
Access Control for Sharing Semantic Data
across Desktops

? Juri L. De Coi, Ekaterini Ioannou, Arne Koesling,
Wolfgang Nejdl, Daniel Olmedilla

L3S Research Center/Leibniz Universität Hannover
Appelstr. 9a, 30167 Hanover, Germany

{lastname}@L3S.de

Abstract. Personal Information Management (PIM) systems aim to pro-
vide convenient access to all data and metadata on a desktop to the user
itself as well as the co-workers. Obviously, sharing desktop data with
co-workers raises privacy and access control issues which have to be ad-
dressed. In this paper we discuss these issues, and present appropriate
solutions. In line with the architecture of current PIM systems [8, 2, 11,
15], our solutions cover all semantic data shared in such a context, i.e. all
desktop resources as well as other data structures created by the system,
such as metadata in an RDF store and inverted index entries created for
efficient textual search. We discuss different kinds of policies to specify
protection for desktop data and metadata, and describe our access con-
trol system to express and execute these policies efficiently. Additionally,
we describe the extension of an existing PIM system, Beagle++, with our
approach, as well as our experiments, with convincing results on perfor-
mance and scalability.

1 Introduction

In recent years, the amount of available digital information has increased con-
siderably not only on the Web but also on personal computers. New innovative
Personal Information Management (PIM) systems support users in organizing
and managing their calendars, e-mails, address books, and other information on
their desktop. PIM systems like Google Desktop [8], Beagle [2], Haystack [11],
and Gnowsis [15], define semantic data as all content of the personal information
space. Semantic data thus include the actual desktop resources and all additional
data structures the PIM system creates, such as extracted metadata, including
all machine generated information describing the resources and appropriate data
and index structures supporting the functionality of the PIM system. A promis-
ing extension of PIM systems is to move from the pure desktop data management
system towards the sharing of information among different personal spaces and
users [14, 4]. However, these systems are doomed to fail if they do not incorpo-
rate mechanisms to deal with privacy issues and access control, specifying and

? In alphabetical order



checking when and which semantic data is provided to whom. Appropriate mech-
anisms must allow users to control the sharing of both the actual resources and
the metadata about them, as in many cases revealing the existence of a resource
or even parts of the metadata is considered to be sensitive.

In this paper we discuss how to use policy languages [17, 12, 7, 3] to provide
users with appropriate functionality to describe access control policies for their
shared semantic data. To avoid expensive evaluation at run-time often incurred
by such systems, we present an access control system that optimizes run-time
execution of these queries, significantly reducing the response time and computer
load of the personal computers queried.

The rest of this paper is organized as follows. §2 presents a motivating example
and the requirements of an access control for semantic data. §3 presents different
kinds of policies and explains how they can be efficiently executed using the access
control mechanism we suggest. §4 describes our prototype implementation, and
§5 presents the experimental evaluation we performed using this prototype. §6
discusses related work and §7 presents our conclusions.

2 Semantic Data Sharing

Let us consider Alice, who is an employee in a company aware of the great
benefits of information sharing among co-workers. In this company, instead of
large centralized repositories of information, a PIM system with sharing capabil-
ities1. such as Beagle++ [4] is provided. Each user of the system has a semantic
desktop, with a set of filters and generators to extract metadata from desktop re-
sources (i.e., emails, publications), an RDF store to maintain this metadata, and
an inverted index to allow full-text search. A graphical illustration of semantic
desktops and semantic data sharing in our scenario is shown in Fig. 1

Fig. 1. An illustration of the semantic desktop architecture of the Beagle++ system
and semantic data sharing between different desktops.

Alice has many resources on her desktop but she is not willing to automatically
and unconditionally provide access to all her co-workers. Therefore, she creates
policies to express the conditions under which she wants to share resources. For

1 We assume that different desktops are connected with a P2P network such as
Edutella [13], which does not require information to be shared among peers



example, for some project-related documents she states that only members of
that project are granted full access to the resource, though the metadata about
the title and authors are available also to non-members. Alice’s co-workers are
able to search for information on her desktop by sending queries to system. When
Alice’s semantic desktop receives these queries, her access control system ensures
that all metadata and resources returned to her co-workers conform to the policies
specified by Alice.

