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Abstract 
 

Discovering Web Services based on logical 
matching of capabilities is a new requirement for 
Semantic Web Services which cannot be solved with 
traditional information retrieval (IR) techniques. 
Building fast and precise logical discovery engines is 
an ongoing challenge of the Semantic Web community. 
This paper presents the discovery engine implemented 
for the INFRAWEBS project which combines a 
traditional IR-based pre-filtering step and a logic-
based matching implemented in Prolog. The logic-
based step of discovery uses a novel technique based 
on Prolog-style unification of terms. This approach 
performs well in finding matches of intersection type, 
and it also provides possibilities to compare, rank and 
explain these matches.   
 
1. Introduction 
 

Using Semantic Web Services is often broken into 
the main steps of discovery, selection and execution. 
Discovering Web Services based on logical matching 
of capabilities is a new requirement for Semantic Web 
Services which cannot be solved with traditional 
information retrieval (IR) techniques. Building fast and 
precise logical discovery engines is an ongoing 
challenge of the Semantic Web community. 

In this paper we present the discovery engine 
developed in the INFRAWEBS project of FP6. The 
INFRAWEBS project develops an ICT framework, 
which enables software and service providers to 
generate and establish open and extensible 
development platforms for Web Service applications. 
The INFRAWEBS project divides the life-cycle of 
Semantic Web Services in two different phases: Design 
Time and Runtime. During the Design Time phase 

various tools and editors support the creation of 
semantic descriptions for existing Web Services. The 
resulting ontologies, goals and Semantic Web Services 
are made accessible in a distributed registry. WSML 
[14] was chosen as the language for describing these 
semantic entities. The runtime phase involves 
discovery, selection and execution of the semantic web 
services. The runtime environment also collects quality 
of service data for semantic web services which are fed 
back to the phase of discovery and selection.  

 
1.2. Discovery 
 

The discovery engine in our scenario receives a 
WSML goal as input and it has to provide a list of 
matching Semantic Web Services possibly coupled 
with additional information that supports ranking and 
selection. 

Discovery implementation has three steps: a pre-
filtering step, a step for logical matching and a 
finalizing step to prepare the result. 

The aim of the pre-filtering step is to narrow the list 
of candidates using traditional text-processing 
(keyword matching) algorithms. 

The logical matching is performed on the 
precondition, assumptions, postcondition and effects of 
the goal and service. 

In the final step the list of matching services are 
enhanced with QoS data based on past execution 
experience. QoS data is collected by another module of 
the framework, and can be used for service selection. 

The rest of the paper describes the discovery 
component implemented for the INFRAWEBS project 
and compares it with related work. 

 



2. Keyword-based discovery 
 

Each semantic web service and goal capability 
definition may be seen as a structured text document. 
This gives us the possibility for a preliminary selection 
of Web Services using classical keyword-based 
discovery, but at the level of ontology concepts. 

The WSMO deliverable on discovery [11] suggests 
the keyword-based approach to be used in conjunction 
with the keywords given by capability editors and 
listed as non-functional properties (metadata about web 
services). However, the correctness and quality of such 
natural language descriptions are hard to ensure and 
control. Empty or faulty descriptions make services 
inaccessible, even when their capabilities are defined 
correctly. Multilinguality of metadata is another 
problem of this solution. 

Our approach is different from the WSMO idea, 
because here the axioms are indexed instead of the 
non-functional properties. The proper formulation of 
the axioms is needed for the correct use of Semantic 
Web Services, therefore the quality of the index data is 
implicitly ensured. 

It is obvious that the result of keyword-based 
discovery may contain semantically non-matches (e.g. 
the capability for selling tickets everywhere except to 
Budapest). The key criterion is not to filter out any 
good semantic match in this phase. In [9] we show that 
by simple conditions on the ontology structure this can 
be guaranteed. For example, in case of a single 
homogeneous set of ontologies, the description of each 
relevant capability requires the use of certain concepts; 
therefore the goal and service capabilities must both 
contain these concepts. 

The advantage is the very good response time 
compared to logic reasoning, while the disadvantage is 
that logically incorrect results are also collected. 
Therefore, this operation is ideal for a so-called pre-
filtering, to reduce the number of web services for 
which the time-consuming logical matching has to be 
calculated.  

