
Software Semantic Provisioning: actually reusing
software

S. Sgueraa, A. Stellatoa, P. Ombredanneb, M. T. Pazienzaa

s.sguera@ieee.org
{pazienza, stellato}@info.uniroma2.it

philippe.ombredanne@eclipse.org

a: Università di Roma Tor Vergata, Dipartimento di Informatica, Sistemi e Produzione
b: The Eclipse Software Foundation

Abstract. Software development nowadays largely consists of adapting
existing functionalities or components to perform in a new environment, and is
biased towards delivering component-oriented architectures. Finding, choosing,
provisioning and integrating the right libraries or components is still an ad-hoc
and error prone task. This paper describes the SSP (Software Semantic
Provisioning) project, funded in its early stages by GoogleTM Inc., developed
during the Google Summer of CodeTM 2007 program, and incubated by the
Eclipse Software Foundation; the project aims to actually achieve software
reuse in an effective, reliable and developer-friendly fashion, integrating cutting
edge technologies in the component provisioning and integration areas, and
providing support to decision-making in choosing the right dependencies set. A
prototypical RESTful repository, and an Eclipse plug-in consuming the
repository services have been implemented and will be discussed.

1. Introduction

Software development nowadays largely consists of adapting existing functionalities
or components to perform in a new environment, and is biased towards delivering
component-oriented architectures. Finding, choosing, provisioning and integrating the
right libraries or components is still an ad-hoc and – thus – error prone task.
Furthermore, it is sadly well know that object-oriented programming promised a lot
about code reuse, but so far it never delivered it that much.

The problem of component provisioning, choosing the right software libraries set,
and integrating it affects software developers and libraries providers. The impact of
this is library choosing, component provisioning and integration tasks are carried out
by developers, with little or no help at all.

The very general concept which lies behind software collection and reuse can be
observed (in terms of needs) and applied (through successful methodologies and
technical solutions) at very different level of specializations. While very general
frameworks for software delivery and provisioning may offer services for accessing

2 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

and contributing to large library repositories, relying on dedicated metadata for
organizing and retrieving the archived objects, there could be specific fields of
interest where a more complex and organized description of the repository, tailored
upon explicit needs and requirements which characterize the given domain, would
improve the shareability of data, information and tools inside really active and
participating communities.

Following previous research in the software components and libraries provisioning
and integration by the ART group1 at University of Rome Tor Vergata, this paper
describes the SSP (Software Semantic Provisioning) project, funded in its early stage
by GoogleTM Inc., developed during the Google Summer of CodeTM 2007 program
(details in [6]), and incubated by the Eclipse Software Foundation.

In Section 2 we will briefly introduce the main provisioning, build and integration
support technologies currently available. Representative use case scenarios have been
studied exploiting the prototypical implementation provided, and will be presented in
Section 3, giving the reader a more thorough understanding of the surrounding
environment and the actual benefits delivered to developers and component providers
by the project. Section 4 will describe our approach, key goal and significant design
issues. The software component domain has been formalized in the Software
Provisioning Ontology (SWPO) whose main classes, properties and possible
evolutions will be discussed in Section 5. Section 6 and 7 will be dedicated
respectively to the discussion of architectural choices and issues we took both in
server and client side development, while Section 8 will hold our conclusions and
future directions of work and research.

2. State-of-the-art

A number of existing projects and efforts aim to describe software. Each one focuses
upon a peculiar aspect, but no known product provides a thorough description
enabling complex search and integration features. Hereafter we discuss the main
characters populating the current component provisioning and integration panorama.

DOAP
The DOAP2 (Description Of A Project) effort aims to describe a software project in
terms of URI, maintainers, code repository and other product release-related features.
No hints about what a given piece of software does or does not are given.

Maven
Maven3 is one of the cutting edge integration and build management technology, and
gained a significant market share in latest years. Its main goal is helping developers in

1 http://ai-nlp.info.uniroma2.it
2 http://usefulinc.com/doap
3 http://maven.apache.org

Software Semantic Provisioning: actually reusing software 3

handling dependencies and relieve the burden of integration and build process. The
m2eclipse plug-in4 allow developers to use POM files directly from the Eclipse5 IDE.

Even if the folksonomy feature provided by the repository is quite functional and
easy to use, and perfectly in line with the Web 2.0 hype, it does not provide a reliable
mechanism to spot functional resemblance or more formal mappings and
correspondence between components, as we propose in this paper.