An access control mechanism for semantic data sharing between semantic
desktops has some special requirements. One of the main requirements is typically
to assume that everything is private by default, that is, nothing is shared unless
explicitly stated otherwise. In our scenario, bad consequences of sharing sensitive
data are more harmful than not sharing public information. Another important
requirement is that the access control must consider two levels of protection, the
metadata describing the resources and the resources themselves. Even if a user
receives metadata about our resources —therefore knowing about its existence—
that does not imply that the resource itself is publicly available. Also, it is required
that normal employees (and not only qualified security administrators) must be
able to personalize their policies, even if a default set of policies is provided.
Furthermore, since the query execution will be performed at each employee’s
desktop, the access control mechanism must have a good performance.

3 Fine-Grained Access Control on the Semantic Desktop

This section describes the kind of policies considered in the paper as well as the
main challenges addressed. It presents our solution which provides performant
and fine-grained access control to information resources at run-time.

3.1 Specifying Policies

Policies specify the conditions that must be satisfied in order to grant access to
semantic data. The policies described in our scenario can be classified into the
following two main categories (examples are expressed with the Protune policy
language [3]):

(A) Resource Policies. These policies specify whether access to an actual re-
source (e.g., if the resource can be download) is granted or not. The conditions
are described using the attributes found in the corresponding metadata. Some
examples are listed in the following paragraphs.

Example 1. In our scenario, Alice gives access to any employee marked as co-
author of a paper:

allow(access(file(Resource), Requester)) ←−
metadata(Resource, author, Requester).



(B) Metadata Policies. These policies state conditions under which different
attributes from the metadata describing a specific resource can be disclosed.

Example 2. Another policy from our scenario states that only the subject field
of e-mails not sent by her boss Tom are to be shared:

allow(access(metadata(subject, Resource), Requester)) ←−
metadata(Resource, type, ‘e-mail’), metadata(‘Tom’, e-mail, TomAddress),
not metadata(Resource, from, TomAddress).

3.2 Query Processing and Policy Evaluation

When a request for information is received, the access control mechanism must
evaluate all desktop policies and decide whether the semantic data to be delivered
as search result can be disclosed. Remote requests (see Fig. 2) can be of two
types: (a) resource search requests asking for metadata of resources relevant to a
given query, and (b) resource download requests asking for retrieval of an actual
resource. Resource search requests correspond to a user searching for resources
matching a given query and therefore only return metadata about relevant results.
A local inverted index is used in order to identify the resources relevant to the
keywords of the query. For each resource, applicable policies have to be evaluated
in order to decide whether a metadata field can be disclosed or not. The values
of the set of granted fields for each resource are then retrieved from the metadata
store and returned to the requester. For the resource download requests, the URI
of a resource is given. The applicable policies for that resource are evaluated and
the resource is sent back to the requester, if access is granted.

Fig. 2. The execution of (a) Resource Search and (b) Resource Download.

Obviously, for the resource search requests the system needs to evaluate appli-
cable metadata policies whereas for the resource download requests, the system
needs to evaluate applicable resource policies. Resource policies are applied only
to a single given resource (the resource the remote user requested to download)
and therefore the evaluation of the policies for that resource may imply an extra
but acceptable performance cost. However, for metadata policies, this situation is
quite different. For each relevant result returned by the inverted index, we need to
check whether each metadata field can be disclosed or not. In order to make this
decision, all applicable (potentially many) policies must be evaluated. Moreover,



each one of these policies may imply complex conditions as well as execution of
some actions such as queries to the metadata store, e.g. to fetch status of the
document. It is clear that metadata policy evaluation only at run-time is too
expensive and not feasible for our scenario.

The following sections present some optimizations to dramatically decrease
the time required to evaluate which metadata fields are available for each resource
to a given requester.

