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ABSTRACT 
The impact of user interface quality has grown in software 
systems engineering, and will grow further with upcoming new 
paradigms such as Ambient Intelligence or Ubiquitous 
Computing, which confront the production industry with a huge 
diversity of new usage situations. In this paper, we will show the 
adaptation of a task-oriented useware modeling language, which 
is employed in the model-based useware development process, to 
future paradigms by extending its existing models with respect to 
the new upcoming requirements. This language reflects several 
user groups’ tasks and user interface structure preferences in a 
common use model described in a system-independent language. 
It is being enhanced to describe spatial relations, connections 
between device compounds, and different ways of fulfilling tasks 
within different interaction zones. For the future, this model is 
intended to be used for the run-time generation of user interfaces 
for adaptive software and intelligent environments, especially in 
the area of production and manufacturing. 

Categories and Subject Descriptors 
D.5.2 [User Interfaces]: Theory and methods, User-centered 
design 

General Terms 
Performance, Design, Reliability, Experimentation, Human 
Factors, Languages. 

Keywords 
Useware, User Interfaces, Ambient Intelligence, Intelligent 
Production Environments. 

1. INTRODUCTION 
The level of acceptance of a user interface depends largely on its 
ease and convenience of use. A user can work with a technical 
device more efficiently when the user interface is tailored to the 
users’ needs, on the one hand, and to their abilities on the other 
hand. Therefore, during a systematic development process, the 
users’ needs, preferences, tasks, and mental models have to be 
surveyed, in order to subsequently deploy them into the 
development of a task-oriented and user-friendly device that will 
be as convenient as possible to use. 

Still, people think and act quite differently, even when they 
perform the same task. Their personal requirements may depend 
on a large variety of influences ranging from their qualification, 
their area of activity and their tasks, up to rapidly changing 
conditions such as mood, time of day, current location, or recent 

events. In production environments, it is nowadays common to 
train employees in the operation of devices and restrict their 
access to safety-critical device functions, so all users (operators) 
are taught how to handle a device in advance. In a private 
environment, e.g., at home, however, users often have nothing 
more than a manual describing the functionality of a certain 
device – and they often refuse to read it right away.  

Obviously, a developer of consumer goods must design the 
appliance in an intuitive way for a large variety of users. Nearly 
all kinds of home appliances are already equipped with computing 
power or are being replaced with equivalent – or even higher 
valued – technical devices. Hundreds of so-called “smart homes” 
and “living assistance scenarios” all around the world, centers of 
excellence regarding the technologically modern way of life, 
demonstrate networked, adaptable, “smart” devices that can be 
personalized or even actively and automatically adapt themselves 
to their users, resulting in environments proactively supporting 
the users during their daily lives, or are even able of detecting and 
thereby preventing critical situations [6]. With the 
SmartFactoryKL in Kaiserslautern/Germany, a first intelligent 
factory has been built to provide a testbed and demonstration 
platform for smart technologies based on ad-hoc networks, 
dynamic system collaboration, and context-adaptive human-
machine interaction systems. In the future, these systems will 
provide information at any time and in any place, making them 
more flexible and remotely accessible. This, however, results in a 
huge number of usage situations dependent on user, situation, 
machine, environmental conditions, task, etc. A smart device’s 
flexibility may thus become a disadvantage when information is 
not presented properly in terms of format, structure, and a 
context- and location-sensitive, task-oriented way [1]. 

 
Figure 1. Systematic useware development process [4]. 

Within a systematic useware development process (see Figure 1), 
the Center for Human-Machine-Interaction (ZMMI) has applied 
its Useware Markup Language (useML, see Figure 2) 
harmonizing multiple users’ mental task models in a common use 
model, in numerous successful joint ventures and industrial 
projects. With the launch of the SmartFactoryKL [8], it carries the 
future interaction paradigm of Ambient Intelligence into the area 
of production industry. This paper focuses on the description of 



the enhancement of the Useware Markup Language to meet the 
mentioned challenges in future production environments, and 
presents the current state-of-the-research project GaBi (German 
abbreviation for “Generating task-oriented user interfaces in 
intelligent production environments”), which aims at developing 
possible solutions for human-machine interfaces in production 
facilities ten years from now – in the year 2017. 