OSGi Bundle Repository
OSGi6 is the technology which enabled – among other things – the major shift in
Eclipse’s aims, from being a tooling platform (versions before 3.0) to a Rich Client
Platform [3], and the subsequent changes in the requirements set, in terms of dynamic
plug-in management, services, security, and performance. It provides an excellent
platform for bundle provisioning and building dynamically extensible applications. A
still evolving specification for building OSGi bundle repositories is given in [5].

Orbit
Orbit7 mainly aims to reduce component duplication: it provides a repository of
bundled versions of third party libraries that are approved for use in one or more
Eclipse projects. It also clearly indicates the status of the library (i.e., the approved
scope of use). Yet our aim is a bit more general, not simply attempting to reduce
duplication, but collapsing – where possible – two or more libraries’ functionalities in
just a single one.

Buckminster
Buckminster8’s goal is to leverage and extend the Eclipse platform to make mixed-
component development as efficient as plug-in development. It is very much focused
on dependencies handling as well, while our approach is mainly aimed to improve
components search and facilitate software reuse.

Kepler
The purpose of Kepler9 is to address the complexities involved with provisioning,
managing, and to use a shared infrastructure in order to support a community-oriented
development model. The focus remains much tied to community-oriented
development, more than component-oriented as in our effort.

Ivy
Ivy10 is a project incubated by the Apache Software Foundation: it provides a tool for
managing (recording, tracking, resolving and reporting) project dependencies. An

4 http://m2eclipse.codehaus.org
5 http://www.eclipse.org
6 http://www.osgi.org
7 http://www.eclipse.org/orbit/
8 http://www.eclipse.org/buckminster/
9 http://www.eclipse.org/proposals/kepler/
10 http://incubator.apache.org/ivy/

4 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

interesting feature is transitive dependencies management: it shows simple inference
capabilities, but no support for functionalities-driven smart search and reasoning,
which characterize our approach, and are essential to us to enhance software reuse
possibilities.

3. Main use cases and benefits

Despite the proliferation of provisioning systems and frameworks, the component
search and choice activities are still carried out by developers with little or no help at
all. Programmers are left to themselves scouting the web to find libraries and
components, and no systematic approach nor thorough frameworks exist.

In the next paragraphs we will discuss some of the most representative use cases
and the benefit they deliver to developers and components providers, stressing how
our system tackles various aspects which currently undermine software reuse and
often lead to write ex-novo already existing code.

Assert and spot functional equivalence between components
The number of components and libraries, along with their versions, makes practically
impossible for a developer to know them all. On the other hand, there may exist more
than a piece of software accomplishing the same task, fulfilling the same requirements
set, or even implementing the same specification. To some extent, such components
could be considered functionally equivalent.

This is the case, for instance, of Hibernate11, Apache Cayenne12 and all of the other
frameworks implementing the Java Persistence API, or any implementation of the
Java Servlet API, any JDBC driver, or any HTTP server (or client as well). The list
would go a long way.

Furthermore, the equivalence is symmetrical, reflexive and transitive; the inference
mechanism helps building relations upon social-generated contents: relations and
functional equivalence among software components are both explicitly declared and
inferred by the system, thus building a dense semantic network with a little effort.
Machine-readable metadata allow much more granularity and raise the formal level
and the intelligence of search-related features.

Let’s suppose we just finished developing, for some obscure reason, a novel
implementation of the Java persistence API. Let’s suppose also that metadata about
two common frameworks implementing the same API – i.e. Hibernate and Apache
Cayenne – are already present in the repository, and (just as an example) that the two
are declared as functionally equivalent. As we declare our library as equivalent to
Hibernate, since they implement the same API, the inference engine can conclude my
library is equivalent to Cayenne as well; Cayenne’s mapping to our product is
nowhere in the repository, but was just inferred. A developer looking for “Hibernate
or equivalent” or “Cayenne or equivalent” libraries, or again “Java Persistence API

11 http://www.hibernate.org
12 http://cayenne.apache.org/

Software Semantic Provisioning: actually reusing software 5

implementation” will then see our implementation among the query results, obtain
information and in case decide to use it.

Find components providing a set of tasks
Describing a software component or library in terms of the tasks it fulfills is the very
first way to tell whether a piece of software fits our needs or it does not. During the
analysis and design phase developers must choose the right set of enabling
technologies and components which will drive further development phases, and will
construct the base for building our application’s architecture.

Let’s suppose – just as an example – we are planning to develop two components,
one carrying out the “dom-parsing” task and the other fulfilling the “sax-parsing”
task, and we would like to know if there is already a unique component providing
both the tasks. It would be useful to browse the repository and discover at design time
that xerces-j actually carries out both sax and dom xml parsing. We might then decide
to use it if it fits our project’s requirements.