3.3 Optimize Metadata Policy Execution

During pure run-time metadata policy evaluation, all policies must be evaluated
for each metadata field of each relevant result returned by the inverted index.
This evaluation can be quite time consuming since a policy may involve several
actions such as requests to a metadata store. Assuming that the metadata de-
scribing the resources are rather static —usually these metadata do not change
every minute— we can exploit the fact that also actions performed during the
evaluation of the policies will not change much over time. We can therefore im-
prove evaluation costs considerably by pre-compiling the results of the evaluation
of the policies for the parameters resource, metadata field being evaluated and
requester.

Our solution uses a three dimensional bitmap named RMU-Cube 2 (Fig. 3).
The first dimension (vertical in our figure) represents the resources found in our
workspace. The second dimension (horizontal) represents the different metadata
attributes available for resources. The third dimension (depth) represents the
set of users that may act as requesters. This list of users can either be updated
manually or possibly automatically by a remote service offered by the company
(in order to keep it up-to-date with employees joining or leaving). Each cell of
the RMU-Cube represents the result of the evaluation of all policies for a specific
resource, metadata attribute and requester. The cells may take two values: access
granted (represented by a 1) or access denied (represented by a 0).

Fig. 3. The RMU-Cube represents the Metadata-Policies specified by Alice.

2 RMU-Cube stands for Resource-Metadata-User Cube.



Example 3. Consider again Alice’s semantic desktop. Among many others, it in-
cludes the following four resources: an e-mail email:///1001.eml which contains
Tom in cc, another e-mail email:///1050.eml she sent to a colleague (without Tom
in any field of the e-mail), and two documents file:///home/nepomuk/finances.pdf
and file:///home/nepomuk/D1.pdf stored in the “/home/nepomuk” directory
with status “Confidential” and “Final” respectively. According to these resources
and the policies from §3.1 we can build the RMU-Cube depicted in Fig. 3. Meta-
data attributes that do not apply to a resource (e.g., cc in a normal document
or author in an e-mail) are set to “access denied”. The rest of the cells are
set according to the pre-evaluation performed on the policies. Therefore, the
subject of the e-mail email:///1050.eml can be shared with anyone, the title
and author of file:///home/nepomuk/D1.pdf can be shared with anyone and
members of the group Nepomuk may access all attributes of the documents
file:///home/nepomuk/finances.pdf and file:///home/nepomuk/D1.pdf. The re-
maining metadata attributes are set to access denied.

Updating the RMU-Cube. An assumption when building the RMU-Cube is
that resources, metadata attributes and users do not change so often that the
updating mechanism of the RMU-Cube would overload the system. The removal
of a resource, metadata attribute or user can be done quickly, since it only pro-
vokes the deletion of the corresponding plane. Additions or modifications are a
bit more costly:

– Addition of a resource requires the creation of a new plane and evaluation
of the applicable policies for each of its metadata attributes and potential
requesters. Modification of existing resources does not imply an update in
the cube unless some of its metadata is changed.

– Addition/modification of a metadata attribute requires the creation or re-
evaluation of the corresponding plane according to applicable policies for
each resource and potential requester.

– Addition of a user requires the creation of a new plane and evaluation of
the applicable policies for each of the resources and its metadata attributes.
As with resources, modification of a user (e.g., rename) does not imply an
update in the RMU-Cube.

Assuming changes occurring as a result of normal user activity (e.g., editing of
documents) and the further optimizations described in the next section, updates
in our prototype can be performed without affecting the normal functioning of
the desktop computer.

Finally, policies may change as well. If a policy is added, then all cells need
to be re-evaluated. In case a policy language allowing only positive authorization
policies is used (e.g., Protune), only the cells set to 0 need to be re-evaluated
(adding a new policy may only result on more permissions). If a policy is modified
or removed, then we need to evaluate all cells of the cube. These updates are costly
and therefore should be grouped so they are performed at the same time.



4 Prototype Implementation

We have developed the concepts presented in previous sections using Beagle++

as the reference PIM system. We reuse the following components from the archi-
tecture of Beagle++: an RDF Store that contains the metadata describing the
existing desktop resources (we use Sesame 2.0 3), the desktop ontology provid-
ing the schema for the metadata and the inverted index for performing full-text
search (we use a relational representation of the inverted index using MySQL
5.0 4).

