
Analysis and Enhancement of Conditional Random Fields

Gene Mention Taggers in BioCreative II Challenge Evalua-

tion

Yu-Ming Chang1 , Cheng-Ju Kuo1,2 , Han-Shen Huang1 , Yu-Shi Lin1,3 , Chun-Nan Hsu1,∗

1Institute of Information Science, Academia Sinica, Taipei, Taiwan.
2Institute of Bioinformatics, National Yang-Ming University, Taipei,Taiwan.
3Department of Computer Science, National Taiwan University, Taipei, Taiwan.

Email: porter@iis.sinica.edu.tw; clarkkuo@iis.sinica.edu.tw; hanshen@iis.sinica.edu.tw; bathroom@iis.sinica.edu.tw;

chunnan@iis.sinica.edu.tw;

∗Corresponding author

Abstract

Background: Tagging gene and gene product mentions in scientific text is an important initial step of literature

mining. In BioCreative 2 challenge, the conditional random fields model (CRF) was the most prevailing method

in the gene mention task. In this paper, we analyze two best performing CRF-based systems in BioCreative 2.

We examine their key claims and propose enhancement based on the analysis results.

Results: We implemented their systems in MALLET as specified in their report and in CRF++, a different CRF

package, to empirically analyze their claims. We found that their feature set is effective for models trained by

MALLET, but a smaller set works better for those by CRF++. We confirmed the effectiveness of pairing

parentheses as a post processing step. We found that backward parsing is not always superior to forward

parsing. The benefit of applying bidirectional parsing is the creation of a wider variety of complementary

models. We elaborated the notion of divergent models by relating it to the difference of the increments of ture

positives and false positives of the union model.

Conclusions: To further enhance the performance, we can integrate more models based on the elaborated notion

of divergent models that we derived to minimize the number of models required.

Background

At present, scientific literature is still the largest and most reliable source of biomedical knowledge. A great

deal of efforts have been devoted to literature mining in attempts to extract large volumes of biomedical

facts, such as protein-protein interactions and disease-gene associations, from the literature. Curation of

large-scale experimental data generated by high-throughput experimental methods also depends on

literature mining. Literature mining usually takes many complex steps. Tagging gene and gene product

mentions in scientific text is an important initial step. However, gene mention tagging is particularly

difficult because authors rarely use standardized gene names and gene names naturally co-occur with other

types that have similar morphology, and even similar context.

The second BioCreative challenge (BioCreative 2) [1] is a recent competition for biological literature

mining systems. It took place in 2006 and followed by a workshop in April of 2007. This challenge

consisted of a gene mention task, a gene normalization task and protein-protein interaction tasks. The gene

mention task [2] evaluated how accurate a computer program can automatically tag gene names in

sentences extracted from MEDLINE abstracts. Participants were given a tagged training corpus to develop

their systems and an untagged test corpus to apply their systems for evaluation. The training corpus

contains 15,000 sentences and the test corpus 5,000 sentences. Each run submitted by a participant was

evaluated based on F-score, F := 2pr·100%

p+r
, where p is precision and r is recall. A total of 21 participants

submitted 3 runs to the challenge. The highest achieved F-score was 87.21.

In BioCreative 1 held in 2004, the conditional random fields model (CRF) [3] was applied in the gene

metion tagging task and achieved high F-scores [4]. Of the 21 participants in BioCreative 2, 11 chose the

CRF model. Apparently, CRF has become the most prevailing method in this task. In this paper, we

analyze two CRF-based systems in BioCreative 2. One of them is Kuo et al.’s system [5], which is the best

performing system based on CRF in BioCreative 2 (ranked 2nd). Its performance is not statistically

significantly worse than any other system, and its performance is the best among all systems for a test

corpus re-weighted to reflect the distribution of a random sentence extracted from MEDLINE. The other is

Huang et al.’s system [6], which combines CRF with support vector machines (SVM) to achieve one of the

best F-scores (ranked 3rd) in BioCreative 2. In fact, even the top performing system is not statistically

significantly better than this system. The high performance of this combo system reconfirms a well-known

strategy that combining multiple complementary models always improve the performance. Aside from their

performance, both systems are interesting because they were built mostly on top of open source software

packages for CRF and NLP, which makes it possible to duplicate their results.

