
Horn Representation of a Concept Lattice

Kamel Ben-Khalifa, Susanne Motameny

ZAIK, Center for Applied Computer Science,
University of Cologne, Germany

Abstract. Concept lattices are the central notion of formal concept
analysis. They are applied in many different areas such as data min-
ing, knowledge representation or ontology engineering and are subject
to ongoing research. In order to understand better the nature of con-
cept lattices it is useful to consider their links to other mathematical
notions. For example, a concept lattice can be viewed as a special kind
of poset or closure system. In this paper we consider another view of
concept lattices by establishing a link to propositional formulas and a
special closure property of relations. The main result is an elementary
derivation of a Horn formula that uniquely represents a concept lattice
based on prime implicates. Using the derived Horn representation, we
reestablish the #P-completeness of the concept counting problem and
find that the Horn representation is closely related to the stem base of a
concept lattice.

1 Introduction

Concept lattices structure the formal concepts of their corresponding formal
contexts in a hierarchical manner. They form a central element of formal concept
analysis (FCA) and are used in many applications to structure object-attribute
data in an informative way. To fully determine a concept lattice, it suffices to
know one of the closure systems of concept intents or concept extents (as a
formal concept is determined uniquely by its intent or extent, respectively). Our
goal in this paper is to derive a conjunctive normal form (CNF) Horn formula
which is satisfied exactly by the concept intents of a given context.
Relationships between FCA and Horn formulas have been pointed out by several
other authors during the recent years. In [3] Horn functions of general closure
systems are constructed (for example the closure systems of concept intents) in
order to achieve a translation of certain notions of FCA (in case of [3] that of
domination) into a logical framework. For our representation of concept lattices
by Horn formulas we decided on different initial conditions and definitions so that
the Horn formulas produced by our approach differ from those of [3] in decisive
aspects. In [2] the authors show that if a formal context is viewed as a theory in
the sense of propositional logic, the attribute implications holding in the context
are equivalent to the empirical Horn approximation or Horn least upper bound
(as defined in [18]) of that theory. Equivalence here means that the attribute
sets respecting all the attribute implications are in one-to-one correspondence

with the tuples of the resulting Horn theory. Thus a link between FCA and
knowledge compilation is established. The authors stop at this point, but their
result eventually entails an equivalence of concept lattices and certain Horn
formulas. In contrast to [2] where the authors introduce an artificial attribute
that is satisfied by no object, we can do without such extensions and provide a
direct translation of FCA notions into propositional logic.
The paper is organized as follows: In Section 2 we recall the necessary basic
definitions and facts from FCA and propositional logic. The derivation of the
Horn formula is accomplished in Section 3 and we discuss the relationship of our
result to attribute implications and the counting of concepts in Section 4. We
close the paper with a summary in Section 5.

2 Basic Definitions and Facts

We now give the basic definitions and facts that we use from formal concept
analysis and propositional logic. The notions from propositional logic are well
known and only repeated to make the paper self contained. Concerning the FCA
terminology we follow the notations from [5].

2.1 Formal Concept Analysis

Let G be a set of objects, M a set of attributes and I ⊆ G ×M an incidence
relation between G and M . For g ∈ G and m ∈ M , gIm is read as “object g
has the attribute m” or dually “attribute m is satisfied by object g”. The triple
K = (G,M, I) is called a (formal) context. We consider the usual derivation
operators: For A ⊆ G and B ⊆ M

A′ = {m ∈ M | gIm ∀g ∈ A}
B′ = {g ∈ G | gIm ∀m ∈ B}.

A set B ⊆ M is an intent of (G,M, I) if and only if B = B′′. M is always an
intent of (G,M, I) as all objects in the empty set trivially have all attributes.
Also the set {g}′ is an intent for each object g and is called object intent of
g ∈ G. It is well known that every intent of (G,M, I) (except for M) is an in-
tersection of object intents. This fact forms the basis for our derivation of the
Horn representation of a concept lattice.

