
Useware modeling for
ambient intelligent production environments

Daniel Görlich
University of Kaiserslautern

Center for Human-Machine-Interaction
67663 Kaiserslautern

goerlich@mv.uni-kl.de

Kai Breiner
University of Kaiserslautern

Software Engineering Research Group
67663 Kaiserslautern

breiner@informatik.uni-kl.de

ABSTRACT
The impact of user interface quality has grown in software
systems engineering, and will grow further with upcoming new
paradigms such as Ambient Intelligence or Ubiquitous
Computing, which confront the production industry with a huge
diversity of new usage situations. In this paper, we will show the
adaptation of a task-oriented useware modeling language, which
is employed in the model-based useware development process, to
future paradigms by extending its existing models with respect to
the new upcoming requirements. This language reflects several
user groups’ tasks and user interface structure preferences in a
common use model described in a system-independent language.
It is being enhanced to describe spatial relations, connections
between device compounds, and different ways of fulfilling tasks
within different interaction zones. For the future, this model is
intended to be used for the run-time generation of user interfaces
for adaptive software and intelligent environments, especially in
the area of production and manufacturing.

Categories and Subject Descriptors
D.5.2 [User Interfaces]: Theory and methods, User-centered
design

General Terms
Performance, Design, Reliability, Experimentation, Human
Factors, Languages.

Keywords
Useware, User Interfaces, Ambient Intelligence, Intelligent
Production Environments.

1. INTRODUCTION
The level of acceptance of a user interface depends largely on its
ease and convenience of use. A user can work with a technical
device more efficiently when the user interface is tailored to the
users’ needs, on the one hand, and to their abilities on the other
hand. Therefore, during a systematic development process, the
users’ needs, preferences, tasks, and mental models have to be
surveyed, in order to subsequently deploy them into the
development of a task-oriented and user-friendly device that will
be as convenient as possible to use.

Still, people think and act quite differently, even when they
perform the same task. Their personal requirements may depend
on a large variety of influences ranging from their qualification,
their area of activity and their tasks, up to rapidly changing
conditions such as mood, time of day, current location, or recent

events. In production environments, it is nowadays common to
train employees in the operation of devices and restrict their
access to safety-critical device functions, so all users (operators)
are taught how to handle a device in advance. In a private
environment, e.g., at home, however, users often have nothing
more than a manual describing the functionality of a certain
device – and they often refuse to read it right away.

Obviously, a developer of consumer goods must design the
appliance in an intuitive way for a large variety of users. Nearly
all kinds of home appliances are already equipped with computing
power or are being replaced with equivalent – or even higher
valued – technical devices. Hundreds of so-called “smart homes”
and “living assistance scenarios” all around the world, centers of
excellence regarding the technologically modern way of life,
demonstrate networked, adaptable, “smart” devices that can be
personalized or even actively and automatically adapt themselves
to their users, resulting in environments proactively supporting
the users during their daily lives, or are even able of detecting and
thereby preventing critical situations [6]. With the
SmartFactoryKL in Kaiserslautern/Germany, a first intelligent
factory has been built to provide a testbed and demonstration
platform for smart technologies based on ad-hoc networks,
dynamic system collaboration, and context-adaptive human-
machine interaction systems. In the future, these systems will
provide information at any time and in any place, making them
more flexible and remotely accessible. This, however, results in a
huge number of usage situations dependent on user, situation,
machine, environmental conditions, task, etc. A smart device’s
flexibility may thus become a disadvantage when information is
not presented properly in terms of format, structure, and a
context- and location-sensitive, task-oriented way [1].

Figure 1. Systematic useware development process [4].

Within a systematic useware development process (see Figure 1),
the Center for Human-Machine-Interaction (ZMMI) has applied
its Useware Markup Language (useML, see Figure 2)
harmonizing multiple users’ mental task models in a common use
model, in numerous successful joint ventures and industrial
projects. With the launch of the SmartFactoryKL [8], it carries the
future interaction paradigm of Ambient Intelligence into the area
of production industry. This paper focuses on the description of

the enhancement of the Useware Markup Language to meet the
mentioned challenges in future production environments, and
presents the current state-of-the-research project GaBi (German
abbreviation for “Generating task-oriented user interfaces in
intelligent production environments”), which aims at developing
possible solutions for human-machine interfaces in production
facilities ten years from now – in the year 2017.