2. PROJECT STATUS 
The research project GaBi aims at adapting and enhancing the 
already existing and approved Useware Markup Language, as 
well as at establishing a repository of usability patterns (tailored 
to the production industry), which will be used during the model-
based generation of user interfaces at run-time. The project is 
scheduled for 2 (+1) years and is entering its second year. 

 
Figure 2. Classic useML scheme according to  

[4] and [5]. 
The early analysis of user requirements for interactions with 
intelligent environments was complemented with a so-called 
Future Workshop, which took place on February 13th, 2007. It 
was attended by participants from different manufacturing 
companies and research institutes, including requirements 
analysts, data protection officers, philosophers, software 
engineers, jurisprudents, and usability experts. All these 
specialists gave brief overviews of the current state-of-the-art in 
human-machine interaction from their own professional points of 
view, and recapped deficiencies of today’s systems. After 
collecting visions for the year 2017 in a second phase of the 
workshop, these ideas were finally evaluated against the identified 
deficiencies with respect to the feasibility of their 
implementation. The results were incorporated into a scenario 
describing natural human-machine interaction in a production 
facility in the year 2017 and into the extension of the use model 
[7]. 

One fact that emerged, among others, was that there will be no 
one-fits-all solution meeting all kinds of tasks and personal 
preferences. The experts instead pleaded for more flexible 
systems, which adapt themselves to each user’s needs and the 
current context of use automatically and further provide the 
possibility of being adapted manually by the user according to his 
personal preferences. Still, human-machine interfaces should not 
be too flexible, in order to still meet safety specifications and 
offer rarely needed, but important functions, for example. 
Therefore, some basic standards are needed to increase the 
recognition value of a system to the user, and to facilitate the use 

of different software products by increasing their compatibility. 
This tightrope walk between automatic self-adaptation to the 
individual user on the one hand, and the standardization of user 
interfaces on the other hand requires a well-adjusted combination 
of model-based user interface generation and previously defined 
user interface components, or the use of so-called usability 
patterns. 

Another common mistake pointed out by the experts concerned 
the design of easily and intuitively usable interfaces. While 
simplification by reduction of complexity is an honorable goal, 
the systems must rather present interfaces corresponding to the 
task, qualification, preferences, and needs of the individual user. 
In this context, reducing complexity is not always the best way to 
optimize a user interface, because highly qualified users often 
need or simply want to access extra information and 
functionalities. From this point of view, it becomes evident that 
users make different, but always high demands on technical 
devices. They tend to interact with the same device in different 
ways, so that developers are advised to consider different types of 
users throughout the whole development process. 

3. MODELING WITH useML 
Originally invented by [5] to structure user interfaces in a user- 
and task-oriented useware development process (see Figure 1), 
the XML-based Useware Markup Language (useML) arranges 
user or machine operator tasks in a hierarchy of abstract use 
objects (UO) and five types of different elementary use objects 
(EUO), which are well-suited for today’s machine operations. The 
overall model will be arranged as a tree, using UOs as nodes and 
EUOs at the leaf level. Starting from a high-level task description 
at the root node, the UOs are refined from high-level abstract 
tasks into more concrete subtasks, activities, actions, and, finally, 
elementary actions or operations such as pressing a button, 
entering a value, or reading displayed information from a screen 
(see Figure 2), which can be directly mapped to the corresponding 
functionality of a certain device. This task model is platform- and 
modality-independent and self-sufficient in terms of concrete 
design and realization, which are added during a later phase of the 
useware development process. Based on the multitude of task 
models determined from (potential) users in the analysis phase, 
the use model is integrated from these models through 
harmonization and systematic structuring. The use model is 
designed to incorporate several user groups’ different approaches 
to their specific tasks in a single model, which can be filtered by 
attributes such as user group and device type. It is also possible to 
build one single use model for a whole family of devices, i.e., a 
company’s product line. This way, all devices developed on the 
basis of the same use model will share a consistent, recognizable, 
and thus intuitive interaction scheme, which might also cross 
platforms: Only in the subsequent design and realization phases 
following the use model structuring (see Figure 2), the actual 
target platforms and interaction modalities are derived, which 
might be Graphical User Interfaces (GUI) or speech interfaces. 

