
Okkam4P : A Protégé Plugin for Supporting the
Re-use of Globally Unique Identifiers for

Individuals in OWL/RDF Knowledge Bases?

Paolo Bouquet1, Heiko Stoermer1, and Xin Liu2

1 University of Trento,
Dept. of Information and Communication Tech.,

Trento, Italy
{bouquet, stoermer}@dit.unitn.it

2 JiLin University
Dept. of Computer Science and Technology

Chang Chun, China
xinliujlu@gmail.com

Abstract. In Protégé, any newly created RDF/OWL knowledge base
refers to local instances through a local URI, which is obtained through
the concatenation of the ontology URI, the hash sign # and a local iden-
tifier. However, this practice makes data-level integration quite hard, and
definitely prevents the straightforward application of RDF graph merging
for independently developed knowledge bases, even if they share the same
OWL ontology. In this paper, we present a Protégé plugin which supports
the systematic reuse of global identifiers for instances in RDF/OWL
knowledge base. The plugin is an extension of the Protégé “Individuals”
tab. The main difference is that, when an instance is created, the user has
a chance of looking for an existing URI for the corresponding individual
in a publicly available service called Okkam. The match between the
newly created instance and the globally registered individuals is based
on a comparison of features of the new and a a simple profile stored in
Okkam for all individuals. The plugin is available and tested for Protégé
3.3.1 and 3.4 beta.

1 Introduction

One of the key ideas of the Semantic Web is that the use of a unique identi-
fier (URI) for referring to the same resource will be the basis for enabling the
integration of data across autonomous applications and independently created
semantic repositories. However, nothing in the infrastructure of the Semantic
Web supports content creators to reuse already existing URIs for referring to a
? This work was partially funded by the European Commission under the 6th Frame-

work Programme IST Integrated Project VIKEF - Virtual Information and Knowl-
edge Environment Framework (Contract no. 507173, Priority 2.3.1.7 Semantic-based
Knowledge Systems; more information at http://www.vikef.net). The authors would
like to thank Daniele Zanoni for his work on the first prototype of Okkam4P .



resource which has already been referred to in other applications/repositories.
This is true for any type of resource (including abstract resources, like classes
and properties), but is especially bad for instances (individuals), as the ex-post
discovery of identities between instances across knowledge bases is in general
more difficult (and less investigated) than discovering mappings between ontol-
ogy elements. The lack of systematic support for the reuse of URIs leads to a
flooding of identifiers, which makes data integration on the Semantic Web very
hard and error prone.

The issue of identity and identification in the (Semantic) Web has been dis-
cussed and analyzed from different perspectives in the past, in fact two scientific
workshops have been dedicated to the topic3, the proceedings of which are a
great source of insight into the diverse points of view on the issue4. Addition-
ally, works such as Kent’s [9, 10] from a historical perspective, Gangemi and
Presutti’s [6, 7] as well as the efforts and discussions within the W3C [2, 1, 8],
make evident that there is plenty of ambiguity about the use and semantics of
a URI. There are several options of what a URI can identify, opinions about
whether a URI should be de-referenceable or not (and how), how syntactically
URIs should be constructed that refer to non-electronic objects, and – last but
not least – the intuition that the uniqueness property of URIs which their name
suggests is desirable, but in no way guaranteed.

This last point is the motivation of our work. Based on the availability of
an open public service for supporting the global reuse of unique identifiers for
individual instances called Okkam [3], which is described in Sect. 2, we are
developing tool support for content creation. The global service is based on an
open public repository which stores previously created identifiers for individuals,
together with a simple profile. The idea is that this service can be used to look
up for pre-existing identifiers of any newly created instance in a knowledge base;
this process is based on an entity matching algorithm, which uses any available
information about the new entity to match it with the profiles of individuals
stored in the repository and thus to find candidate URIs for reuse.

The application we are going to present makes use of this service in the area of
ontology editing. It aims at demonstrating the advantages of such an approach
as a way to converge on common URIs for newly created semantic content.
Indeed, a common practice in ontology editing is the creation of new (local)
URIs for any newly created instance. Here we present a Protégé plugin, named
Okkam4P , which supports the good practice of looking up for pre-existing URIs
when editing a new RDF/OWL knowledge base. The plugin is an extension of
the “individual” tab. The main difference is that, when an instance is created,
the user has a chance of looking for a pre-existing URI for the corresponding
individual in a publicly available service called Okkam. The match between
the newly created instance and the stored individuals is based on an algorithm
which compares the features of the new instance in the local knowedge base

3 IRW in 2006 (http://www.ibiblio.org/hhalpin/irw2006/) and I3 in 2007 (http:
//okkam.dit.unitn.it/i3/)

4 see [5] for I3 and the workshop website for IRW



with the profiles stored in Okkam. The plugin is available and tested for the
latest official release of Protégé, version 3.3.1, and the beta version 3.4; the
experimental Okkam service is accessible at http://www.okkam.org.