The Organisational Memory (OM) component of 
the INFRAWEBS framework is specialized on textual 
queries. Its main role is to index all available textual 
documents with respect to web services, including 
WSDL and WSML. With its indexes OM helps the 
creators of Semantic Web Services to find relevant or 
similar information for the semantic modelling of web 
services. In the INFRAWEBS framework the 
functionality of OM is used in the pre-filtering step, 
but another version is implemented using Apache 
Lucene (Apache’s text search engine library) as well. 

 

3. Logical matching 
 
The WSMO deliverable on discovery [11] defines 

semantic matching as: 
))()((|,, xwsxgxOGW ∧∃=  

where W is the definition of the web service, G is the 
definition of the goal, O is a set of ontologies to which 
both descriptions refer, g(x) and ws(x) are the first-
order formulae describing the effects of the goal and 
web service respectively. In this case only the desired 
and offered outcomes are matched, and the meaning of 
the match is: there exists an outcome offered by the 
service which is requested by the user. This definition 
can be further elaborated into various types of matches: 

•  Exact match: the possible outcomes of the service 
and the goal are equivalent; the service does 
exactly what the user desires. 

•  Subsumption match: each possible outcome of the 
service is accepted by the goal, i.e. all service 
offers are acceptable by the user, though there 
might be desires not covered by the service. 

•  Plugin match: each possible outcome requested 
by the goal can be produced by the service, i.e. all 
user requests can be satisfied by the service, 
although the service may provide additional, non-
matching outcomes as well. 

•  Intersection match: there is at least one service 
outcome accepted by the user (goal). 

This section details the practical problems of semantic 
matching. Theoretically both Description Logic and 
Logic Programming (the most popular and available 
variations of logic in this area) are capable to find all 
the types of matches listed above. However, the 
assumption based on our real-life scenarios is that the 
majority of matches will be of type intersection.  

A method for finding intersection matches using 
Description Logic is described in [18], but its 
application in case of long and complex capability 
descriptions is problematic. For example, it requires 
that unrelated concepts are defined as disjoint pair 
wise. Overall, the matching process needs complex DL 
modelling which is hard to maintain. Using 
Description Logic it is decidable whether there is a 
common solution for the goal and the service, but it 
cannot tell what the solution is. More details on our 
experiments with using Description Logic for service 
matching are published in [10]. 

Logic Programming can tell what the common 
solution is if it is able to find it. Let's take two very 
simple example conditions:  

 



Goal:
Ticket from Wien to Graz
Ticket date 06.06.2006.

Webservice:
Ticket from X to Y

where X and Y are in Austria
Ticket issued by Austrian Air

 
This example roughly corresponds to the WSMO 
Virtual Travel Agency use case [17], and also agrees 
with the INFRAWEBS project use cases [6]. 

For humans this seems a perfect match. If we model 
the outcome with a set of tickets according to the set-

based modelling approach [11], it is clear that there can 
be tickets fulfilling all conditions. But in the world of 
logic, there is no implication in either direction 
between the goal and web service. The goal is 
specialized in details of desired service, while the web 
service is specialised in details of service delivery. 

A further problem is that both goal and service 
descriptions may vary in the level of detail. For 
example, sometimes the destination or the date is 
omitted, sometimes more conditions are given, for 
example to have a business class ticket. 

 

 

Goal Web service

Ticket from Wien to Graz Ticket from X to Y

Ticket date 06/06/2006

X is in Austria

Y is in Austria

Matching, X,Y unified 
with Wien, Graz

True for X=Wien

True for Y=Graz

Ticket issued by Austrian Air
No contradiction

No contradiction

 
Figure 1: Schematic example of matching with unification 

 

3.1. Semantic matching using Logic 
Programming 
 

Our solution applies the unification facility of 
Prolog engines. If we find matching terms within the 
goal and the web service, we can use this information 
to decide on the matching. A schematic explanation of 
unification can be found in Figure 1. The goal in the 
figure describes a request for a ticket from Wien to 
Graz for a given date, while the service advertises 
Austrian Air flight tickets within Austria. The ticket 
departure and destination facts are unified in the goal 
and the web service, with the consequence that X 
becomes Wien and Y becomes Graz. After that, 
whether X and Y are in Austria can be decided. The 
last two facts have no correspondence on the other 
side, therefore they cannot generate any contradiction, 
and they can be silently ignored. 