Although the Useware Markup Language is well suited for the 
development of single devices or device families, it was not 
designed to describe more complex production processes or even 
facilities incorporating a high number of devices or machines of 
different types. Therefore, the GaBi project aims at improving the 
Useware Markup Language by expanding its scope, providing 



compatibility for future interaction paradigms such as Ambient 
Intelligence or Ubiquitous Computing. Such progressive 
environments will comprise hundreds or even thousands of 
cooperating devices and embedded systems with which we will 
quite naturally interact. Traditional interaction paradigms such as 
GUIs dedicated to a single device may not be sufficient any 
longer, and users may employ numerous devices at the same time 
to fulfill their tasks. An appropriate use model therefore must 
contain a spatial representation of the relevant environments or 
spaces, as well as a description of devices and device compounds 
involved in all potential users’ works. 

Within the GaBi project, we therefore adapted the use model 
scheme to these requirements (compare Figures 2 and 3). It now 
includes relations between locations, devices, and users, 
beginning with a hierarchical structure of (mobile or stationary) 
organizational rooms. The meets relation is used to model 
adjoining rooms. Using the joint relation, rooms can be structured 
into physical or logical subspaces. Completely different rooms are 
expressed by the disjoint relation. All rooms are identified by 
names, but can also have unique IDs, coordinates, or descriptions. 
As just mentioned, the rooms do not have to exist as physical 
rooms in the real world, but can also identify purely logical (i.e., 
organization) rooms. 

 
Figure 3. Integrated, room-based use model. 

Within every room, multiple (mobile or stationary) device 
compounds can be located. Again, each device compound can 
recursively comprise other device compounds, devices, 
components, or parts. If a device is subordinated to or is a child 
element of another device, respectively, it is considered to be a 
part of that device. If a mobile device is subordinate to another 
device, it is considered to work as long as it is an integral part of 
its parent device. Mobile devices can also be direct children of 
organizational rooms; in this case, they can only be used within 
these rooms to fulfill the tasks modeled later on.  

Furthermore, each device (compound) can be operated differently 
depending on the interaction zone that its user or operator is in. 
For example, a remote control panel for a robot picker arm might 
be configured to control the robot only within an effective range 
of a few meters, while it can request status information from a 
wider distance or even remotely via intranet. Such interaction 
zones can be defined for each device or device compound, but 
always belong to at least one of three abstract zones, i.e., the local 
(at or near the device), regional (within a sealed-off data 
network), or global zone. The local zone is further subdivided into 
an interaction zone, where the user can operate the device, a 
notification zone, where he can still gather information presented 
by the device (i.e., a display or loudspeaker), and finally an 
attention zone, where he cannot yet gather detailed information, 
but may notice warning signs, blinking lights, unexpected 
messages, color codes, and so on. In certain cases, these zones can 
be identical, e.g., when a user possesses a remote control that lets 
him operate a device from a distance that exceeds his physical 
limitations. Under normal circumstances, however, the zones 
would overlap as shown in Figure 3. 

For each interaction zone, every device in any room should 
possess at least one use model, and preferably even exactly one. 
This, however, is not the classic use model anymore as invented 
by [5] and described above (see Figure 2); it has been extended to 
not only span hierarchies of UOs and EUOs. Rather, sequences of 
use objects can be defined, and elementary use objects can be 
combined into compounds (EUOCs) with elaborated selection and 
execution rules. Further, any UO can be linked to other ones, even 
in other subtrees of the hierarchy, thereby spanning a network of 
associated use objects within the classical hierarchy (see Figure 
3). 

Within an EUOC, execution rules can define how many of the 
given EUOs can or must be executed in which order. For 
example, it can be stated that at least 3 of all 5 components in a 
compound must be executed sequentially. Finally, conditional 
references between EUOCs and their parent UOs can be enclosed, 
such as a break or post condition. 