Fig. 4. Searching using the prototype implementation: Alice and Bob search using the
same keyword, but Bob is able to access more metadata than Alice.

Integrating our access control mechanisms with the above components re-
quires the following additional components:

Policy Engine: We use the Protune policy engine in order to perform the
evaluation of the policies. Its java API allowed us an easy integration with
the rest of components. Protune policy engine uses several threads for a
more efficient policy evaluation and allows the execution of external actions
such as queries to RDF stores, relational databases or LDAP servers.

RMU-Cube: This component is responsible for maintaining and accessing the
pre-evaluated information of the policy engine in order to speed up the pro-
cess of deciding which metadata attributes are accessible for a resource (see
§3.3). We represented this RMU-Cube structure in a relational database using
MySQL 5.0.

User Interface: In order to use the system, we implemented the simple user in-
terface shown in Fig. 4. The interface receives the keywords and the requester
name and returns the available metadata of matching resources. If the user
wants to access a specific resource, the “Receive File” button allows the user
to download it. Access control mechanisms take place on both situations in
order to enforce the specified policies.

3 http://www.openrdf.org/
4 http://www.mysql.com/



5 Experimental Evaluation

We have performed several experiments in order to measure the impact of the
concepts described in this paper. We used a large dataset including around 30
directories, 2200 publications from DBLP5, and 2800 emails from the publicly
available ENRON dataset6. Our dataset contained more than 5,000 resources and
generated a total number of 72,974 triples in the RDF Store and 8,207 number
of unique keywords in the inverted index.

In addition to this dataset, we implemented a similar scenario as the one
presented in §2. We included a total number of 10 users and 20 policies protecting
resources of the dataset. These desktop policies are similar to the ones presented
in the examples of §3.1, granting access according to the attribute values of the
metadata and the requesters/users defined by Alice7.

(a) (b)

Fig. 5. (a) Comparison between time required to execute resource search requests using
a policy engine and our RMU-Cube, and (b) total time needed for executing search
requests without access control mechanisms or with our RMU-Cube.

We performed the experimental evaluation using a Pentium 4 computer with
1.5GB RAM. We executed a total of 600 resource search requests with differ-
ent keywords which we randomly selected from the data in our inverted index.
Fig. 5(a) shows the time needed for the execution of each one of the 600 requests
with our RMU-Cube and with the run-time evaluation of the policy engine (we
used a logarithmic scale for the time axis). As shown, the use of RMU-Cube dra-
matically reduces the time required to decide which metadata is allowed for each
resource in comparison with the direct use of the police engine. Also, the integra-
tion of the RMU-Cube does not strongly impact the search mechanisms, since
the difference between an execution without an access control and an execution
with the RMU-Cube is only few milliseconds, as shown in Fig. 5(b)8.
5 http://www.informatik.uni-trier.de/~ley/db/
6 http://www.cs.cmu.edu/~enron/
7 The policies are available at http://www.L3S.de/~ioannou/SDPolicies/
8 The peaks shown in the graph are produced by temporary overload while accessing

the database in which the RMU-Cube is stored. However, average times show that



6 Related Work

In the last years we observed increasing popularity of systems for collabora-
tive work and file sharing. The need for effective search within the increasing
amount of information in this context pushed forward further development of
search infrastructures for enterprise data management systems [10]. However,
the sometimes private nature of such shared information makes it difficult to
apply traditional document indexing schemes directly. The problem of apply-
ing traditional ranking algorithms to search through access-controlled collections
is outlined in [5]. User access levels and access control have to be reflected in
the index structures and/or retrieval algorithms as well as in ranking the search
results.

In the literature, several solutions addressing the problem of privacy pre-
serving of the data stored on public remote servers, which typically provide a
basis for the community platforms, have been proposed. For example crypto-
graphic techniques can enable users to store encrypted text files on a remote
server and retrieve them using keyword search [9, 6, 16]. However, these solutions
are not suitable for the collaborative multi-user environment. Alternatively, the
data shared within a community can be stored locally by the user within an
access-controlled collection. In this case efficient retrieval algorithms for search
through access-controlled collections need to be provided to enable information
sharing within the community. The authors of [1] address the problem of pro-
viding privacy-preserving search over distributed access-controlled content. Al-
though this technique enables probabilistic provider selection it does not allow
ranking of search results obtained from different document collections. Our se-
mantically enriched community platform should allow providing unified view on
the whole information set available to the user.