In order to reach a comparable list of terms some 
kind of normalized form is needed, of which the 
Disjunctive Normal Form (DNF) was the most 
suitable, as it represents the set of simple capabilities 
(desires or effects). The DNF consists of clause sets in 
the form of (C11 and C12 and … ) or… (Cm1 and Cm2 
and …), where Cij are atomic terms. We call Cij a 

clause, and (C11 and C12 and … C1n) a clause set. A 
DNF is true if at least one clause set is true. A DNF 
clause set is true if all its clauses are true. This means 
that a clause set provides a complete solution if all its 
clauses are true. 

The pre-processing steps needed to create the 
infrastructure for matching: 

•  Ontologies are converted to Prolog. Special 
predicates are used to represent subconcept, 
attribute and attribute type relationships within 
concepts. 

o Web services are converted to DNF with the 
internal steps of: 

o Replacing logical constructs such as 
implication or equivalence with an equivalent 
form using only conjunction, disjunction and 
negation, 

o Conversion into Negation Normal Form 
(NNF), 

o Elimination of forall and exists constructs, 
skolemization, 



o Moving disjunctions to the outermost level to 
reach DNF. 

•  DNF clause sets are converted to Prolog. 
Membership molecules of WSML are converted 
to type/2 predicates and hasValue molecules are 
represented with attr/3 predicates. 

An example of generated Prolog clauses is given for a 
service providing flights from Innsbruck to Wien: 
 
type(V_FlightPrefs,
flightBookingPreferences),
attr(V_FlightPrefs, start, V_Start),
=(V_Start, innsbruckAirport),
attr(V_FlightPrefs, end, V_End)
=(V_End, wienAirport),
attr(V_FlightPrefs, class, V_Class),
type(V_Buyer, buyer),
attr(V_Buyer, contactInformation,
V_BuyerContact),
attr(V_BuyerContact, emailaddress,
V_BuyerEmail),
type(V_BuyerEmail, string)

When the system is initialized, the following steps 
are needed for discovery with a given goal: 

•  The goal is converted first to DNF and then to 
Prolog the same way as web services, the result is 
a Prolog list of clause sets for each condition in 
the goal capability, 

•  The matching algorithm is run: an attempt is 
made to match each web service with the goal, 

•  The result is a list of matching services which is 
ranked before it is sent to the user. 

As part of the matching algorithm, in order to match 
the postconditions of the web service and the goal we 
need to find a matching between the DNF clause sets 
representing postconditions. The steps to be performed 
for each pair of clause sets (one from the goal and one 
from the web service) are: 

•  Unification of clauses in the clause sets: two 
clauses are unified if they have the same 
signature, then corresponding variables in the two 
clauses are unified, 

•  Labelling each clause: matched, failed or ignored, 

•  Decision of match or failure, 

•  Generation of matching result (with lists of failed, 
ignored and matched facts attached). 

The pseudo-code shows a simplified version of this 
matching algorithm: 
 
% both inputs are lists of clauses
match(Goal, Webservice) :-
% perform possible unifications
unify(Goal, Webservice, UnifiedClauses),
% classify each clause/term in goal as
% matched/failed/ignored
checkClauses(Goal, UnifiedClauses,

MatchedInGoal, IgnoredInGoal,
FailedInGoal),

% classify each clause in service as
% matched/failed/ignored
checkClauses(Webservice, UnifiedClauses,

MatchedInService, IgnoredInService,
FailedInService),

% decide on matching
isMatching(MatchedInGoal, IgnoredInGoal,

FailedInGoal),
isMatching(MatchedInService,

IgnoredInService, FailedInService).

unify([G|Goal],Webservice,M2) :-
(if member(G, Webservice) then

M2=[G|M1] else M2=M1),
unify(Goal,Webservice,M1).

unify([],_,[]).

checkClauses([Clause|ClauseSet],
UnifiedClauses,
Matched2, Ignored2, Failed2) :-

check(Clause, UnifiedClauses, Status),
(if Status=m then

Matched2=[Clause|Matched2] else
Matched2=Matched1),

(if Status=i then
Ignored2=[Clause|Ignored2] else
Ignored2=Ignored1),

(if Status=f then
Failed2=[Clause|Failed2] else
Failed2=Failed1),

checkClauses(ClauseSet, UnifiedClauses,
Matched1, Ignored1, Failed1).

checkClauses([],_,[],[],[]).