Kuo et al.’s System

The key idea of Kuo et al.’s system [5] is to combine bidirectional parsing CRF models with a rich feature

set. They used MALLET [7] to implement their CRF models to take advantage of its feature induction

capability [8]. The CRF model is trained to label each token in an input sentence as one of B (beginning of

a gene entity), I (in a gene entity), and O (outside a gene entity). Due to the special characteristics of

name-entities of genes and gene products [9], a rich set of features is required to achieve satisfactory

F-scores. Table 1 shows their feature set. Moreover, to include contextual information, they used -2 to 2 as

the offsets to generate contextual features that apply to predicates including words, stemmed words and

word morphology predicates at each position. To extract features, the Genia Tagger [10] was applied for

stemming, tokenization and part-of-speech tagging. They modified the Genia Tagger slightly to tokenize

words with a higher granularity. For example, punctuation symbols within words were segmented. They

also applied a rule-based filter to clean up some easily fixed mistakes, such as entities with unpaired

parentheses or square brackets.

To further improve its performance, they combined the tagging results of forward and backward parsing.

In forward parsing, CRF reads and tags the input sentences from left to right, while in backward parsing,

CRF reads and tags the input sentences from right to left. Figure 1 illustrates different parsing directions.

We note that the training set and the “B,I,O” labels must both be reversed to train a backward parsing

CRF model. That is, their backward parsing is equivalent to applying “I,O,E” labelling to reversed

sentences [11] in named entity recognition. They tested the forward and backward parsing models and

found that backward parsing constantly outperformed forward parsing in both recall and precision, but its

reason is unclear. They assumed that some “signals” at the end of entities are more important to well

demarcate boundaries of entities.

Finally, they applied a special method based on likelihood scores and dictionary-filtering, which used a

dictionary-based filter to select entities from the union of the top ten tagging solutions obtained by

MALLET’s n-best option. In fact, the union of the top ten tagging solutions of bidirectional parsing

achieved a nearly perfect recall at 98.10 for the final test, but with 13.87 precision. That is, nearly all true

positives are in this union. They distilled real true positives from this union as follows.

1. Parse the input sentence in both directions to obtain the top ten solutions for each direction with

their output scores;

2. Compute the intersection of bidirectional parsing and select the solution in the intersection that

minimizes the sum of its output scores;

3. For the other 18 solutions, select the labeled terms appearing in a dictionary with its length greater

than three.

Step 2 is derived from the optimal model integration. Let x be a test sentence, y be a tagging, and mi be a

model where i = 1, 2, The optimal integration of mi’s is to select y such that

y = argmax
y

∏

i

p(y|x, mi) = arg min
y

−
∑

i

log p(y|x, mi).

Next, they used approved gene symbols and aliases obtained from HUGO [12] as their dictionary for the

final dictionary filtering.

Huang et al.’s System

Huang et al. [6] considered the gene mention tagging task as a classification problem and applied support

vector machines (SVM) to solve it. They selected a large set of features as the input and trained two SVM

models with different multiclass extension methods. They found that backward parsing constantly

outperformed forward parsing regardless of the multiclass extension methods and obtained high precision

rates, but recall rates were not as satisfactory. To enhance recall rates, their approach is to construct

divergent but high performance models to cover different aspects of the feature space, and then combine

them into an ensemble. They also applied union and intersection to combine the outputs of SVM models

with that of a CRF model, which was trained with the same feature set, and successfully enhanced recall

rates without degrading too much precision. They chose Yet Another Multipurpose Chunk Annotator

(YamCha) [11, 13] to build their SVM models because it is tuned for name entity chunking tasks. They

designed their features based on the experience and previous works on named entity recognition [4, 14].

Table 3 shows the set of features. There are a total of 617,515 features in the feature set.

They also used an inside/outside representation for gene mention tagging with B, I, and O class labels.

Since SVM is an intrinsic binary classifier, extensions must be made to handle multiclass problem. They

applied two popular methods to extend a binary classifier to multiclass: one vs. all and one vs. one. They

also trained a conditional random field (CRF) model to increase the divergence of the ensemble.

