims to find the probability of each pixel xi belonging to a
certain mode θl: Pr(yi = l|xi).

However, the basic EM algorithm takes each pixel independently, without
considering the fact that pixels belonging to the same mode are usually spa-
tially close to each other. In [16] Perceptually Organized EM (POEM) is intro-
duced. In POEM, influence of neighbors is incorporated by a weighting measure

w(xi, xj) = e
− ‖xi−xj‖

σ2
1

− ‖s(xi)−s(xj)‖
σ2
2 . s(xi) is the spatial coordinate of xi. Then

“votes” for xi from the neighborhood is given by

Vl(xi) =
∑
xj

αl(xj)w(xi, xj), where αl(xj)=Pr(yj=l|xj) (1)
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Then modifications are made to EM steps. In the E step, α
(k)
l is changed to

α
(k)
l (xi), which means that for every pixel xi, mixing weights for different modes

are different. This is partially due to the influence of neighbors. In the M step,
mixing weights are updated by

α
(k)
l (xi) =

eηV
(xi)

l

∑N
k=1 eηV

(xi)
k

(2)

η controls the “softness” of neighbors’ votes. If η is as small as 0, then mixing
weights are always uniform. If η approaches infinity, the mixing weight for the
mode with the largest vote will be 1.

After refinement of the color distribution with POEM, we set pixels with high
probability (e.g., bigger than 99.9%) that belong to a certain mode as markers
for that mode. Then watershed segmentation algorithm is implemented to assign
labels for undecided pixels. Finally for every segment an ellipse is fitted to it in
order to obtain a concise parameterization for the segment.

3.4 Posture Estimation

Human posture estimation is essentially an optimization problem, in which we
try to minimize the distance between the posture and ellipses from multi-view
cameras. There can be several different ways to find the 3D skeleton model based
on observations from multi-view images. One method is to directly solve for the
unknown parameters through geometric calculation. In this method we need
to first establish correspondence between points/segments in different cameras,
which is itself a hard problem. Common observations for points are rare for
human problems, and body parts may take on very different appearance from
different views. Therefore it is difficult to resolve ambiguity in 3D space based
on 2D observations. A second method would be to cast a standard optimization
problem, in which we find optimal θi’s and φi’s to minimize an objective function
(e.g., difference between projections due to a certain 3D model and the actual
segments) based on properties of the objective function. However, if the prob-
lem is highly nonlinear or non-convex, it’ll be very difficult or time consuming
to solve. Therefore searching strategies which do not explicitly depend on the
objective function formulation are desired.

Motivated by [17], Particle Swarm Optimization (PSO) is used as the op-
timization technique. The lower part of Fig. 6 shows the estimation process.
Ellipses from local processing of single cameras are merged together to recon-
struct the skeleton. Here we consider a simplified problem in which only arms
change in position while other body parts are kept in the default location. El-
evation angles (θi) and azimuth angles (φi) of the left/right upper/lower parts
of the arms are specified as parameters. The assumption is that projection ma-
trices from 3D skeleton to 2D image planes are known. This can be achieved
either from locations of cameras and the subject, or it can be calculated from
some known projective correspondences between the 3D subject and points in
the images, without knowing exact locations of cameras or the subject.
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Fig. 7. Examples for gesture analysis in the vision network. (a) In-node segmentation
results. (b) Skeleton model reconstruction by collaborative fusion.

PSO is suitable for posture estimation as an evolutionary optimization mech-
anism. It starts from a group of initial particles. During the evolution of the
particles towards an optimal, they are directed to the good position while keep
some randomness to explore the search space. Suppose there are N particles
(test configurations) xi, each is a vector of θi’s and φi’s. vi is the velocity of xi.
The best position of xi so far is x̂i, and the global best position of all xi’s so far
is g. f(·) is the objective function that we wish to find the optimal position x to
minimize f(x). The PSO algorithm is as follows:

1. Initialize xi and vi. vi is usually set to 0, and x̂i = xi. Evaluate f(xi) and
set g = argminf(xi).

2. While the stop criterion is not satisfied, do for every xi

– vi ← ωvi + c1r1(x̂i − xi) + c2r2(g − xi);
– xi ← xi + vi;
– If f(xi) < f(x̂i), x̂i = xi; If f(xi) < f(g), g = xi.