The detailed explanation of the algorithm is given 
below. First, all possible unifications are made by the 
unify predicate. Second, the algorithm has to examine 
all clauses in the clause set with the effects of 
unifications made. If the clause yields true value after 
the unification, it is labelled as matched. If the clause is 
not true, but all its variables are bound, it is labelled as 
failed. False clauses with free variables mean that the 
condition they represent is not specified in the other 
clause set, therefore they are labelled as ignored. 

Finally, the algorithm has to decide whether the 
goal and the web service match each other. If there is a 



failed clause, it means a disagreement of the goal and 
service, so there is no match. If there are only matched 
and ignored clauses, then a little heuristics is needed to 
decide about the match. As a primary rough heuristics 
we say there is a match if the number of matched 
clauses is greater than the number of ignored clauses. 

In fact this is a problem of WSML capabilities: it is 
very hard to tell which variables represent essential, 
basic service issues and which variables are just to help 
describe conditions. Figure 1 shows two facts at the 
bottom which can be safely ignored. It can also happen 
that the service and the goal are totally different except 
they share the conditions of payment or confirmation 
(for example). In this case the matching result will not 
contain failed facts, just a lot of ignored clauses (the 
essential service requested) and a lot of matched 
clauses (the not so important buying conditions). If 
there are no failed facts, the decision of matching 
cannot be completely sure. Conventions are suggested 
to by-pass this shortcoming. One such agreement can 
be to define a basic service outcome or service class in 
each postcondition or effect. 

The list of matching services should be ranked to 
provide guidance for the user in selection. The usual 
solution is to rank the list by some kind of quality 
aspect or by the categories of exact, subsume, plugin 
and intersection match. The algorithm introduced here 
provides the new possibility of ranking based on the 
number of ignored clauses. Clauses can be ignored on 
both the service and the goal side. Clauses ignored on 
the goal side means certain conditions are not defined 
in the service (e.g. departure date, comfort seats), so a 
lower number of ignored facts mean more precise 
fulfilment of user desires. Clauses ignored on the 
service side means something additional which is not 
specified in the goal (e.g. more travel information, 
company data, etc.).  

The judgement of these is highly subjective, but a 
lower number of ignored facts may also mean a more 
accurate match here. In our implementation we rank by 
the sum of ignored facts in both service and goal. 
Another possible approach is to rank first by the 
number of ignored facts in the goal, and then by the 
number of ignored facts in the service. 

Modelling user preferences and added value in 
discovery is an emerging new problem in this area. The 
presented matching algorithm can handle the added 
value in requests and offers as demonstrated in the 
following example. The goal postcondition declares 
that the flight is business class. If the service says 
nothing about the class, then this requirement is 
ignored by the matching algorithm. If the service offers 
only economy class, then the matching fails. If the 
service declares that it can provide both economy and 
business class tickets, then the corresponding fact is 

matched in the goal, and therefore the service gets a 
higher position in the ranked result list. 

The presented algorithm can thus handle user 
preferences and provide a ranking based on it, if there 
is a way to differentiate between clauses modelling 
core postcondition and clauses modelling user 
preferences in the goal. Currently, we see the only 
solution to use axioms completely separated from the 
goal to express user preferences. 

For matching preconditions and assumptions we can 
use a simpler matching mechanism as expressions have 
to be fully enforced there: a clause is either matched or 
failed. Facts from the goal are inserted into the 
knowledge base, and the clause sets (in DNF) of the 
service precondition and assumption are checked one-
by-one. In this way not only the failure is detected but 
also the failing clauses can be identified and presented 
to the user. 
 
3.2. Implementation and Performance 
 

The matching algorithm was implemented in 
Prolog, and was tested with SWI-Prolog. The 
discovery engine is written in Java, which initializes 
the Prolog implementation, and feeds the WSML 
descriptions for ontologies and web services into it. 
Then, for each discovery request only the goal is 
converted into Prolog and the matching algorithm is 
run. 

Further software components used in the 
implementation are wsmo4j for parsing WSML files 
and Interprolog for making Prolog queries from Java. 