Table 4 shows the final test results of this model, as well as the final results of the unions of CRF with the

two SVM models. The results show that the simple ensemble model significantly enhanced recall, with all

recall results ranked in the top quartile, while precision results dropped slightly. All F-score results were

ranked in the top quartile among 21 participants, too.

Results and Discussion

In this section, we present the results of our investigation of the key claims of these systems with

discussions. We developed a JAVA feature extractor for MALLET to duplicate their results. To investigate

the portability, we also applied CRF++ [15], another free package for CRF training. In addition, we

applied CTJPGIS, a new algorithm for CRF training to compare its performance with L-BFGS [16], the de

facto standard algorithm for CRF training. The derivation of CTJPGIS is presented in method section.

Though our focus is mainly on CRF, we also include the YamCha implementation of SVM in our

investigation.

Feature Selection

To investigate the impact of feature selection, our plan was to remove a subset of features corresponding to

a feature type and observe its impact to the performance. This is expensive because training CRF takes

time. We duplicated Kuo et al.’s feature set as shown in Table 1 for models trained by MALLET. This set

will be denoted as F1. We also duplicated Huang et al.’s feature set as shown in Table 3. This set will be

denoted as F2. The difference between these two sets of features includes the N-grams in F1 and the prefix

and suffix features in F2. We changed Huang et al’s set and slightly to improve the performance of SVM

by removing orthographic features. We used this new set of features for models trained by CRF++

because YamCha and CRF++ share the same input format of the features. We compared the performance

of the CRF++ tagger with F2 including and not including orthographic features. The performance was

improved slighly without orthographic features. Moreover, the F-score 87.12 by CRF++ is already higher

than Kuo et al.’s system and this is achieved by a single CRF model without model integration.

We tried our MALLET model to see if the removal of orthographic features also helps. It turns out that

the F-score drops significantly by 4 percentage points. The results are shown in Table 5. We removed other

subsets from the feature set for MALLET and observed similar performance degradation. Therefore, F1, as

given in Table 1, is effective for models trained by MALLET, but a smaller set works better for those by

CRF++, and the selection of best features depends on the CRF package we used. In the following

discussion, models trained by MALLET will use F1 as the feature set while models trained by CRF++ will

use F2 excluding orthographic features F2−O, which will also be used by SVM models trained by YamCha.

Post Processing

We implemented the post processing step that resolves problems caused by unpaired parenthesis. For

example, suppose the input sentence is

. . . implicated the NIMA (never in mitosis, gene A)-related kinase-6 (NEK6) . . .

but the model tags “gene A)-related kinase-6” as a gene mention. This tagged entity is obviously incorrect

because it includes only a right parenthesis. The post processing program will first find the left parenthesis

in the sentence, and then search if there is a stop word or parenthesis at the left side of the left parenthesis.

In this example, the second token “the” conforms to the condition. At last, the program will extend the

tagged entity to the token right after the stop word “the” and output the extended string “NIMA (never in

mitosis, gene A)-related kinase-6” as the tagged entity, which is a correct tagging. When the tagged entity

contains only a left parenthesis, reverse the search direction for parenthesis and stop word.

Table 6 shows the improvement of the post processing for two different models. Though the improvement

is less than a percentage point in F-score, for all models, both precision and recall are improved, suggesting

no trade-off and the effectiveness of pairing parentheses as a post processing step.

Backward and Forward Parsing

The most prominent feature of Kuo et al. and Huang et al’s systems is the use of backward parsing.

However, the superiority of backward parsing is also the most speculative. Intuitively, it can be explained

that some “signals” at the end of gene entities enable the system to recognize them more accurately. For

example,

. . . zinc finger and BTB domain-containing protein 39 . . .

The words highlighted at the end appear to be the “signal.” The empirical results presented in their report

appeared to be evidential, but it is not clear whether the claim is applicable to other data sets or whether

the claim is only specific to the choice of feature sets.

We started by investigating the difference of the trained models of the forward and backward parsing by

applying MALLET with the same feature set used in Kuo et al.’s system. We counted the percentage

differences between the forward and backward parsing models of nonzero predicates and errors made at

each type of class transition positions. Nonzero predicates are important because they are the only

predicates that will be considered by the CRF model when it tags a sentence. The result is shown in

Table 7, which shows that nonzero predicates are different between forward and backward parsing for

transitions involving B’s, but no significant difference in errors made at those transitions. There appears

no correlation between the differences and the errors made.