The stop criterion: after updating all N xi’s once, the increase in f(g) falls below
a threshold, then the algorithm exits. ω is the “inertial” coefficient, while c1 and
c2 are the “social” coefficients. r1 and r2 are random vectors with each element
uniformly distributed on [0,1]. Choice of ω, c1 and c2 controls the convergence
process of the evolution. If ω is big, the particles have more inertia and tend
to keep their own directions to explore the search space. This allows for more
chance of finding the “true” global optimal if the group of particles are currently
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around a local optimal. While if c1 and c2 are big, the particles are more “social”
with the other particles and go quickly to the best positions known by the group.
In our experiment, N = 16, ω = 0.3 and c1 = c2 = 1.

Examples for in-node segmentation are shown in Fig. 7(a). Some examples
showing images from 3 views and the posture estimates are in Fig. 7(b).

4 Towards Behavior Interpretation

An appropriate classification is essential towards a better understanding of the
variety of passive gestures. Therefore, we propose a categorization of the gestures
as follows:

– Static gestures, such as standing, sitting, lying;
– Dynamic gestures, such as waving arms, jumping;
– Interactions with other people, such as chatting;
– Interactions with the environment, such as dropping or picking up objects.

Fig. 8 illustrates the layered processing architecture defining collaboration
stages between the cameras and the levels of vision-based processing from early
vision towards discovery of the gesture elements.

To illustrate the process of achieving high-level reasoning using the collabo-
rative vision-based architecture, we consider an application in assisted living, in
which the posture of the user (which could be an elderly or a patient) is mon-
itored during daily activities for detection of abnormal positions such as lying
down on the ground. Each of the cameras in the network employs local vision
processing on its acquired frames to extract the silhouette of the person. A sec-
ond level of processing employs temporal smoothing combined with shape fitting
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to the silhouette and estimates the orientation and the aspect ratio of the fitted
(e.g. elliptical) shape. The network’s objective at this stage is to decide on one of
the branches in the top level of a tree structure (see Fig. 9) between the possible
posture values of vertical, horizontal, or undetermined. To this end, each camera
uses the orientation angle and the aspect ratio of the fitted ellipse to produce
an alert level, which ranges from -1 (for safe) to 1 (for danger). Combining the
angle and the aspect ratio is based on the assumption that nearly vertical or
nearly horizontal ellipses with aspect ratios away from one provide a better ba-
sis for choosing one of the vertical and horizontal branches in the decision tree
than when the aspect ratio is close to one or when the ellipse has for example,
a 45-degree orientation.

Fig. 10 illustrates an example of the alert level function combining the ori-
entation and aspect ratio attributes in each camera. The camera broadcasts the
value of this function for the collaborative decision making process. Along with
the alert level, the camera also produces a figure of merit value for the shape fit-
ted to the human silhouette. The figure of merit is used as a weighting parameter
when the alert level values declared by the cameras are combined.

Fig. 11 presents cases in which the user is walking, falling and lying down.
The posture detection outcome is superimposed on the silhouette of the person
for each camera. The resulting alert levels and their respective weights are shared
by the cameras, from which the overall alert level shown in the figure is obtained.

140



θ
r

( , ) ( ) ( )rf r f r fθθ θ= i

r

( )rf r

0 1

1

θ

( )fθ θ

0
2

π1

4

π

1−

Fig. 10. The alert level functions based on the aspect ratio and the orientation angle
of fitted ellipses.

5 Conclusions

In this paper we explore the interactive framework between vision and AI. While
vision is helpful to derive reasoning building blocks for higher levels, there is more
in the framework. We claim that the feedback between the vision module and
the reasoning module is able to benefit both.

A framework of data fusion in distributed vision networks is proposed. Mo-
tivated by the concept of opportunistic use of available information across the
different processing and interpretation levels, the proposed framework has been
designed to incorporate interactions between the vision module and the high-
level reasoning module. Such interactions allow the quantitative knowledge from
the vision network to provide specific qualitative distinctions for AI-based prob-
lems, and in turn, allows the qualitative representations to offer clues to direct
the vision network to adjust its processing operation according to the inter-
pretation state. Two vision-based fusion algorithms were presented, one based
on reconstructing the full-parameterized human model and the other based on
a sequence of direct deductions about the posture elements in a fall detection
application.

The current work includes incorporation of body part motion into the full-
parameterized human body model allowing the model to carry the gesture ele-
ments in interactions between the vision network and the high-level reasoning
module. Other extensions of interest include creating a link from the human
model to the reduced qualitative description set for a specific application, and
utilizing deductions made by the AI system as a basis for active vision in multi-
camera settings.
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