The matching algorithm has the following costs for 
each step (where goal has L clauses and service has M 
clauses): 

•  Unification of clauses: at most L*M operations, 

•  Checking each clause: L+M operations, 

•  Decision of match or failure: constant number of 
operations. 

So the matching of one goal clause set with one 
service clause set takes approximately (L+1)*(M+1) 
operations. If we take the natural assumption that the 
number of clauses has an upper limit m in the system 
(an upper limit for L and M), and the maximal number 
of clause sets representing a service or a goal has an 
upper limit c, we get the estimation that the order of 
complexity of the discovery algorithm is linear with 
respect to the number of services in the system. 

The performance tests were based on the project use 
case; a frequent flyer system offering bonus flights, 
hotel stays and car rentals. The test environment 
contained 18 ontologies, 25 different web services and 



10 different goals. In order to get more services for the 
tests, multiple copies were generated from each 
service. 

The Prolog matcher on a 1.6 GHz P4 desktop PC 
provided the following response times: 

 250 services: 1.82s (.00728s/ws) 
 1000 services: 7.47s (.00747s/ws) 
 4000 services: 32.94s (.00823s/ws)  
 8000 services:  65.63s  (.00820s/ws)  

In the first experiment the number of services was 
25, and the per service discovery time (the total time 
needed for discovery measured in the Java VM divided 
by the number of services checked for matching) 
varied between 12 and 103 milliseconds, depending on 
the complexity of the goal capability. In our next 
experiment the number of web services was increased 
to 250 in the same environment. The per service 
discovery time in the second experiment varied 
between 12 and 129 milliseconds.  

Overall, the response time perceived by the user is 
between 3 and 25 seconds. This is acceptable for the 
project as the pre-filtering step is assumed to reduce 
the number of services in this second step of discovery 
to the magnitude of 2-300 services. 

The following conclusions can be drawn from the 
response times: 

•  The native Prolog implementation needs only a 
couple of milliseconds to match a web service 
and a goal. This is scalable until the magnitude of 
1000 services (result within 5 seconds), which is 
satisfying if we consider the pre-filtering step as 
well. 

•  There is a bottleneck in the communication 
between Java and Prolog. We will experiment 
with other possible communication methods. 

•  Little effort was spent on code optimization, and 
we think the speed of discovery can still be 
increased. 

Currently there is little information available about 
the performance of other discovery implementations. 
We think the proposed and implemented solution is 
comparable in effectiveness and correctness to the few 
other approaches. The solution can be used generally, 
and it is also able to provide some explanation of the 
match or failure, which can be presented to the user. 

In order to provide an interface for testing and 
experimenting, a web-based test bed has been 
implemented for the discovery component. This test 
bed includes not only the software but example data as 
well.  

The test bed is available as an online service of 
SZTAKI, it can be reached from the demonstrations 
page of the INFRAWEBS project website: 
http://www.infrawebs.eu. 
 
Related work 
 

The early experiments to implement matching 
algorithms with Logic Programming are mostly done 
using Flora-2, a reasoner supporting F-logic 
[19][20][21]. The syntax of the Flora-2 language is 
very close to WSML, which alleviates language 
conversion. 

In [19] and [20] the matching is based on the 
discovery model in Transaction Logic [11]. After 
precondition matching, the service postcondition is 
assumed to be true (inserted into the knowledge base), 
and the fulfilment of goal postcondition is checked. 
Finally, the inserted facts are retracted from the 
knowledge base, and the matching of next service can 
be started. The matching is done in the traditional way, 
checking the truth value of the goal postcondition. This 
leads us to the matching problem detailed in section 3, 
namely, the postcondition of a matching service does 
not imply the goal postcondition. This solution works 
if goals are prepared by parameterizing goal templates, 
but it does not support custom goals and the discovery 
functionality needed for service composition.  

There are several proof-of-concept experiments for  
SWS discovery using WSMO, but relatively few 
complete implementations. Della Valle et al. have 
created a complete discovery solution based on 
mediators [21]. It is used in Glue, a lightweight 
implementation of their suggested execution 
framework for Semantic Web Services. Glue uses pre-
defined goals (goal templates), which can be 
parameterized by the user for her actual request. A 
wgMediator [14] is used to find matching web services 
for a specific goal. Therefore, the (simplified) steps of 
discovery are: 

•  Parameterize a pre-defined goal, 
•  Find the wgMediator for that pre-defined goal, 
•  The wgMediator returns matching services for the 

goal. 

