
Model Driven Development of Complex User Interface
Xudong Lu

School of Computer Science and Technology,
Shandong University

73#, Jingshi road, Jinan Shandong Province, China
86-531-88392498

dongxul@sdu.edu.cn

Jiancheng Wan
School of Computer Science and Technology,

Shandong University
73#, Jingshi road, Jinan Shandong Province, China

86-531-88392498

Wanjch@sdu.edu.cn

ABSTRACT

To promote the Model-Based software engineering development

of user interfaces, this paper proposes a model driven

development approach of complex user interface. The approach

captures the process data in user interfaces by using an Extended

Object Model. User interfaces are directly, abstractly depicted as

objects, components and their cooperative relations in an

Interaction Model. Their external visual presentation is

customized in the Presentation Model in the name of UI Template.

The uniqueness of this research is a direct and leveled abstractive

attack on complex user interface composition or description,

rather than the elicitation from task models.

Categories and Subject Descriptors

D.2.1[Requirements/Specification]: Methodologies - Model

Based User Interface; Representation - User Interface; D.2.2

[Design Tools and Techniques]: Computer-Aided Software

Engineering (CASE) - Model Based User Interface Development

Environment;

General Terms

Design, Experimentation, Theory

Keywords

Software Engineering, User Interface Design, Code Generation

1. INTRODUCTION
The user interface of an application is often one of the core

factors determining its success. The model-based user interface

development technology aims to provide an environment where

developers can design and implement user interfaces (UIs) in a

professional and systematic way, more easily than when using

traditional UI development tools [1]. To achieve this aim, many

approaches for UI design and model-based user interface

development environments (MB-UIDEs) have been proposed. But,

in spite of more than 10 year’s researches, there are few models

and tools being fully developed and powerful enough to be

recognized for commercial and industrial acceptance [2]. In the

authors’ view, the most reason of this situation is that the

approaches had been proposed have not enough ability in deal

with complexity of user interface.

The complexity of user interface mainly lies in two aspects as

following.

First, in user interface of the practical software, there always have

more complex UI controls of grid, graph and tree, sharing

presentation space that can overlapping many present units so can

show different content in different context, and their operational

relations.

Second, the contemporary UI construction needs support of

different techniques and various types of component and their

relationships, such as Java Applet, Java Beans, CORBA and

COM/DCOM component, etc..

The complex UI controls and components’ introduce enhancing

the UI functionality, but they do have alleviated the UI

development difficulties in great deal. In this case, lacks in this

support of UI modeling will affect the ability in dealing with UI

complexities, and will not be accepted in practical applications.

2. RELATED WORKS
The literature contains many papers describing model-based user

interface approaches. Reported researches includes Drive[3],

MOBI-D[4], Wisdom[5], Teresa[6], Teallach[2], JUST-UI[7],

SUPPLE[8], etc. These approaches have respective characteristic

as their different applying backgrounds such as web applications,

multi-devices applications. But, there still have some commons.

For example, the approaches usually have several models

describing different aspects of the UI. The kind of models used in

different approaches varies, however a useful categorization is

presented in [1]: Application Model (AM), Task/Dialog Model

(TDM), Abstract Presentation Model (APM), Concrete

Presentation Model (CPM).

The UI development process is normally an incremental process

[1]. In most approaches, UI development starts from domain

objects or concepts likes object, describing the structure and

behavior of UI. Next, abstract user interface will build base on

domain objects and adding some user interface compose elements,

such as presentation objects or query objects etc.. Last, code will

generate in some approaches. But, the UIs generated are simple

and not be accepted in practical applications because of the UI

models not cover the complex elements of user interface

mentioned above.

The task model is widely used and most researches adopt one of

different forms of task model as the basis of UI modeling with

some differences, such as TERESA, Teallach, Trident and

Bisignano. But, the task-oriented UI design analysis and

composition could not fully reflect users’ synthetic and multiple

views toward UIs. Nowadays highly usable UIs usually contain

more than just the completion of user tasks. Extensive information

navigation, cross-reference and context-sensitive help are all

necessary facilities in UIs. A form-based UI has supplied an

environment for fulfilling tasks.

In conclusion, the declarative models of model-based user

interface development approaches have been proposed are still in

lack of a sound mechanism for direct describing complex UI

structure and composition.