Assessing reputation of components
Whenever a developing team picks up third-party code to underlie its application, it is
implicitly taking responsibility someone else’s code, which could affect their
product’s security and credibility. To this purpose, we could want to know which –
and how many – components actually use one: this may give us valuable information
about its reputation. On the other hand, if we developed a new component – and
added it to the repository, it could be interesting to know which and how many
components rely on our work.

4. Approach and design goals

Our key goal is to provide developers with a complete environment to exploit
semantic metadata in order to effectively find and provision software components.

We tried to overcome the main limitations in current mainstream provisioning
systems and frameworks, which are in turn tied to a particular technology or show a
formalization level which grants no access to technology-independent, high level and
enough granular information for a component.

Moreover, even if current provisioning technologies follow different approaches
and stress different aspects proper of the software domain, there is a substantial
overlap among the components’ description they provide and rely upon.

Thus an ontology, meant to be a shared, higher level domain vocabulary among
developers, allowing to semantically describe software and eventually mapping a
subset of available metadata to one of the technologies available, would enable a
thorough description of a component, aimed to stress what does the component do in
an unambiguous fashion; this supports interoperability among developers and among
technologies, provide some ground concepts to establish, declare or infer relationships
among software components, and eases the reuse of existing software, giving
developers a significant help in the early discovery phases.

6 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

Figure 1: Server and Client side full stack architecture

A RESTful semantic repository (Figure 1), as it will be clearer in the next sections,
easily allows the developing of a multitude of clients (i.e. browsers extensions, IDE
plug-ins, et cetera), and broadens the field of possible applications.

5. Knowledge Model

The Knowledge Model of the SSP environment offers, at the current state of
development, those concepts and relations which are necessary for providing a
sufficiently detailed description of software entities and for modeling the
functionalities which have been presented in the use-cases section.

Reference to past research work on modeling ontologies, like [4], for describing
software systems has been made by reusing concepts from these ontologies for
describing common software entities like: component, library and software license.

As it can be seen in Figure 2, our framework is centered about the description of
software objects, providing several semantic anchors through which they can be
identified, classified according to different perspectives and needs, and thus easily
retrieved on these same aspects.
SoftwareObject(s) can be mainly distinguished according to two different categories:
Components, which are “Program modules that are designed to interoperate with each
other at runtime”, that is software objects for which there is a well-defined runtime
behavior, and Library(ies) which define “collections of subprograms used to develop
software”.

Fi
gu

re
 2

: K
no

w
le

dg
e

M
od

el
 o

f t
he

 S
SP

 F
ra

m
ew

or
k

Other classes offer further perspectives over which software objects registered in the
SSP repository may be clustered and accessed: License has been introduced to
describe the diverse software licenses adopted by software developers and vendors.
This way users may filter their choice if, as an example, they need only software
licensed under a specific contract. This filtering can even less explicit, by automatic
reasoning over class of licenses and the relationships between them. A property
licenseIncompatibleWith allows to establish incompatibilities between use of
components licensed under different contracts, while the class LicenseStyle describes
categories of licenses which share common aspects. A reification technique (see [2]
for a wider discussion on this topic) has been adopted to describe license styles both
as objects of the domain as well as classes of licenses (so, as rdfs:subClassOf License),
still remaining inside a first order description of the domain. This way we can “talk
about” software license styles as ground objects (which may exhibit specific
contractual expressions, have a reference web site for their general specifications
etc…) and, at the same time, consider them as set of licenses, offering class level
restrictions on the values that their belonging instances should expose on their
properties. The explicit links between the objects (instances of LicenseStyle) and the
set of Licenses (subclasses of License) is given by a restriction on a property which
describes the specific style (if present) of any given license; the semantic repository
thus automatically generates subclasses of License for each new introduced license
style, together with their associated restriction.

With the same approach, it is possible to describe software with licenses according
to a specific style, as for the following example:

ApacheStyleLicensedSo ware ≡ ∃license.ApacheStyledLicense
which describes (in description logic syntax) software distributed according to a
license instantiating class ApacheStyledLicense, where this last is defined as:

ApacheStyledLicense ≡ style ∋ apacheLicense
The same reification technique described above is used to automatically generate

subcategories of SWObject which cluster sets of components and libraries according
to their purposes, which are considered first class citizens inside the repository and
not mere simple attributes for describing software. Specific Tasks can thus be defined
in the repository and fully qualified according to their specifications and to
descriptive information thought for human inspection; software objects can then be
accessed, among the other ways, according to the task(s) they fulfill (e.g XML
parsing, object persistence, text indexing etc…)

6. Server-side: the SSP Semantic Repository

The semantic repository publishes a set of REST API, in compliance to the well
known architectural style described in [1] allowing clients to easily consume its
services, and enabling any kind of Web 2.0 buzzword-compliant mashup. The
RESTlet framework was embedded into a servlet container to deploy the repository as
a web application.