The advantages of this approach are: 

•  Efficient solution which is also easy to 
implement, 

•  Straightforward support for mediation between 
heterogeneous ontologies using ooMediators and 
ggMediators. 



The disadvantages of this approach are: 

•  Goals can only be created based on pre-defined 
goals. If the user’s desire does not match any of 
the pre-defined goals, she has no choice to find 
matching services, 

•  The maintenance of pre-defined goals needs 
continuous effort from the operators of the 
discovery engine. If composite goals are 
supported, the number of pre-defined composite 
goals to be created and maintained may reach a 
huge number. 

OWL-S is probably the most known approach 
currently for Semantic Web Services. In OWL-S a 
service can be specified with inputs and outputs, but 
also with pre- and postconditions. The typical 
discovery solutions using OWL-S [22][23] match the 
user’s input with the service input and the service 
output with the user’s desired outcome. This means 
that all concepts required by the service as input need 
to match with a concept provided as user input, and all 
concepts required by the user as output match with a 
concept in the service output. The schematic process of 
such discovery contains the following steps: 

•  Locate services with matching input and output 
o For each input concept of the service, find a 

matching input concept provided by the user 
o For each output concept required by the user, 

find a matching output concept of the service 

The advantages of this approach are: 

•  Simple matching algorithm, required reasoning is 
minimal 

•  Fast implementations are possible using indexed 
search 

The disadvantage of this approach is that matching 
is based solely on inputs and outputs, and the effects of 
service execution are ignored, so there is no guarantee 
that the matching service has the desired effect. (As an 
example: a service with an input of type document and 
an output of type document might perform rather 
different tasks on the document.) 

In [24] a peer-to-peer environment is described for 
WSMO-based semantic discovery. The system 
(supported by the DIP project) contains several 
novelties, such as decentralized discovery and QoS-
based matching. Here we concentrate on the method of 
discovery. The paper provides minimal information 
about the logic-based matching applied in the system. 
Logic-based matching is preceded by a filtering step, 
when irrelevant services are filtered out, and the logic-
based matching is only applied on a small set of 
services. The rationale is similar to that of the 

INFRAWEBS project: logic-based matching is 
expensive, and it is needless to run the expensive 
algorithms on services which have no chance to match 
with the goal. The concepts are classified into concept 
groups, and services and goals are associated with 
concept groups based on concepts mentioned in the 
capability. Keys are calculated for both services and 
goals which summarize the concept groups used in the 
capability descriptions.  

According to the authors the necessary condition for 
a service to match with a goal is that its description at 
least must contain all concepts related to those 
specified in the goal. We saw in the previous sections 
that this assumption for matching is not necessarily 
true. For example, a goal may contain date constraints 
while services usually say nothing about dates. The 
creators of the system admit that for partial 
matchmaking some concepts has to be discarded from 
the goal in the filtering phase, and GUI tools would 
help users in doing this. As a comparison of this 
approach and INFRAWEBS discovery we outline the 
following: 

•  Both projects use a filtering phase before the 
logic-based matching, but the filtering rules used 
in INFRAWEBS are less restrictive. 

•  QoS data is used to define criteria for matching in 
this work, while INFRAWEBS uses QoS data for 
ranking the list of matching services. 

 
Conclusion 
 

In this paper we have presented the implementation 
of the Discovery Component of the SWS environment 
created by the INFRAWEBS project. 

The matching algorithm selected for discovery 
combines a traditional IR-based pre-filtering step and a 
logic-based matching implemented in Prolog. The 
logic-based step of discovery uses a novel technique 
based on Prolog-style unification of terms. This 
approach is able to find intersection and other types of 
service matches, and also provides possibilities to 
compare, rank and explain service matches (or non-
matches). The performance of the solution is 
satisfactory within the project scenario. In the lack of 
performance details of other solutions it is hard to 
compare the presented implementation with other 
discovery engines. 

A test bed is available online for the demonstration 
of the approach. It can be reached from the 
demonstrations page of the INFRAWEBS project 
website. 
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