7 Conclusions and Future Work

Sharing desktop information requires scalable and effective access control mech-
anisms. In this paper, we have presented an approach that exploits the power of
flexible and expressive policies and at the same time enforces them without im-
pacting on the user’s computer. Queries can be answered and information may be
shared without perceivably increasing the response time of queries or overloading
the personal desktop being queried. This approach is based on the pre-evaluation
of the policies and its storage in a fast-accessible form (RMU-Cube), allowing
for quick decisions for both the desktop resources and the metadata. Our experi-
ments show how the use of an RMU-Cube dramatically reduces the computation
and response time of enforcing access control on resources and metadata and
how the integration of this mechanisms only provides a slightly higher response
time than same queries without access control enforcement. We are currently
optimizing our implementation and exploring and evaluating efficient techniques

the addition of the RMU-Cube supposes only some extra milliseconds in the process.
Using e.g. an in-memory RMU-Cube representation would avoid such peaks.



for the update of this structure in order to face the evolution of desktop data and
metadata. We are also integrating into a desktop agent which crawls the local
files, extracts their metadata and index them in order to be shared.

References

1. Mayank Bawa, Roberto J. Bayardo Jr., and Rakesh Agrawal. Privacy-preserving
indexing of documents on the network. In VLDB, pages 922–933, 2003.

2. Beagle search tool. http://beagle-project.org/.
3. Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional trust

negotiation with metapolicies. In 6th IEEE POLICY, pages 14–23, Stockholm,
Sweden, June 2005. IEEE Computer Society.

4. Ingo Brunkhorst, Paul Alexandru Chirita, Stefania Costache, Ekaterini Ioannou
Julien Gaugaz, Tereza Iofciu, Enrico Minack, Wolfgang Nejdl, and Raluca Paiu.
The beagle++ toolbox: Towards an extendable desktop search architecture. In
Semantic Desktop Workshop 2006, November 2006. Athens, GA, USA.

5. Stefan Büttcher and Charles L. A. Clarke. A security model for full-text file system
search in multi-user environments. In FAST, 2005.

6. Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In ACNS, pages 442–455, 2005.

7. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and Marianne
Winslett. No registration needed: How to use declarative policies and negotiation
to access sensitive resources on the semantic web. In 1st European Semantic Web
Symposium (ESWS 2004), volume 3053, pages 342–356, Heraklion, Crete, Greece,
May 2004. Springer.

8. Google desktop. http://desktop.google.com/.
9. Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Execut-

ing sql over encrypted data in the database-service-provider model. In SIGMOD
Conference, pages 216–227, 2002.

10. David Hawking. Challenges in enterprise search. In ADC, pages 15–24, 2004.
11. Haystack project. http://haystack.lcs.mit.edu/.
12. Lalana Kagal, Timothy W. Finin, and Anupam Joshi. A policy language for a

pervasive computing environment. In 4th IEEE POLICY, 4-6 June 2003, Lake
Como, Italy, pages 63–. IEEE Computer Society, 2003.

13. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. Edutella: a p2p networking infrastructure based on rdf. In WWW,
pages 604–615, 2002.

14. Nepomuk: The social semantic desktop. http://nepomuk.semanticdesktop.org/.
15. Leo Sauermann, Gunnar Aastrand Grimnes, Malte Kiesel, Christiaan Fluit, Heiko

Maus, Dominik Heim, Danish Nadeem, Benjamin Horak, and Andreas Dengel. Se-
mantic desktop 2.0: The gnowsis experience. In International Semantic Web Con-
ference, pages 887–900, 2006.

16. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000.

17. A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch,
M. Johnson, S. Kulkarni, and J. Lott. KAoS policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and enforcement.
In POLICY, page 93, 2003.