3. ARCHITECTURE
Figure 1 shows the architecture of our approach, which reflects an

incremental development process. The process started from the

bottom abstract, layered combine the increasing requirements (see

the dotted line box), by model transformation get more specific

model and as the foundation of next layer. The process

emphasized the importance of human in the development of the

model, multi-layer transformation support the hierarchical model

and hierarchical development, which reflects the actual process of

practical software development. In this paper, we only focus on

how to direct describe the complex user interface use EIP model,

not touch user interface requirements acquisition and final

automatic generation as the limited length reason.

The EIP model consists of three parts, EOM (Extended Object

Model) as E, IM (Interaction Model) as I, and the Presentation

Model as P.

EOM is the application model of UIs. It specifies the data object

and their operational relationships. Considering their influence of

objects’ very structures and their relations to UI presentation, and

the satisfaction of the requirements for describing complex UIs,

we extend domain model through adding new attributes and

relations for describing data members and their behavioral

relationships.

Based on EOM and user’s requirements of UI interaction, IM acts

as a mechanism for direct description of UI. It includes functions,

abstract objects, components, external UIs, and their inter-

operational relationships, and interactive relations with users.

P is the Presentation Model of UIs. It gives the UI layout

according to the IM and user’s requirements of UI presentation.

UI layout is a complex design problem. For this purpose, we

propose the concept of UI Template, which is indexed and

constrained with IMs, and is to be instantiated to become a

concrete UI once the running platform is specified. Users might

take part in the designing process of UI Templates by selecting

the UI styles or UI design patterns and layout strategies.

4. EXTENDED OBJECT MODEL
Objects and their relationships are the main components that will

appear in UI. Generally, the basic data types of object data

members include numeric, character, enumeration, date,

navigation and multi-medias, etc. When appearing in an UI, they

must take a certain visual forms and different data types pertain to

different presentation forms. Further more, object relations also

have influence over UI presentation, such as UI widget layout and

operations. Therefore, objects are UI presentation related, and the

simple naked objects are not sufficient enough for complex UI

modeling. To completely and formally depict the UI composition

and behavior, new attributes and properties are needed to describe

the object data members, such as range of value, data source, I/O

forms for Presentation or data Acquisitions, value derivation,

associations and grouping. This paper not detail described these

new attributes and properties. However, Member Grouping, as an

illustration, is an exception.

Normally, a data member of an object is mapped to certain IO

objects in UIs. To make UI widget layout friendly and

psychologically accepted by users, therefore enhancing UI

usability, it is necessary to arrange and group IO objects in

particular form or order. This is the so-called Member Grouping.

For example, data members with the same types or closer

conceptual relations might be required to be placed together and

in certain order. Data members, that are grouped together, are

considered as a new UI unit as a whole. In this way, the whole

object is regarded as an ordered composition of UI units, forming

a sequential and hierarchical arrangement of data members. All

UI units are laid on an UI in certain order, for example, from right

to left, from top to down or in columns.

5. INTERACTION MODEL
The IM is used to directly describe the UI composition and

relationships. Its elements include Data Objects and Data

Collections, Query Objects, Controlling Objects, External Entities

or Components, Actors or Roles, UI Functions and UI

Navigations, Data Files and Print Documents.

In our symbol system, Data Object is represented as a rectangle,

in which the name, class and class members are included.

Rounded rectangle and beveled rectangle are also symbols for

data objects, the former as the object for forming query

information, therefore being called Query Object; and the later for

forming controlling information to take part in the operation of

use-cases, therefore being called Control Object.

Data Collection is represented with 2 overlapped rectangles. It is

an important object that might appear in UIs, therefore needing

special treatment because of its wide range of usages in UI

construction.

Data Object and Data Collection have the attribute for their data

source. If the data source comes from a Database table, special

code is needed for its implementation.

Rectangle with two vertical bars is the symbol for other UIs.

Dotted arrow directed to it means the relations of UI Navigation.

Print Document is a special kind of UIs in modeling and

presentation with data output only in them.

Figure 1. Architecture of Approach

 E IP

D o m a in M o d e l

E O M

IM

P M

U I im p lem en ta tio n

R e q . o f o b je c t p re se n ta tio n

R e q . o f U I in te ra c tio n

R e q . o f U I p re se n ta tio n

P la tfo rm c h a ra c te r is tic

Rectangle with one or more small circles connected to it

represents an External Entity or Component, where the circles are

its interfaces.