Then we applied CRF++ to see if the superiority of backward parsing is portable to another CRF package.

The feature set used by the CRF++ tagger is slightly different from the MALLET version, as discussed in

the sub-section about feature selection. In a nutshell, we compared forward and backward parsing for the

same BioCreative 2 data set but used different CRF packages with different sets of features. The result is

shown in Table 8. It turns out that as reported in [5], the MALLET tagger performs better applying

backward parsing than forward parsing by 0.47 percentage points in F-score, but on the contrary to Kuo et

al.’s results, our CRF++ tagger performs worse applying backward parsing by 0.05 percentage points. The

difference column in Table 8 shows that the difference between forward and backward parsing models for

MALLET is ten times as many as that for CRF++, which leads to significant improvement of precision by

intersection of forward and backward parsing models for MALLET but tiny improvement for CRF++. We

also compared the log-likelihood scores obtained by MALLET and CRF++ for both parsing directions and

found that the log-likelihood scores are almost the same for CRF++ but different for MALLET.

We conclude that backward parsing is not always superior to forward parsing. The benefit of applying

bidirectional parsing is the creation of a wider variety of complementary models.

Model Integration

Another prominent feature of Kuo et al. and Huang et al.’s systems is that combining divergent but high

performance models always improve the performance. To create divergent but high performance models,

we implemented the following four models:

• The first one is the intersection of forward and backward parsing models trained by MALLET with

its default training algorithm L-BFGS, denoted by MalletL-BFGSint. Intersection was applied to

boost its precision. The feature set used is F1.

• The second one is a forward parsing model trained by CRF++, denoted by CRF++L-BFGS, also using

its default training algorithm L-BFGS.

• We altered the training algorithm of CRF++ from L-BFGS to CTJPGIS to train the third model,

called CRF++CTJPGIS. This new algorithm is introduced to create a wider variety of models. Since

CTJPGIS is derived quite differently from L-BFGS [16], their search paths to the optimum are quite

different, too. Therefore, CTJPGIS can be applied to create a model to complement the model

trained by L-BFGS. Both CRF++ models use F2−O as their feature set.

• The forth model is the forward parsing SVM model trained by YamCha. The input feature set is also

F2−O as discussed in feature selection sub-section.

Tabel 9 shows the precision, recall and F-score of the four models and their unions. The results show that

with a similar set of features, we can duplicate Kuo et al.’s performance by CRF models trained by a

different software package. In fact, both models trained by CRF++ outperform Kuo et al.’s best system,

and their union outperforms the rank 1 system in BioCreative 2, which achieved a F-score of 87.21. Our

best performing system is the union of two models trained by L-BFGS, achieving a F-score of 87.67. We

note that no external data source other than the training corpus provided by BioCreative 2 was used and

only pairs of integrated models was required to achieve this result.

Other notable results include that the difference of F-scores between the YamCha model and two CRF++

model is surprisingly large even though they share the same set of features, and that the unions of SVM

and CRF models perform not as well as the unions of CRF model pairs. Intuitively, the variance between

the tagging results of a SVM model and a CRF model is supposed to be larger than that between CRF

models and therefore the union between SVM and CRF models is supposed to complement each other’s

false negatives and perform better. But the results show differently. An explanation is that the

performance of the SVM model is not as good as its CRF counterparts. But the performance of

MalletL-BFGSint is not as good neither, though its precision is very high. We seeked the answer by

examining the difference of true positives and false positives before and after applying union to each pair of

models. Compared to the F-score results in Table 9, we can see that the more increment of TP and the less

increment of FP bring a higher F-score. Figure 2 illustrates this finding with bar charts, which show that

the larger the difference between the increments of TP and FP, the larger the gain of F-score by union. If

the difference is negative, then union may degrade the performance when individual tagger’s performance

is not sufficiently high. This explains why the union of MalletL-BFGSint and CRF++L-BFGS performs

much better than the unions of YamCha and other CRF models.

Conclusions

We have analyzed the key claims of the two best performing CRF-based gene mention taggers in

BioCreative 2 and proposed simple enhancement that performs better than any system in BioCreative 2.