2 The OkkamPUBLIC Infrastructure

The work described in this paper relies on the existance of the Okkam infras-
tructure, the initial idea of which was described in more detail in [4, 3]. As
illustrated in Figure 1, at the heart of this infrastructure there is the central
repository for entity identifiers, called OkkamPUBLIC 5. This repository can
be imagined like a very large catalog, where semi-structured descriptions of en-
tities are stored and associated to globally unique identifiers for these entities. It
furthermore provides the functionality to add entities and their descriptions to
the repository that have not existed there so far, and to retrieve their Okkam
identifiers for use in information systems.

Fig. 1. Overview of the global Okkam vision.

Figure 2 illustrates the standard use-case for the okkamization6 of content,
namely to query OkkamPUBLIC for the existance of the entity at hand. This
would usually be achieved through functionality provided by a client application
– in this case Protégé – which accesses the OkkamPUBLIC API, and presents
(if available) a list of top candidates which match the description for the entity
provided within the client application. If the entity is among these candidates,
the client agent (human or software) uses the associated Okkam identifier in the
respective information object(s) instead of a local identifier. If the entity cannot
be found, the client application can create a new entry for this entity in Okkam
and thus cause an identifier for the entity to be issued and used as described
before.
5 This service is currently under development at the University of Trento, and will be

opened for public access in the near future.
6 We call okkamization the process of assigning an Okkam identifier to an entity that

is being annotated in any kind of content, such as an OWL/RDF ontology, an XML
file, or a database, to make the entity globally identifiable.



Fig. 2. Sequence diagram of the Okkam standard use case.

The large-scale, global service OkkamPUBLIC provides for the entity repos-
itory and a service infrastructure so that tools and applications can make use
of this new technology. The current version of OkkamPUBLIC is a prototyp-
ical implementation of parts of a larger multi-tier architecture, namely a non-
distributed version of the storage component OkkamSTORE which in a later
phase will move to a distributed layout, a preliminary version of the matching
component OkkamMATCH which performs the search for entities, and a subset
set of the developer API and toolkit OkkamDEV which is available7.

The mechanisms inside Okkam which perform the matching between entity
descriptions provided by the user or agent and the existing descriptions stored in
the repository, display some specifics which should be mentioned at this point.
One of the main characteristics of Okkam is that the description of an entity,
which is necessarily used to distuingish this entity from all others in the repos-
itory, does not follow a fixed schema, i.e. Okkam is specifically not something
like a knowledge base of entities; consequently, Okkam is not providing an on-
tological formalization of which attributes an entity has. The way to describe
entities is extremely flexible and semi-structured, realised by way of key/value
pairs which can contain arbitrary strings. The reasons for this decisions have
been laid out in [4, 3], and basically go back to the point that there is an infinite
variety of ways of how to model domains, for which reasons we decided to stay
completely domain independent. As a consequence, the matching algorithms in
OkkamMATCH can take as input any kind of description of an entity, e.g.
the set of properties and values inferred from an ontology, and match it against
existing data. This is how we achieve Okkam support without any dependence
on, or knowledge of, an underlying schema.

7 http://www.okkam.org



3 Okkam4P – Making Protégé an Okkam-empowered
Tool

3.1 User Perspective

In our vision of a functioning Okkam infrastructure there is the notion of the
so-called “Okkam-empowered tools”, which are standard end-user applications
(e.g. word processors, HTML/XML/OWL editors, web-based authoring envi-
ronments – like blogs, forums, multimedia publishing and tagging applications,
etc.) extended with functionalities which facilitate the creation of okkamized
content through the use of the OkkamPUBLIC infrastructure. Protégé falls
into this category. It is probably the most widely used editor for the creation
of RDF/OWL knowledge bases (KBs), and provides vast extensibility through
a plugin architecture, which makes it highly suitable for empowering it with
Okkam functionality.

The plugin presented in this paper essentially assigns a global unique identi-
fier called (the “Okkam ID”) to a newly created individual, rather than relying
on manual input of the user or the standard automatic mechanism of Protégé.
To this end, it implements the use-case illustrated in Fig. 2: based on the data
about an individual that are already provided in the KB developed by the user,
it queries OkkamPUBLIC to see whether an identifier already exists which can
be assigned to the new created individual, otherwise a new identifier would be
created.