2.2 Propositional Logic

We first introduce the syntactical objects of propositional logic as far as needed
for the later discussion and then define their semantics. A lower case letter
or an indexed lower case letter, x or xi, respectively, is a variable. We will
only use variables that can take values in {0,1} and call these propositional

variables. Furthermore, we use the symbols ∨,∧, and ¯ as well as (and). If x is
a propositional variable, then x̄ is called its negation. A literal is a propositional
variable (called positive literal) or its negation (called negative literal). A clause
is a string of the form (x1 ∨ x2 ∨ · · · ∨ xn), where each xi, i ∈ {1, . . . , n} is a
literal. A clause is Horn if it contains at most one positive literal. It is called
definite Horn if it contains exactly one positive literal. We will denote the set of
literals of a clause C by lit(C). A formula in conjunctive normal form (CNF) is
a string of the form

C1 ∧ C2 ∧ · · · ∧ Cn,

where each Ci, i ∈ {1, . . . , n} is a clause. If every clause in a CNF formula F is
Horn, F is called a Horn formula.
Let X = {x1, x2, . . . , xn} be a set of n propositional variables with a fixed num-
bering and LX = {x, x̄ : x ∈ X} be the set of literals over X. An assignment is
a mapping A : X −→ {0, 1}. An assignment A can be extended to an assignment
Ā : LX −→ {0, 1} by setting

Ā(x) =
{ A(x) : x is a positive literal

1−A(x) : x is a negative literal. (1)

By Equation (1), an assignment Ā on the set of literals is determined uniquely
by an assignment A on the set of variables. Therefore we will represent an
assignment Ā : LX −→ {0, 1} by the underlying assignment A : X −→ {0, 1}.
With this convention we will use the notation A(x) for x ∈ LX (instead of Ā(x))
throughout the remainder of this paper. An assignment A satisfies a clause C
over X if there is at least one literal x in C withA(x) = 1. We then callA a model
of C and write A |= C. An assignment A is called a model of a CNF formula F
over X if A satisfies every clause in F . In this case we write A |= F . The set of
all models of a formula F is denoted by Mod(F). We write A 6|= F if A is not
a model of F . An assignment A can be represented by a tuple t ∈ {0, 1}n by
setting ti = A(xi) for each variable xi. This representation is unique and we will
identify assignments and their representing tuples in the following. In particular,
we will write t(x) instead of A(x) and t |= F instead of A |= F . Throughout
the remainder of the paper we will refer to a set of tuples R ⊆ {0, 1}n as an
n-ary relation (or simply relation if the arity is not of interest). When we refer
to the conjunction of tuples we mean the entry-wise application of the logical
∧-operation, for example

(1, 0, 0, 1) ∧ (0, 1, 0, 1) = (0, 0, 0, 1).

The essential notion needed in the following is that of a prime implicate. We
will use prime implicates to construct a CNF formula that is equivalent to a
given relation.

Definition prime implicate: Let R be a relation. A clause C is called implicate
of R if R ⊆ Mod(C). C is called prime implicate if no clause D with lit(D) ⊂
lit(C) is an implicate of R.

It is a well known fact that the CNF formula F that consists of the conjunction
of all prime implicates of a relation R is equivalent to R in the following sense:

t ∈ R ⇐⇒ t |= F (that is R = Mod(F)) (2)

3 Derivation of the Horn Representation

With the definitions from Section 2 we are now ready to derive the Horn repre-
sentation of a concept lattice. We first note a special property of Horn clauses.

Lemma 1: Let t(i), i ∈ {1, . . . , k} be k n-ary tuples and C a Horn clause in
the propositional variables x1, x2, . . . , xn. It holds that

∀i ∈ {1, . . . , k} t(i) ∈ Mod(C) =⇒
k∧

i=1

t(i) ∈ Mod(C).

This is a well known fact which follows for example from [1], Lemma 3. A rela-
tion R is called ∧-closed if with every two tuples t(1), t(2) ∈ R also t = t(1) ∧ t(2)

is an element of R. We continue with an important and well known fact about
∧-closed relations which dates back to [10, 15] and can also be found in [9], [11],
and [13] in a more general form than the one we prove. Our formulation however
is sufficient and more appropriate for our considerations.

Proposition 1: R is ∧-closed if and only if all prime implicates of R are Horn
clauses.