Software Semantic Provisioning: actually reusing software 9

Figure 3: SSP Eclipse plug-in - UI contribution

Data serialization (beans to XML and vice versa) and complex services are handled
by the application layer, while to access RDF triples stored in a persistent Jena model
we took advantage of the IBM Jastor framework, providing OWL to Java mapping.
Anyway, a further level of indirection was introduced not to tie the topmost layers to
the specific technologies (i.e. Jastor) used in the data access layer. To enable
inference-based web services we plugged Jena with the Pellet DIG reasoner.

7. Client-side: Eclipse SSP Plugin

We developed a RESTlet client consuming the repository’s web services, decoupling
the client-server interaction from the UI contributions.

The repository location can be both local (i.e. this can be achieved simply
deploying the repository web application inside Eclipse itself, exploiting the
embedded Jetty server used by the help plugin), or remote, and it can be chosen using
the provided preference page, accessed in the usual Eclipse way.

Two views were implemented (Figure 3): the Repository Explorer, on the left,
allows the developer to browse components by name, version, license, tags, tasks or
navigate the semantic relations among the components; the Submit a new component
view makes use of the Eclipse SWT Forms widgets to provide developers with an
elegant and fast way to submit a new component to the repository. It is possible to
define a component’s dependencies, simply by dragging a component from the
Repository Explorer on the left, and dropping it on the Dependencies tab in the
component submission form, on the right. It is also possible to choose among the
tasks already described in the repository, or add a new one throughout the submission
process.

10 S. Sguera, A. Stellato, P. Ombredanne, M. T. Pazienza

8. Conclusions and future works

In this paper we introduced a novel approach to software components and libraries
discovery and provisioning. Indeed we believe current mainstream provisioning
systems lack a shared vocabulary and technology-independent formalization of the
software domain, supporting richer semantic description to support reasoning and the
generation of a consensus based upon the specific domain the considered software
belongs to.

Future iterations will involve a deeper axiomatization of License and License-style
concepts, since they represent the contract between the product provider and the
consumers, and often is a strict non-functional requirement to be satisfied when a
third-party software is chosen. A strong investigation on “software specifications”
could contribute to further discriminative arguments for facilitating classification (and
thus more precise retrieval) of software objects in the repository. Integration with –
and metadata reuse from – OSGi and Maven, and user interface improvements are top
priorities for the project.

Acknowledgments

This work was funded by GoogleTM Inc. as part of the Google Summer of CodeTM
2007 program, and developed by Savino Sguera mentored by Philippe Ombredanne –
details in [6] – as a result of previous research work done in the area of software
component provisioning by M. T. Pazienza, S. Sguera and A. Stellato at the ART
research group at the University of Rome Tor Vergata.

We would like to thank Leslie Hawthorn and the whole Google Summer of CodeTM

team for the great job they did, and the Eclipse open source community for supporting
the project and giving invaluable feedback throughout the development.

References

1. Fielding, R. (2000). Architectural Styles and the Design of Network-based Software
Architectures, University of California Irvine, PhD Dissertation

2. Gangemi, A. & Mika, P. (2003). "Understanding the Semantic Web through Descriptions and
Situations." Proceedings of the DOA/CoopIS/ODBASE
2003 Confederated International Conferences. LNCS 2888. Springer Verlag, 2003

3. Gruber, O., et al., 2005. The Eclipse 3.0 platform: Adopting OSGi technology, IBM Systems
Journal, Vol 44, No 2, 2005

4. Oberle, D., Lamparter, S., Grimm, S., Vrandecic, D., Staab, S. Gangemi, A. Towards
Ontologies for Formalizing Modularization and Communication in Large Software Systems
Journal of Applied Ontology 1 (2): 163-202. 2006

5. OSGi RFC0112, 2005. http://www2.osgi.org/Download/File?url=/download/rfc-
0112_BundleRepository.pdf

6. Sguera, S., 2007
http://code.google.com/soc/2007/eclipse/appinfo.html?csaid=1221666D7EBA3415