2. PROJECT STATUS
The research project GaBi aims at adapting and enhancing the
already existing and approved Useware Markup Language, as
well as at establishing a repository of usability patterns (tailored
to the production industry), which will be used during the model-
based generation of user interfaces at run-time. The project is
scheduled for 2 (+1) years and is entering its second year.

Figure 2. Classic useML scheme according to

[4] and [5].
The early analysis of user requirements for interactions with
intelligent environments was complemented with a so-called
Future Workshop, which took place on February 13th, 2007. It
was attended by participants from different manufacturing
companies and research institutes, including requirements
analysts, data protection officers, philosophers, software
engineers, jurisprudents, and usability experts. All these
specialists gave brief overviews of the current state-of-the-art in
human-machine interaction from their own professional points of
view, and recapped deficiencies of today’s systems. After
collecting visions for the year 2017 in a second phase of the
workshop, these ideas were finally evaluated against the identified
deficiencies with respect to the feasibility of their
implementation. The results were incorporated into a scenario
describing natural human-machine interaction in a production
facility in the year 2017 and into the extension of the use model
[7].

One fact that emerged, among others, was that there will be no
one-fits-all solution meeting all kinds of tasks and personal
preferences. The experts instead pleaded for more flexible
systems, which adapt themselves to each user’s needs and the
current context of use automatically and further provide the
possibility of being adapted manually by the user according to his
personal preferences. Still, human-machine interfaces should not
be too flexible, in order to still meet safety specifications and
offer rarely needed, but important functions, for example.
Therefore, some basic standards are needed to increase the
recognition value of a system to the user, and to facilitate the use

of different software products by increasing their compatibility.
This tightrope walk between automatic self-adaptation to the
individual user on the one hand, and the standardization of user
interfaces on the other hand requires a well-adjusted combination
of model-based user interface generation and previously defined
user interface components, or the use of so-called usability
patterns.

Another common mistake pointed out by the experts concerned
the design of easily and intuitively usable interfaces. While
simplification by reduction of complexity is an honorable goal,
the systems must rather present interfaces corresponding to the
task, qualification, preferences, and needs of the individual user.
In this context, reducing complexity is not always the best way to
optimize a user interface, because highly qualified users often
need or simply want to access extra information and
functionalities. From this point of view, it becomes evident that
users make different, but always high demands on technical
devices. They tend to interact with the same device in different
ways, so that developers are advised to consider different types of
users throughout the whole development process.

3. MODELING WITH useML
Originally invented by [5] to structure user interfaces in a user-
and task-oriented useware development process (see Figure 1),
the XML-based Useware Markup Language (useML) arranges
user or machine operator tasks in a hierarchy of abstract use
objects (UO) and five types of different elementary use objects
(EUO), which are well-suited for today’s machine operations. The
overall model will be arranged as a tree, using UOs as nodes and
EUOs at the leaf level. Starting from a high-level task description
at the root node, the UOs are refined from high-level abstract
tasks into more concrete subtasks, activities, actions, and, finally,
elementary actions or operations such as pressing a button,
entering a value, or reading displayed information from a screen
(see Figure 2), which can be directly mapped to the corresponding
functionality of a certain device. This task model is platform- and
modality-independent and self-sufficient in terms of concrete
design and realization, which are added during a later phase of the
useware development process. Based on the multitude of task
models determined from (potential) users in the analysis phase,
the use model is integrated from these models through
harmonization and systematic structuring. The use model is
designed to incorporate several user groups’ different approaches
to their specific tasks in a single model, which can be filtered by
attributes such as user group and device type. It is also possible to
build one single use model for a whole family of devices, i.e., a
company’s product line. This way, all devices developed on the
basis of the same use model will share a consistent, recognizable,
and thus intuitive interaction scheme, which might also cross
platforms: Only in the subsequent design and realization phases
following the use model structuring (see Figure 2), the actual
target platforms and interaction modalities are derived, which
might be Graphical User Interfaces (GUI) or speech interfaces.

Although the Useware Markup Language is well suited for the
development of single devices or device families, it was not
designed to describe more complex production processes or even
facilities incorporating a high number of devices or machines of
different types. Therefore, the GaBi project aims at improving the
Useware Markup Language by expanding its scope, providing

compatibility for future interaction paradigms such as Ambient
Intelligence or Ubiquitous Computing. Such progressive
environments will comprise hundreds or even thousands of
cooperating devices and embedded systems with which we will
quite naturally interact. Traditional interaction paradigms such as
GUIs dedicated to a single device may not be sufficient any
longer, and users may employ numerous devices at the same time
to fulfill their tasks. An appropriate use model therefore must
contain a spatial representation of the relevant environments or
spaces, as well as a description of devices and device compounds
involved in all potential users’ works.