Proof: Let R be ∧-closed and C an arbitrary prime implicate of R. Assume
that C contains at least two positive literals y and z. If we denote the disjunc-
tion of the remaining literals by D we have C = (y ∨ z ∨ D). By definition
R ⊆ Mod(C). If every tuple in R was a model of D, then D would be an im-
plicate of R. This cannot happen because C is a prime implicate. Therefore R
contains a nonempty set of tuples T with T∩Mod(D) = ∅. To fulfill the condition
t |= C for a t ∈ T , either t(y) = 1 or t(z) = 1 must hold. If we had t(y) = 1 (or
analogously t(z) = 1) for all t ∈ T , then (y∨D) (or (z ∨D), respectively) would
be an implicate of R and C could not be a prime implicate. This implies the
existence of tuples t(y) with t(y)(y) = 1 and t(y)(z) = 0 and t(z) with t(z)(y) = 0
and t(z)(z) = 1 in T . Let t∗ = t(y) ∧ t(z). For t∗ it holds that

t∗ 6|= D

t∗(y) = 0
t∗(z) = 0

and therefore t∗ /∈ Mod(C). This means that t∗ /∈ R, which is a contradiction to
the precondition that R is ∧-closed.
Now let R be a relation whose prime implicates Cj , j ∈ {1, . . . , k} are all Horn.
Consider two arbitrary tuples t(1) and t(2) in R. Let t∗ = t(1) ∧ t(2). According
to Lemma 1 t(1) ∈ Mod(Cj) and t(2) ∈ Mod(Cj) implies t∗ ∈ Mod(Cj) for all
j ∈ {1, . . . , k}. From R = Mod(

∧k
j=1 Cj) =

⋂k
j=1 Mod(Cj) it follows that t∗ ∈ R

which proves the ∧-closedness of R.

For the purpose of our derivation of a Horn representation of a concept lat-
tice we now provide an obvious translation of a formal context K = (G,M, I)
into a |M |-ary relation. Let m1,m2, . . . , m|M | be the attributes in the cross ta-
ble of K. We associate with every attribute mi a propositional variable xi and
replace the crosses in the table by ones and the empty cells by zeroes. The row
corresponding to an object g ∈ G now represents a tuple from {0, 1}|M | denoted
by tg. Finally, the tuple tM which contains only ones is added to the table. The
relation gained from a context K by this translation is denoted by RK . Table 1
illustrates the translation by an example.

K m1 m2 m3 m4 RK x1 x2 x3 x4

a X X ta 0 1 1 0

b X tb 0 0 0 1

c X X tc 0 1 0 1

d X X X td 1 1 0 1

tM 1 1 1 1

Table 1. A formal context K and its corresponding relation RK

Remark: By adding tM to RK , we ensure that we arrive at a definite Horn
representation (called pure Horn representation in [3]), that is each clause in
the representation contains exactly one positive literal. This is what makes our
approach different from [3] and turns out to yield a very nice correspondence to
attribute implications as described in Section 5.

The result of our translation procedure is a |M |-ary relation RK which con-
tains one tuple for each object intent as well as the tuple tM that corresponds
to the intent consisting of all attributes. Recall that all other concept intents
are intersections of object intents. The intersection of object intents translates
exactly to the conjunction of their corresponding tuples. Consider for example
the objects a and c from Table 1. Their object intents are {a}′ = {m2,m3}
and {c}′ = {m2,m4}. The concept intent resulting from their intersection cor-
responds to the tuple t = ta ∧ tc :

{a}′ ∩ {c}′ = {m2,m3} ∩ {m2,m4} = {m2}
ta ∧ tc = (0, 1, 1, 0) ∧ (0, 1, 0, 1) = (0, 1, 0, 0)

With this procedure we can inductively construct to each concept intent a cor-
responding tuple by simply computing the conjunction of the tuples belonging
to the involved object intents. We add all thus constructed tuples to RK and
call the resulting relation R̂K . Obviously there is a bijection between concept in-
tents of K = (G,M, I) and tuples in R̂K . Also, because we collected all possible
conjunctions of tuples from RK in R̂K , R̂K is ∧-closed. In fact it is exactly the
∧-closure of RK . By Proposition 1, R̂K can be represented by the Horn formula
FK consisting of its prime implicates. This formula is the Horn representation
of the concept lattice we wanted to derive.

Definition Horn representation: Let C1, C2, . . . , Ck be the prime implicates
of R̂K . The formula

FK = C1 ∧ C2 ∧ · · · ∧ Ck

is called Horn representation of the concept lattice defined by K = (G,M, I).

Note that we use all prime implicates of R̂K in the above definition. In general,
FK can contain redundant prime implicates. If these are removed, the obtained
formula is still equivalent to R̂K in the sense of (2). We use all prime implicates
in our definition of a Horn representation for reasons of uniqueness. The Horn
representation of the context from Table 1 for example is

FK = (x̄1 ∨ x2) ∧ (x̄1 ∨ x4) ∧ (x̄3 ∨ x2) ∧ (x̄3 ∨ x̄4 ∨ x1).