To use this plugin, the user selects an individual and right-clicks on it. A
context menu will pop up, in which the item “Get Okkam ID” is the entry-point
to the functions of the plugin, as illustrated in Fig. 3.

Fig. 3. Assigning a global identifier to an individual.



Once clicking on this menu, the plugin starts to collect the properties of
this individual as specified in the KB, and presents a new dialog (see Fig. 4)
displaying the information that is available for querying OkkamPUBLIC in
order to see whether an identifier for this entity already exists.

Fig. 4. The information of the chosen individual.

The properties that are gathered by the plugin to construct a query are the
following:

– Ontology Reference: it is the reference of the ontology which the chosen
individual belongs to. It is loaded automatically by this plugin, and it is
read-only for users. If the ontology is publicly available, it can potentially
be of use for the server-side matching mechanisms to improve search results
for the individual.

– Wordnet Synset and Wordnet Version: provides a hint about a top-level class
which the chosen individual belongs to. This has to be set by the user.

– Preferred ID and Alternative ID1: if the user wishes to use another identifier
in other systems to identify the chosen individual, a user can input this
identifier here. These two items are optional.

– Individual Properties: the plugin loads each property of the chosen individual
automatically. The user can also deselect some properties which are thought
to be unnecessary to find the Okkam ID of the individual at hand.

After submitting this form, the plugin launches a thread to query OkkamPUBLIC
for matching entities by calling its web service. After searching, a list of entities
that match the description for the new created individual will be visualized to
the user, as illustrated in Fig. 5

The user now has the option to select one list entry as “the same” as the newly
created individual and re-use the global identifier in the local KB (therefore the
ID of the newly created individual will be replaced by the Okkam ID in the



Fig. 5. Query result of with matching entities that already have an identifier in Okkam.

KB); otherwise the user can choose to create the individual as a new entity in
OkkamPUBLIC , in which case the information selected in Fig. 4 will be inserted
into Okkam repository, the new Okkam ID will be retrieved and assigned to
the local individual.

3.2 Developer Perspective

The hierarchy of primary classes provided by and used in this plugin is illustrated
in Fig. 6 in the appendix. In the following we describe the function of each class
displayed in Fig. 6.

The class OkkamPlugIn is the most principal class. To extend the “Individ-
uals” tab in protege, it needs to inherit the class
edu.stanford.smi.protegex.owl.ui.actions.ResourceAction. This effects that the
menu item “Get Okkam ID...” will appear in context-menu when the user right-
clicks on a individual.

The class okkamPanel and TopPanel are used to compose the information
window (see Fig. 4); the class ResultPanel is used to show the query result
window(see Fig. 5). All of them inherit the class javax.swing.JPanel to present
a window to users.

In this plugin, we make use of web services to interact with OkkamPUBLIC .
The tasks of searching for matching entities and publishing a newly created entity
are fulfilled by calling the webservice “EntitySearch” and “EntityPublication-
WithURI” respectively. These webservices are reachable from the URL http:
//okkam.dit.unitn.it:8081/OkkamCoreWebServices/services. As complex
queries can have a considerable runtime, in the initial version of Okkam4P ,
users would see nothing but a gray window until the result returned from the
webservice. In the current version, we moved the plugin to a multi-threaded ar-



chitecture. Three classes which inherit class ”java.lang.Thread” are new to this
version.

The class InquireThread is used to call the webservice “EntitySearch”, it
is launched when the user submits the information to search for matching en-
tities. The class PublishThread is used to call the webservice “EntityPublica-
tionWithURI”, it is launched when the user decides to publish a new entity
to OkkamPUBLIC . The class DialogThread is used to show a dialog during
the process of searching or publishing, this dialog is meant as a user-friendly
interface to inform the users that the process is running.

4 Benefits of the Approach

The vision of the Okkam approach is the creation of what we call the Web
of Entities (WoE): a global information space in which entities (as opposed to
documents) are the main objects of discourse and thus the pivot for information
access.

The pre-requisite for this WoE to function is the existence of suitable okkamized
content, i.e. content in which identified entities (such as persons, events, loca-
tions, ...) are denoted by their globally unique Okkam identifier, instead of a
local identifier, as described in the introduction.

To achieve a substantial diffusion of okkamized content, a set of user-friendly
Okkam-empowered tools is necessary, because – as the rather slow adoption of
Semantic Web technologies has shown – the mass of content creators (i.e. the
users of the WWW) seem not to be extremely motivated to follow developments
beyond the coding of HTML documents.