Within the GaBi project, we therefore adapted the use model
scheme to these requirements (compare Figures 2 and 3). It now
includes relations between locations, devices, and users,
beginning with a hierarchical structure of (mobile or stationary)
organizational rooms. The meets relation is used to model
adjoining rooms. Using the joint relation, rooms can be structured
into physical or logical subspaces. Completely different rooms are
expressed by the disjoint relation. All rooms are identified by
names, but can also have unique IDs, coordinates, or descriptions.
As just mentioned, the rooms do not have to exist as physical
rooms in the real world, but can also identify purely logical (i.e.,
organization) rooms.

Figure 3. Integrated, room-based use model.

Within every room, multiple (mobile or stationary) device
compounds can be located. Again, each device compound can
recursively comprise other device compounds, devices,
components, or parts. If a device is subordinated to or is a child
element of another device, respectively, it is considered to be a
part of that device. If a mobile device is subordinate to another
device, it is considered to work as long as it is an integral part of
its parent device. Mobile devices can also be direct children of
organizational rooms; in this case, they can only be used within
these rooms to fulfill the tasks modeled later on.

Furthermore, each device (compound) can be operated differently
depending on the interaction zone that its user or operator is in.
For example, a remote control panel for a robot picker arm might
be configured to control the robot only within an effective range
of a few meters, while it can request status information from a
wider distance or even remotely via intranet. Such interaction
zones can be defined for each device or device compound, but
always belong to at least one of three abstract zones, i.e., the local
(at or near the device), regional (within a sealed-off data
network), or global zone. The local zone is further subdivided into
an interaction zone, where the user can operate the device, a
notification zone, where he can still gather information presented
by the device (i.e., a display or loudspeaker), and finally an
attention zone, where he cannot yet gather detailed information,
but may notice warning signs, blinking lights, unexpected
messages, color codes, and so on. In certain cases, these zones can
be identical, e.g., when a user possesses a remote control that lets
him operate a device from a distance that exceeds his physical
limitations. Under normal circumstances, however, the zones
would overlap as shown in Figure 3.

For each interaction zone, every device in any room should
possess at least one use model, and preferably even exactly one.
This, however, is not the classic use model anymore as invented
by [5] and described above (see Figure 2); it has been extended to
not only span hierarchies of UOs and EUOs. Rather, sequences of
use objects can be defined, and elementary use objects can be
combined into compounds (EUOCs) with elaborated selection and
execution rules. Further, any UO can be linked to other ones, even
in other subtrees of the hierarchy, thereby spanning a network of
associated use objects within the classical hierarchy (see Figure
3).

Within an EUOC, execution rules can define how many of the
given EUOs can or must be executed in which order. For
example, it can be stated that at least 3 of all 5 components in a
compound must be executed sequentially. Finally, conditional
references between EUOCs and their parent UOs can be enclosed,
such as a break or post condition.

4. CREATING THE UI
Based on this integrated use model, by applying platform-specific
(stylesheet) transformations, it is possible to build the
corresponding UI. Thus, only one use model is needed to describe
the human-machine interaction independently of the device that
will be used to communicate with the user. An important property
here is the fact that the UI can be created at development time,
can then be deployed at the destination platform and used there.

Due to the highly dynamical environment, new interaction
devices can be integrated seamlessly at any time. Thus, the use
model needs to be reinterpreted accordingly. Therefore, it is
important to alter the appearance of the UI at run-time, integrating
new functionality to reflect the current configuration of the whole
production environment. Unlike the previous, single-device
approach, it is self-evident that while the usage situation is no
longer static at run-time, the UI code has to be generated as well
as deployed and executed at run-time. In a previous approach,
which generated a model-based user interface at run-time [2], we
observed that the time consumption of the entire process is very
high. This means that performing all activities necessary for
providing a complete user interface built from an abstract

description (task model and usage situation) takes far too long to
be really usable.

This raised the idea of every device to be integrated into this
environment already having to provide a set of user interface
components, with each being well developed for a certain pre-
defined platform. At run-time, the corresponding user interface
components have to be transferred to the interaction device and
there need to be combined into an integrated UI acting as a
universal controller. When a new device appears in this
environment, only the new UI component needs to be deployed at
the interaction device.