The tuples of R̂K correspond to the concept intents of K bijectively. The hier-
archical order of the concept intents is given by B1 ≤ B2 ⇐⇒ B1 ⊇ B2 for two
concept intents B1 and B2 (see [5]). It corresponds to the following order on R̂K :

t(1) ≤ t(2) ⇐⇒ t(1) ∧ t(2) = t(2)

The concept extent corresponding to the intent represented by the tuple t ∈ R̂K

is denoted by t′ and can be determined by

t′ = {g ∈ G | tg ∧ t = t}.

In theory, FK can be computed from RK directly, that is one does not need to
determine the (possibly exponentially sized) ∧-closure of RK .

Proposition 2: The prime implicates of R̂K are exactly the Horn prime impli-
cates of RK .

Proof: Let C be a Horn prime implicate of RK . Because of R ⊆ Mod(C) it
follows from Lemma 1 that R̂K ⊆ Mod(C). Therefore C is an implicate of R̂K .
C is also a prime implicate of R̂K , because for all D with lit(D) ⊂ lit(C) there
is a tuple t ∈ RK (and in particular t ∈ R̂K) satisfying t 6|= D.

Let now conversely C be a prime implicate of R̂K . According to Proposition 1
C is Horn. Because of R̂K ⊇ RK , C is an implicate of RK . Assume that C is no
prime implicate of RK . Then there is an implicate D of RK with lit(D) ⊂ lit(C).
C is a prime implicate of R̂K and therefore there is a tuple t ∈ R̂K that is no
model for D. This tuple is a conjunction of tuples t(i) ∈ RK and as C is Horn so
is D. Lemma 1 implies the existence of a tuple t(i

∗) ∈ RK with t(i
∗) /∈ Mod(D).

But this is a contradiction to our presupposition of D being an implicate of RK ,
which completes the proof.

Proposition 2 shows that it suffices to compute the prime implicates of RK ,
select those that are Horn, and their conjunction is exactly the Horn representa-
tion FK . However, there are several complexity results from propositional logic
that imply limitations for the practical implementation of such a procedure.
From a result shown in [12] it follows that there exist contexts K = (G,M, I)
containing only join-irreducible objects (called characteristic models in [12]) so
that the shortest Horn formula equivalent to R̂K is exponential in |G|. Thus a
method running in input polynomial time that computes the Horn representa-
tion of any concept lattice from its context does not exist. Another result in
[8] states that a Horn formula that is equivalent to an ∧-closed n-ary relation
R can be found in O(|R|n (|R| + n)) time. Moreover, the constructed formula
contains no more than |R|n clauses. This means that we can obtain a Horn for-
mula that is equivalent to FK in O(|R̂K | |M | (|R̂K |+ |M |)) time. However, the
input to this algorithm would be the relation R̂K which may be exponentially
larger than RK . Thus, the algorithm from [8] cannot be used to generate a Horn
formula representing the concept lattice of a given context in time polynomial
in the size of the context. As in general large relations can be equivalent to
short Horn formulas, the time complexity of such an approach would not even
be polynomial relative to the input and output size. In [13] it is proved that
the computation of a Horn formula that is equivalent to R̂K and takes RK as
input is at least as difficult as the generation of all the transversals of a hyper-
graph. To our knowledge the complexity of this hypergraph problem is still open.

4 Discussion

In this section we discuss the relationship of our result to certain areas and
problems of Formal Concept Analysis.

4.1 Counting of Concepts

In the previous section we derived a Horn formula FK that represents the intent
set of a formal context K = (G,M, I) and therefore is also a representation of
its concept lattice. If we count the models of FK we actually count the concepts
of K = (G,M, I) and our result thus offers a possibility to determine the size
of a concept lattice. However, in [4] a theorem is proven which implies that the

counting of the models of a definite Horn formula is #P -complete in general,
that is for a definite Horn formula there is a nondeterministic Turing machine
whose number of accepting computation paths equals the number of models of
that formula and that runs in polynomial time (see for example [16] for a rigorous
definition of the complexity class #P). This is in accordance with [14], where
the #P -completeness of the determination of the size of a concept lattice is also
proved. The fact that the counting of concepts is #P -complete also follows easily
from the #P -completeness of the counting of ideals of a poset which was proved
in [17]. If (P,≤) is an arbitrary poset, then the formal context (P, P, 6≤) contains
as many concepts as there are ideals in (P,≤). This also answers the question
raised in [14] whether the #P -completeness also holds for distributive concept
lattices because the concept lattice of (P, P, 6≤) is always distributive.