With Okkam4P we are making the first and very important step towards
the creation of such a suite of tools. We address the community that is “closest”
to the issues addressed by the approach, and provide them with the means of
creating okkamized RDF/OWL KBs. The aim is to prove that – with the system-
atic a-priori use of global identifiers for entities – the vision of RDF documents
as a single, global, decentralized and meaningful knowledge base can in fact be-
come reality, without having to deal with many of the difficulties of information
integration, such as the ex-post alignment of entities.

5 Future Work and Conclusion

In this paper we have presented our ongoing work on Okkam4P , a plugin for
the creation of okkamized RDF/OWL knowledge bases in Protégé, and given a
sketch of the underlying, globally available infrastructure OkkamPUBLIC .

As regards the plugin, several improvements are scheduled in the near future.
One is the general “elevation” of the tool to a more production-quality standard,
including the usual aspects such as extended documentation, code improvements,
etc. Secondly, as the plugin is currently implemented as an extension to the
OWL part of Protégé, KBs developed in plain RDF(S) cannot benefit from



its functionality – a circumstance which we are currently investigating. Finally,
additional features such as offline and batch operation, as well as automatic
retrieval and assignment of Okkam identifiers to existing KBs, are already in
the design phase.

OkkamPUBLIC itself will experience a great boost in the course of the
European FP7 Integrated Project Okkam, which has the aim and the means to
implement the infrastructure briefly illustrated in Sect. 2 at a very large scale.

More information will be made available at http://www.okkam.org, the plu-
gin itself is available from http://www.okkam.org/projects/okkam4p/.

References

[1] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform Resource
Identifier (URI): Generic Syntax. IETF (Internet Engineering Task Force), 2005.
http://www.ietf.org/rfc/rfc3986.txt.

[2] Tim Berners-Lee. Design Issues – Linked Data. Published online, May 2007.
http://www.w3.org/DesignIssues/LinkedData.html.

[3] Paolo Bouquet, Heiko Stoermer, and Daniel Giacomuzzi. OKKAM: Enabling
a Web of Entities. In i3: Identity, Identifiers, Identification. Proceedings of the
WWW2007 Workshop on Entity-Centric Approaches to Information and Knowl-
edge Management on the Web, Banff, Canada, May 8, 2007., CEUR Work-
shop Proceedings, ISSN 1613-0073, May 2007. online http://CEUR-WS.org/Vol-
249/submission 150.pdf.

[4] Paolo Bouquet, Heiko Stoermer, Michele Mancioppi, and Daniel Giacomuzzi.
OkkaM: Towards a Solution to the “Identity Crisis” on the Semantic Web. In
Proceedings of SWAP 2006, the 3rd Italian Semantic Web Workshop, Pisa, Italy,
December 18-20, 2006. CEUR Workshop Proceedings, ISSN 1613-0073, online
http://ceur-ws.org/Vol-201/33.pdf, December 2006.

[5] Paolo Bouquet, Heiko Stoermer, Giovanni Tummarello, and Harry Halpin, editors.
i3: Identity, Identifiers, Identification. Proceedings of the WWW2007 Workshop
on Entity-Centric Approaches to Information and Knowledge Management on the
Web, Banff, Canada, May 8, 2007., volume 249 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007. online http://CEUR-WS.org/Vol-249/.

[6] Aldo Gangemi and Valentina Presutti. Towards an OWL Ontology for Identity
on the Web. In Semantic Web Applications and Perspectives (SWAP2006), 2006.

[7] Aldo Gangemi and Valentina Presutti. A grounded ontology for identity and
reference of web resources. In i3: Identity, Identifiers, Identification. Proceedings
of the WWW2007 Workshop on Entity-Centric Approaches to Information and
Knowledge Management on the Web, Banff, Canada, May 8, 2007., 2007.

[8] Ian Jacobs and Norman Walsh. Architecture of the world wide web, volume one.
Published online, December 2004. http://www.w3.org/TR/webarch/.

[9] William Kent. The Entity Join. In Fifth Intl. Conf. on Very Large Data Bases,
Rio de Janeiro, Brazil, pages 232–238. Morgan Kaufman Publishers, 1979.

[10] William Kent. A Rigorous Model of Object Reference, Identity, and Existence.
Journal of Object-Oriented Programming, 4(3):28–38, June 1991.



Appendix: Okkam4P Class Diagram

Fig. 6. UML class diagram showing the primary classes of Okkam4P .