In useML, such UI components represent the implementation of
EBOCs or even entire UOs, depending on the current granularity.
Originally, an EBOC consists of a description of how the human-
machine interaction has to be performed and which steps can be
mapped directly to the device’s functionality. Since each UI
component is a complete encapsulated interaction unit, there is no
longer a need for explicit modeling. Therefore, the enhanced
useML will accept also components instead of EBOCs and UOs.

Figure 4. Effect of usability patterns.

Another important aspect concerns the so-called usability patterns
and usability guidelines [3], which capture “best practice”
knowledge in Usability Engineering. There are different types of
these patterns, e.g., some describing the interaction of humans and
machines, others including layout descriptions. Figure 4 shows
the effect of the alternating-row-color and the table-header pattern
on the example of a regular table. The enhanced useML allows
for potentially applicable patterns being annotated to entire sub-
trees, fulfilling certain pre-conditions.

5. SUMMARY
After our requirements research comprising the Future Workshop
with a heterogeneous set of participants, the fact emerged that
user interfaces in future intelligent production environments have
to be task-oriented in order to achieve a reduction of complexity
compared to the human-machine devices that are currently used in
such factories. Therefore, we extended the approved useML
according to the new paradigm of Ambient Intelligence in future
production environments. Hence, we included the possibility of
structuring the spatial environment (spatial use model), which is
essential to these context information sensitive systems. Also,
another important factor is the configuration model of interacting
devices, which was also included in the altered model. Now every
device can be equipped with a separate use model, describing its
own way of interaction.

6. FUTURE WORK
Nevertheless, many problems remain regarding the introduction
of the Ambient Intelligence paradigm into intelligent production
environments. For example, the fact that the device configuration
will change at run-time, according to the factory configuration,
needs to be reflected. Therefore, methods have to be developed

that address the integration of actual context information into the
transformation process of the model.

Another important issue is the implementation of this adaptive
system. Due to the awareness that is not effective to create an
entire UI from scratch at run-time, we already mentioned the idea
of composing the UI from single components, which need to be
provided in the first place (e.g., by the devices themselves). The
composition of the single components is also a topic of interest, as
is the way the composition will be influenced by usability
patterns. These design guidelines already exist, but are neither
formalized in a machine readable way, nor have explicit patterns
been identified for production environments.

Finally, an important step in our evaluation process will be a
feasibility study implementing and testing our concept. For this
purpose, the SmartFactoryKL is the ideal testbed for simulating
future production environments.

7. ACKNOWLEDGMENTS
This work was supported in parts by the GaBi project at the
University of Kaiserslautern, which is funded by the German
Research Foundation (DFG).

8. REFERENCES
[1] Bödcher, A., Mukasa K. and Zühlke D. Capturing Common

and Variable Design Aspects for Ubiquitous Computing with
MB-UID. In Proceedings of the Workshop on Model Driven
Development of Advanced User Interfaces. Montego Bay,
Jamaica, 2005.

[2] Trapp, M., and Schmettow, M. Consistency in Use through
Model-based User Interface Development, CHI 2006,
Workshop on The Multiple Faces of Consistency, Montreal,
Canada, 2006.

[3] Welie, M. v., Veer, G. C. v. d. and Eliëns, A. Patterns as
Tools for User Interface Design. In International Workshop
on Tools for Working with Guidelines, (Biarritz, France,
2000), 313-324.

[4] Zuehlke, D. Useware-Engineering für technische Systeme.
Springer, Berlin, 2004.

[5] Reuther, A. useML – Systematische Entwicklung von
Maschinenbediensystemen mit XML. Ph.D. Thesis,
University of Kaiserslautern, 2003.

[6] Nehmer, J., Becker, M., Karshmer, A., and Lamm, R. Living
assistance systems: an ambient intelligence approach. In
Proceeding of the 28th international Conference on Software
Engineering (Shanghai, China, May 20 - 28, 2006). ICSE
'06. ACM Press, New York, NY, 43-50.

[7] Görlich, D., and Breiner, K. Intelligent task-oriented user
interfaces in production environments. In 1st International
Workshop on Model-Driven User-Centric Design &
Engineering (Seoul, Korea, September 2007). IFAC, 2007.

[8] Pohlmann, E. G., Bödcher, A., and Zühlke, D.
SmartFactoryKL – Informationstechnik für die Fabrik der
Zukunft. In atp – Automatisierungstechnische Praxis 47(12),
2005, S. 48-52.

	1. INTRODUCTION
	2. PROJECT STATUS
	3. MODELING WITH useML
	4. CREATING THE UI
	5. SUMMARY
	6. FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