We showed that the set of features used by Kuo et al. is effective for MALLET, but when applied to

CRF++, it is not as effective as a set with orthographic features removed. Then we showed that balancing

parentheses as a post-processing step always improves the performance. We analyzed a prominent claim

that backward parsing models is superior for gene mention tagging. We found that it may apply to

MALLET models but not apply to CRF++. No significant difference between backward and forward

parsing was observed for CRF++ models. It is not clear why MALLET and CRF++ respond differently

with regards to feature selection and parsing direction. In theory, they implement the same L-BFGS

algorithm for the same CRF model. We suspect that approximation in model inference may play a role in

their different behavior. However, this cannot be elucidated unless we actually trace their code to figure

out the real cause. Finally, we confirmed that integrating divergent models improves the performance. We

elaborated the notion of divergent models by relating it to the difference of the increments of ture positives

and false positives of the union model.

To further enhance the performance, we can integrate more models based on the elaborated notion of

divergent models that we derived. A grand ensembl of all participating systems in BioCreative 2 achieves a

F-score of 90.6 [2]. Our heuristic can be used to minimize the number of models required.

Methods
CTJPGIS

CTJPGIS is the abbreviation of “the componentwise triple jump method for penalized generalized iterative

scaling.” CTJPGIS is derived from the generalized iterative scaling (GIS) method [17], which is a classical

method to train exponential probabilistic models. However, GIS usually converges slowly, especially when

applied to train a CRF model for large-scale gene mention tagging tasks.

Since GIS can also be considered as fixed-point iteration [18], we can apply the triple jump extrapolation

method to speed up its convergence. The triple jump method is an approximation of Aitken’s acceleration

for fixed-point iteration methods. It has been successfully applied to the EM algorithm [19–22]. The idea is

to estimate the extrapolation rate by considering the previous two consecutive estimates of the parameter

vectors. The triple jump extrapolation method can effectively accelerate the EM algorithm by substantially

reducing the number of iterations required for the EM algorithm to converge. Though the triple jump

method, as all variants of Aitken’s acceleration, may not monotonically increase the likelihood, we can

apply the idea proposed by [23] to resolve the issue. The idea is to discard the extrapolation if it fails to

improve the likelihood and use the estimate obtained without the extrapolation. In this way, convergence

can be guaranteed [20]. CTJPGIS runs as fast as L-BFGS, therefore, we can create many models efficiently.

References
1. Hirschman L, Krallinger M, Valencia A: Proceedings of the second BioCreative challenge evaluation workshop.

CINO Centro Nacional de Investigaciones Oncologicas 2007.

2. Wilbur J, Smith L, Tanabe L: BioCreative 2. Gene Mention Task. In Proceedings of the Second
BioCreative Challenge Evaluation Workshop 2007:7–16.

3. Lafferty J, McCallum A, Pereira F: Conditional Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data. In Proceedings of 18th International Conference on Machine Learning (ICML
’03) 2001:282–289.

4. McDonald R, Pereira F: Identifying gene and protein mentions in text using conditional random
fields. BMC Bioinformatics 2005, 6:S6.

5. Kuo CJ, Chang YM, Huang HS, Lin KT, Yang BH, Lin YS, Hsu CN, Chung IF: Rich Feature Set,
Unification of Bidirectional Parsing and Dictionary Filtering for High F-Score Gene Mention
Tagging. In Proceedings of the Second BioCreative Challenge Evaluation Workshop 2007:105–107.

6. Huang HS, Lin YS, Lin KT, Kuo CJ, Chang YM, , Yang BH, Hsu CN, Chung IF: High-Recall Gene
Mention Recognition by Unification of Multiple Backward Parsing Models. In Proceedings of the
Second BioCreative Challenge Evaluation Workshop 2007:109–111.

7. McCallum AK: MALLET: A Machine Learning for Language Toolkit 2002.
[Http://mallet.cs.umass.edu].

8. McCallum A: Efficiently inducing features of conditional random fields. In Nineteenth Conference on
Uncertainty in Artificial Intelligence (UAI03) 2003[citeseer.ist.psu.edu/mccallum03efficiently.html].

9. Zhou GD: Recognizing names in biomedical texts using mutual information independence model
and SVM plus sigmoid. International Journal of Medical Informatics 2006, 75:456–467.

10. Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J, Ananiadou S, Tsujii J: Developing a Robust
Part-of-Speech Tagger for Biomedical Text. In Advances in Informatics - 10th Panhellenic Conference
on Informatics 2005:382–392.

11. Kudo T, Matsumoto Y: Chunking with support vector machines 2001,
[citeseer.ist.psu.edu/kudo01chunking.html].

12. Eyre TA, Ducluzeau F, Sneddon TP, Povey S, Bruford EA, Lush MJ: The HUGO Gene Nomenclature
Database, 2006 updates. Nucleic Acids Research 2006, 34:D319–D321.

13. Kudo T: YamCha: Yet Another Multipurpose CHunk Annotator 2001.
[Http://chasen.org/ taku/software/yamcha/].

14. Mitsumori T, Fation S, Murata M, Doi K, Doi H: Gene/protein name recognition based on support
vector machine using dictionary as features. BMC Bioinformatics 2005, 6:S8.

15. Kudo T: CRF++: Yet Another CRF toolkit 2005. [Http://crfpp.sourceforge.net/].

16. Nocedal J, Wright SJ: Numerical Optimization. Springer 1999.

17. Darroch JN, Ratcliff D: Generalized iterative scaling for log-linear models. The Annals of Mathematical
Statistics 1972, 43(5):1470–1480.

18. Burden RL, Faires D: Numerical Analysis. PWS-KENT Pub Co. 1988.

19. Hsu CN, Huang HS, Yang BH: Global and Componentwise Extrapolation for Accelerating Data
Mining from Large Incomplete Data Set with the EM Algorithm. To appear in Proceedings of the
6th IEEE International Conference on Data Mining (ICDM ’06). 2006.

20. Huang HS, Yang BH, Hsu CN: Triple-Jump Acceleration for the EM Algorithm. In Proceedings of the
5th IEEE International Conference on Data Mining (ICDM ’05) 2005:649–652.

21. Hesterberg T: Staggered Aitken Acceleration for EM. In Proceedings of the Statistical Computing Section
of the American Statistical Association, Minneapolis, Minnesota, USA 2005.

22. Schafer JL: Analysis of Incomplete Multivariate Data. London: Chapman and Hall / CRC Press 1997.

23. Salakhutdinov R, Roweis S: Adaptive overrelaxed bound optimization methods. In Proceedings of the
Twentieth International Conference on Machine Learning 2003:664–671.

Figures and Tables

Table 1: Features of Kuo et al.’s system.

Feature Example Feature Example Feature Example
Word proteins Hyphen - Nucleoside Thymine
StemmedWord protein BackSlash / Nucleotide ATP
PartOfSpeech NN OpenSqure [Roman I, II, XI
InitCap Kinase CloseSqure] MorphologyTypeI p53→p*
EndCap kappaB Colon : MorphologyTypeII p53→a1
AllCaps SOX SemiColon ; MorphologyTypeIII GnRH→AaAA
LowerCase interlukin Percent % WordLength 1, 2, 3-5, 6+
MixCase RalGDS OpenParen (N-grams(2-4) p53→{p5, 53}
SingleCap kDa CloseParen) ATCGUsequece ATCGU
TwoCap IL Comma , Greek alpha
ThreeCap CSF FullStop . NucleicAcid cDNA
MoreCap RESULT Apostrophe ’ AminoAcidLong tyrosine
SingleDigit 1 QuotationMark ” AminoAcidShort Ser
TwoDigit 22 Star * AminoAcid+Position Ser150
FourDigit 1983 Equal =
MoreDigit 513256 Plus +

Table 2: System performance of submitted runs by Kuo et al.

System Precision Recall F-Measure
Backward 89.30 83.83 86.48
Union 86.10 87.08 86.58
Top Ten + Dictionary 89.30 84.49 86.83

11

Table 3: Types of features of Huang et al.’s system and their possible values.