4.2 Attribute Implications

We defined RK in such a way that tM ∈ RK . This causes all clauses of FK

to contain exactly one positive literal and they can be equivalently written as
implications:

(x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∨ y) ⇐⇒ x1 ∧ x2 ∧ · · · ∧ xk −→ y

If we write instead of the propositional variable xi the attribute mi which it
represents, we can translate our Horn representation to a set of attribute impli-
cations. We recall some basic definitions from FCA concerning attribute impli-
cations (see [5]).

Definition attribute implications: The implication X −→ Y is equivalent to
Y ⊆ X ′′. A set T ⊆ M is said to respect an implication X −→ Y if X 6⊆ T or
Y ⊆ T . A set of attributes T respects a set of implications L if it respects every
single implication in L.
An implication X −→ Y follows from an implication set L if every set T ⊆ M
that respects L also respects X −→ Y . An implication X −→ Y holds in a
context (G,M, I) if every concept intent of (G,M, I) respects the implication
X −→ Y .

Because all concept intents of K = (G,M, I) respect all the implications ob-
tained from the prime implicates of R̂K by definition, the set of all these impli-
cations is complete for K, that is all attribute implications holding in K follow
from it. Merging implications with the same premise which can generally occur
in FK , we obtain the set H of attribute implications. We illustrate this procedure
using the Horn representation of the context K from Table 1:

Horn Representation Implications Merged Implications

FK = x̄1 ∨ x2 ∧ {m1 −→ m2 H = {m1 −→ m2,m4

x̄1 ∨ x4 ∧ m1 −→ m4 m3 −→ m2

x̄3 ∨ x2 ∧ m3 −→ m2 m3,m4 −→ m1}
x̄3 ∨ x̄4 ∨ x1 m3,m4 −→ m1}

Unfortunately H can contain redundant implications because the set of prime
implicates it is based on can be redundant. Recall that an implication base of
K is a set of implications that is complete for K and minimal in the sense that
it does not contain redundant implications. Therefore, if the redundant impli-
cations are removed from H an implication base of K is the result. In FCA the
usual implication base of interest is the stem base or Duquenne-Guigues base
first described in [6]. Its definition is based on the notion of a pseudo intent (see
[5]).

Definition pseudo intent: A subset P ⊆ M of attributes is called pseudo
intent of a context (G, M, I) if

(1) P 6= P ′′

(2) ∀Q ⊂ P, Q pseudo intent =⇒ Q′′ ⊂ P .

In the above definition M is considered to be finite. The stem base is then
defined as:

Definition stem base: The set of implications

L = {P −→ P ′′ | P is a pseudo intent of (G,M, I)}
is an implication base of the context (G,M, I) and is called stem base of the
context.

When comparing H to the stem base L of K = (G,M, I), we can see imme-
diately that for each premise P of the stem base there must be a premise X
of H satisfying X ⊆ P . This is because the premises in H correspond to prime
implicates and every implication holding in K = (G,M, I) is an implicate of R̂K

and thus must contain a prime implicate. We can see this already in our simple
example:

H = {m1 −→ m2,m4 L = {m1 −→ m2, m4

m3 −→ m2 m3 −→ m2

m3,m4 −→ m1} m2,m3,m4 −→ m1}
The premise of the last implication in L is a superset of the premise of the last
implication in H. We have already seen that each pseudo intent contains the
premise of an implication in H. Moreover, we have the following conjecture.

Conjecture: Each premise in H is contained in a pseudo intent.

We believe that this conjecture is true but could not find a rigorous proof for
this claim up to now. However, Proposition 3 shows that there is a subset of
premises in H each of which is not only contained in a pseudo intent but is a
pseudo intent itself.

Proposition 3: Let X −→ Y be an implication in H. If X ∪ Y is closed (that
is (X ∪ Y)′′ = X ∪ Y) then X is a pseudo intent.

Proof : Let R ⊂ X. Because X −→ y is a prime implicate for all y ∈ Y it follows
that R 6−→ y and thus R′′ ∩ Y = ∅. Because X −→ Y is equivalent to Y ⊆ X ′′

we obtain X∪Y ⊆ X ′′. On the other hand we have X ′′ ⊆ (X∪Y)′′ = X∪Y and
thus X ′′ = X ∪ Y which implies R′′ ⊂ X. Therefore X satisfies the definition of
a pseudo intent.