Use-cases directly connected to Actor are correspondent to menu

items or command buttons in UI.

Object relationships are the functional associations of UI objects,

which include the use of objects or interfaces, method or function

calling, UI navigation, message sending or event triggering, data

transmission, and object’s taking-part-in relations.

UI objects in an IM can be grouped together. A Group can be

viewed as an abstract entity for UI composition or an UI object.

Two kinds of group can be defined. Normal group (represented as

dotted-line rectangle) is the group of which each UI object will

exclusively possess its own presentation space; Overlapped group

(represented as bold-dotted-line rectangle) is the group that all of

its UI objects will be presented overlapped and commonly in a

presentation space. Events or functions can be attached to a group.

They are represented as small circles.

6. PRSENATION MODEL
The presentation model deals with the specification of visual

forms of UI objects and their layout as a whole.

An UI is normally presented within a rectangle area of screen.

Therefore, an UI is considered as a Presentation Object that is

presented in a Presentation Space.

To establish a presentation model of a complex UI with multiple

constituents, the space needs to be divided into smaller rectangle

areas to accommodate certain presentation objects. In this way, a

presentation model of UI is superficially composed of multiple

smaller presentation spaces and a set of presentation objects.

There are many ways to divide a presentation space. For ease of

visual manipulation and considering being still powerful enough

to deal with UI presentation complexities, the presentation space

is specifically divided in the way that the dividing of the main

space is consisted of a series steps, each dividing step concerns

only with one single rectangle area, and is performed either

vertically or horizontally into two or more disjointed rectangle

areas. Thus, starting as the root, the main space is divided and

organized in a tree structure, of which the leaf nodes are the

resultant possible presentation spaces for accommodating

presentation objects.

A Presentation Unit, or PU for short, is the combination of a leaf

node or a resultant presentation space and the related presentation

objects that will be presented in the space.

An UI Template contains a main presentation space that is

divided and a set of PUs, where the presentation properties or

details are specified. Actually, an UI Template is a set of defined

relations between presentation objects and leaf nodes of a divided

main presentation space, with presentation properties set and

global layout specified.

Since all visible UI objects in IM require some forms of visual

presentation, they will act as the Presentation Objects in PUs.

Therefore, once a main presentation space is defined and divided,

and the UI objects of an IM are assigned to the resultant

presentation space, an UI Template could be constructed

accordingly.

To fully describe an UI in enough presentation details, more

properties are needed for UI objects to be presented properly and

satisfactorily. Besides presentation properties such as foreground

and background colors, fonts, margins, line widths, etc., the main

concerns come from the consideration of presentation constituents

and their layout strategies. These properties are different for

different UI objects.

Actually, when certain category of UI objects and different

presentation is concerned, the similarities and differences in

operation, presentation constituents and properties will help to

form the concepts of UI Design Patterns. The detailed

presentation constituents and their layout of each PU are

determined by designer’s preference and customization of UI

Design Patterns for an UI object.

7. AN EXAMPLE
This example will show the grouping concept in modeling

overlapped presentation and the ability in dealing with complex

UI construction. Figure 2 is a practical UI in a net-loss

management system (now only in Chinese version) of electrical

power network. It is generated from its IM present in Figure 3 for

practical application in Visual Basic. EOM of example is omitted

in this paper as the limited length.

Figure 2 shows that the UI is consisted of 5 parts: 1) the Tree on

the left; 2) the Page at the bottom; 3) the Graph in the right-

middle for displaying graphics; 4) 6 Command Buttons on the

top-left; and 5) 2 Radio Buttons and 2 Colored Blocks on the top-

right. In Figure 3, they correspond respectively to the UI objects

of: 1) the collection Tree; 2) the overlapped Group with bold-line

rectangle and its contents; 3) the Graph component that is

implemented in DCOM; 4) the 6 visible use-cases; and 5) the

Control object. There is also an un-visible object to indicate the

WorkingStatus.