Feature Value
word all words in the training data
POS part-of-speech tagging by GENIA tagger
orthographic same as the features from InitCap to Plus in Table 1
vowel a,e,i,o,u
length 1,2,3∼5,≥6
morphological I replacing digits with a ”*”(e.g., Abc123→Abc*)
morphological II replacing each letter and digit with a morphological symbol

(e.g., AbcD123→AaaA111)
prefix 1∼6 gram of the starting letters of the token
suffix 1∼6 gram of the ending letters of the token
preceding class class labels of the two preceding tokens

Table 4: Final results of Huang et al. systems.
Run Ensemble Performance

1 M1∪M3 P:83.27(3) R:89.34(1) F:86.20(1)
2 M2∪M3 P:82.98(3) R:89.58(1) F:86.15(1)
3 (M1∩M2)∪M3 P:84.93(3) R:88.28(1) F:86.57(1)

The number in the parentheses is the quartile among 21 participants.
M1 = SVM + one vs. all, M2 = SVM + one vs. one, M3 = CRF.

Table 5: Comparison of different features. F1 is the feature set given in Table 1, F2 is the feature set given
in Table 3, and O denotes orthographic features. “−” denotes set difference.

Model F1 F1−O Model F2 F2−O
MalletL-BFGS forward Precision 88.88 79.80 CRF++L-BFGS Precision 90.16 90.15

Recall 83.57 84.64 Recall 84.13 84.28
F-score 86.14 82.15 F-score 87.04 87.12

Table 6: Improvment by post processing for all models.

Model Without postprocess With postprocess
MalletL-BFGSint Precision 91.93 92.12

Recall 75.36 75.69
F-score 82.82 83.10

CRF++L-BFGS Precision 89.85 90.15
Recall 83.87 84.28
F-score 86.76 87.12

12

Table 7: Percentage differences between forward and backward parsing models of nonzero predicates and
errors made at each type of class transition positions

∆% O, O O, B B, O B, B B, I I, O I, B I, I Total
Nonzero -0.1 25.6 -37.0 -6.7 -18.2 -8.3 13.4 3.5 -0.03
predicates
Errors 0.4 1.5 8.8 21.7 -3.1 -3.7 1.9 -4.0 -0.17

Table 8: Comparison between forward and backward parsing.

Model Forward Backward Intersection Difference
MalletL-BFGS TP 5291 5321 4792 1028

FP 662 635 410 477
Precision 88.88 89.34 92.12 -
Recall 83.57 84.05 75.69 -
F-score 86.14 86.61 83.10 0.47

CRF++L-BFGS TP 5336 5326 5281 100
FP 583 577 557 46
Precision 90.15 90.22 90.46 -
Recall 84.28 84.13 83.41 -
F-score 87.12 87.07 86.79 0.05

Table 9: Precision, Recall and F-score of each individual model (diagonal elements) and the union of each
pair of models (off-diagnoal elements).

Model MalletL-BFGSint CRF++L-BFGS CRF++CTJPGIS YamCha
MalletL-BFGSint Precision 92.11 88.67 88.65 84.98

Recall 75.69 86.68 86.40 87.03
F-score 83.10 87.67 87.51 85.99

CRF++L-BFGS Precision 90.15 88.21 84.16
Recall 84.28 86.59 88.01
F-score 87.12 87.39 86.05

CRF++CTJPGIS Precision 90.60 84.39
Recall 82.96 87.73
F-score 86.61 86.03

YamCha Precision 86.96
Recall 80.70
F-score 83.71

13

Figure 1: An example of sentence forward parsing and backward parsing: In forward parsing, the tagger
reads a sentence from left to right as its ordinary order. But in backward parsing, the tagger reads a sentence
from right to left. That is, in its reversed order.

CRF++L−BFGS CRF++CTJPGIS YamCha

−100

0

100

200

300

400

500

600

700

800

900

MalletL−BFGSint

union model

TP increment
FP increment
F−score Gain*100

MalletL−BFGSint CRF++CTJPGIS YamCha

−100

0

100

200

300

400

500

600

700

800

900

CRF++L−BFGS

union model

TP increment
FP increment
F−score Gain*100

MalletL−BFGSint CRF++L−BFGS YamCha

−100

0

100

200

300

400

500

600

700

800

900

CRF++CTJPGIS

union model

TP increment
FP increment
F−score Gain*100

MalletL−BFGSint CRF++L−BFGS CRF++CTJPGIS

−100

0

100

200

300

400

500

600

700

800

900

YamCha

union model

TP increment
FP increment
F−score Gain*100

Figure 2: Relation between the increments of true positive and false positive and the gains of F-score of
union models.

14