4. CREATING THE UI 
Based on this integrated use model, by applying platform-specific 
(stylesheet) transformations, it is possible to build the 
corresponding UI. Thus, only one use model is needed to describe 
the human-machine interaction independently of the device that 
will be used to communicate with the user. An important property 
here is the fact that the UI can be created at development time, 
can then be deployed at the destination platform and used there. 

Due to the highly dynamical environment, new interaction 
devices can be integrated seamlessly at any time. Thus, the use 
model needs to be reinterpreted accordingly. Therefore, it is 
important to alter the appearance of the UI at run-time, integrating 
new functionality to reflect the current configuration of the whole 
production environment. Unlike the previous, single-device 
approach, it is self-evident that while the usage situation is no 
longer static at run-time, the UI code has to be generated as well 
as deployed and executed at run-time. In a previous approach, 
which generated a model-based user interface at run-time [2], we 
observed that the time consumption of the entire process is very 
high. This means that performing all activities necessary for 
providing a complete user interface built from an abstract 



description (task model and usage situation) takes far too long to 
be really usable.  

This raised the idea of every device to be integrated into this 
environment already having to provide a set of user interface 
components, with each being well developed for a certain pre-
defined platform. At run-time, the corresponding user interface 
components have to be transferred to the interaction device and 
there need to be combined into an integrated UI acting as a 
universal controller. When a new device appears in this 
environment, only the new UI component needs to be deployed at 
the interaction device. 

In useML, such UI components represent the implementation of 
EBOCs or even entire UOs, depending on the current granularity. 
Originally, an EBOC consists of a description of how the human-
machine interaction has to be performed and which steps can be 
mapped directly to the device’s functionality. Since each UI 
component is a complete encapsulated interaction unit, there is no 
longer a need for explicit modeling. Therefore, the enhanced 
useML will accept also components instead of EBOCs and UOs. 

 
Figure 4. Effect of usability patterns. 

Another important aspect concerns the so-called usability patterns 
and usability guidelines [3], which capture “best practice” 
knowledge in Usability Engineering. There are different types of 
these patterns, e.g., some describing the interaction of humans and 
machines, others including layout descriptions. Figure 4 shows 
the effect of the alternating-row-color and the table-header pattern 
on the example of a regular table. The enhanced useML allows 
for potentially applicable patterns being annotated to entire sub-
trees, fulfilling certain pre-conditions. 

5. SUMMARY 
After our requirements research comprising the Future Workshop 
with a heterogeneous set of participants, the fact emerged that 
user interfaces in future intelligent production environments have 
to be task-oriented in order to achieve a reduction of complexity 
compared to the human-machine devices that are currently used in 
such factories. Therefore, we extended the approved useML 
according to the new paradigm of Ambient Intelligence in future 
production environments. Hence, we included the possibility of 
structuring the spatial environment (spatial use model), which is 
essential to these context information sensitive systems. Also, 
another important factor is the configuration model of interacting 
devices, which was also included in the altered model. Now every 
device can be equipped with a separate use model, describing its 
own way of interaction.  

6. FUTURE WORK 
Nevertheless, many problems remain regarding the introduction 
of the Ambient Intelligence paradigm into intelligent production 
environments. For example, the fact that the device configuration 
will change at run-time, according to the factory configuration, 
needs to be reflected. Therefore, methods have to be developed 

that address the integration of actual context information into the 
transformation process of the model. 

Another important issue is the implementation of this adaptive 
system. Due to the awareness that is not effective to create an 
entire UI from scratch at run-time, we already mentioned the idea 
of composing the UI from single components, which need to be 
provided in the first place (e.g., by the devices themselves). The 
composition of the single components is also a topic of interest, as 
is the way the composition will be influenced by usability 
patterns. These design guidelines already exist, but are neither 
formalized in a machine readable way, nor have explicit patterns 
been identified for production environments. 

Finally, an important step in our evaluation process will be a 
feasibility study implementing and testing our concept. For this 
purpose, the SmartFactoryKL is the ideal testbed for simulating 
future production environments. 
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