The overlapped Group represents a set of UI objects that are

going to be presented and overlay in a presentation space. It is

used to abstract the phenomena of overlapped presentation. In

Figure 3, the Group represents an overlapped presentation of 5

sub-groups or normal groups with doted-line rectangles and their

Figure 2. A practical UI generated for a net-loss

management system of electrical power network

contents. The small circles attached to each group represent the

group’s events or functions. In Figure 3, they designate the click

events. The Control object contains 2 Radio Buttons. Their values

are defined as mutual exclusive.

The operational relationships in Figure 3 are as follows: 1) Once a

node of the Tree is clicked, the Update un-visible use-case is

invoked. It gets the data from the node and the WorkingStatus.

The data is used to invoke the Group’s refresh function for

TableData to update its display. Then, the related data is got and

sent to the Graph component for display; 2) Upon clicking on the

Group, the specific page’s refresh function is invoked to update

the related display; 3) Upon clicking the 4 of the 6 visible use-

cases, WorkingStatus will be modified and the Update un-visible

use-case be invoked again accordingly; and 4) Upon clicking the

radio buttons of the Control object, their mutual exclusive relation

will cause them to change values accordingly, and then the

changed value be sent to the Graph component to alter the display

types from histogram to curve, and vice versa.

The above relationships are all implied in the AUI of Figure 2.

But, the relationship details are contained in the internal logical

description of the related use-cases, which has not yet been

implemented. During this experiment, the operational code is

manually supplied after generating the UI framework and the

related code.

To generate the desired UI of Figure 2, use method introduces in

section 6, the UI template will be first divided five smaller

presentation spaces according to user requirements. Next, the UI

template is customized as the assignment of: 1) the UI design

pattern of Tree with collection to the collection Tree; 2) the UI

design pattern of Page to the Group; 3) the Graph component as it

is designed; 4) Picture-Buttons to the use-cases; and 5) the UI

design pattern of control object in free-form to the Control object.

Then, the presentation model of example will built, it not further

description in this paper.

8. CONCLUSION
The model-based user interface development approaches have

been proposed have not enough ability in deal with complexity of

user interface in practical software design. This paper proposes a

model driven development approach of complex user interface.

The uniqueness of this research is a direct and leveled abstractive

attack on complex user interface composition or description,

rather than the elicitation from task models.

We have finished a UI model establishment tool that we call it

AUI. Like Rose, AUI is an integrated model edit environment.

Using AUI, designer can establish the abstract model of every

level through the method above (Figure 3 is a hard copy of

models that created in this tool.). And, now we have finished the

transformation from abstract model to Visual Basic and ASP.NET.

The building of the environment and research experiment has

shown that approach proposed in this paper is appropriate,

feasible, effective, powerful and easily acceptable in complex and

highly usable UI modeling and construction.

9. REFERENCES
[1] Paulo Pinheiro da Silva, User interface declarative models

and development environments: a survey, In Proceedings of

DSVIS 2000, 2000,pp. 207–226.

[2] Griffiths, Tonya, Barclay and Peter J, et al, Teallach: A

model-based user interface development environment for

object databases, Interacting with Computers,vol.1,

2001,pp.31-68.

[3] K. Mitchell, J. Kennedy, P. Barclay, A Framework for User

Interfaces to Databases (DRIVE), in Proceeding of AVI,

ACM Press, 1996.

[4] Angel Puerta and Jacob Eisenstein, Towards a General

Computational Framework for Model-Based Interface

Development Systems (MOBI-D), in Proceeding of ACM

IUI 1999, Redondo Beach CA USA

[5] Nunes, N.J. and J.F.e. Cunha, Wisdom – A UML based

architecture for interactive systems, in Proceeding of DSV-IS,

Limerick, Ireland, 2000, pp.191-205.

[6] Giulio Mori, Fabio Paterno and Carmen Santoro, Design and

Development of Multidevice User Interfaces through

Multiple Logical Descriptions, IEEE Transactions on

Software Engineering, 30(8), 2004, pp.1-14.

[7] Pedro J. Molina, Santiago Meliá and Oscar Pastor, JUST-UI:

A User Interface Specification Mode, in Proceedings of

CADUI 2002, Valenciennes, France, 2002, pp.63-74.

[8] Krzysztof Gajos and Daniel S. Weld, SUPPLE:

Automatically Generating User Interfaces, in Proceedings of

IUI'04, Funchal, Portugal,2004, pp.83-100.

Figure 3. The IM of an UI for a net-loss

management system