For the case when X ∪ Y is not closed we have not been able to prove that
X is contained in a pseudo intent nor could we construct a counterexample.
Thus, the question whether our conjecture is true or not is currently open.
We close this section with a remark about the minimality of the Duquenne-
Guigues base. The comparison of H and L from our example context shows that
both contain the same number of implications but the last implication in H has
a shorter premise. In general, the stem base L allows for a more compact repre-
sentation (that is one that uses less attributes), which can be computed from L
in the following way: First L is translated into a Horn formula FL (for example
by using the translation of FK to H demonstrated above backwards). Then for
each clause it is checked whether it contains a subclause that is an implicate of
FL. If so, the clause is replaced by that subclause. When iterated, this procedure
yields a formula consisting of prime implicates that is equivalent to L and the
translation back into a set of implications is the desired compact representation
of L. The basics of such a method that requires at most quadratic time in the
length of the input formula FL can be found for example in [7].

5 Summary

We suggested a representation of a concept lattice by a special Horn formula.
This formula was constructed as a conjunction of the prime implicates of a
relation RK that was derived from the formal context K = (G,M, I). Theoret-
ically, the Horn representation can be computed from the context directly but
several results from propositional logic imply limitations for the practical im-
plementation. We believe that despite of this drawback our result is interesting
insofar as it reveals a close relationship between FCA and propositional logic
that can be exploited to tackle research questions in both scientific areas. By
using the Horn representation we reproduced the #P -completeness of the con-
cept counting problem. Also we pointed to a close relationship between the Horn
representation and the stem base of a formal context.
In our future research we hope to find more links between FCA and propositional
logic so that one can use the knowledge and formalism in the one area to solve
problems and gain insights in the other one.

6 Acknowledgements

We would like to thank Ulrich Faigle and three anonymous referees whose sug-
gestions helped to improve the paper.

References

1. D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Ma-
chine Learning, 9:147–164, 1992.

2. J. L. Balcázar and J. Baixeries. Discrete deterministic data mining as knowledge
compilation. Workshop Discr Math and Data Mining at SIAM DM Conference,
2003.

3. A. Berry, E. SanJuan, and A. Sigayret. Generalized domination in closure systems.
Discrete Applied Mathematics, 154:1064–1084, 2006.

4. N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Information and Computation, 125:1–12, 1996.

5. B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations.
Springer, 1999.

6. J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives
resultant d’un tableau de données binaires. Math. Sci. Humaines, 95:5–18, 1986.

7. P. L. Hammer and A. Kogan. Horn functions and their DNFs. Information Pro-
cessing Letters, 44:23–29, 1992.

8. J.-J. Herbrard and B. Zanuttini. An efficient algorithm for Horn description. In-
formation Processing Letters, 88:177–182, 2003.

9. J. Hooker. Logic-Based Methods for Optimization. John Wiley & Sons, 2000.
10. A. Horn. On sentences which are true of direct unions of algebras. Journal of

Symbolic Logic, 16:14–21, 1951.
11. H. A. Kautz, M. J. Kearns, and B. Selman. Reasoning with characteristic models.

In National Conference on Artificial Intelligence, pages 34–39, 1993.
12. H. A. Kautz, M. J. Kearns, and B. Selman. Horn approximations of empirical

data. Artificial Intelligence, 74(1):129–145, 1995.
13. D. Kavvadias, C. H. Papadimitriou, and M. Sideri. On Horn envelopes and hy-

pergraph transversals. In K. W. Ng, P. Raghavan, N. V. Balasubramanian, and
F. Y.L. Chin, editors, Algorithms and Computation, Proceedings of the 4th Inter-
national Symposium on Algorithms and Computation, volume 762 of Lecture Notes
in Computer Science, pages 399–405. Springer, 1993.

14. S. O. Kuznetsov. On computing the size of a lattice and related decision problems.
Order, 18:313–321, 2001.

15. J. C. C. McKinsey. The decision problem for some classes without quantifiers.
Journal of Symbolic Logic, 8:61–76, 1943.

16. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
17. J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the

probability that a graph is connected. SIAM Journal of Computing, 12(4):777–788,
1983.

18. B. Selman and H. Kautz. Knowledge compilation and theory approximation. Jour-
nal of the ACM, 43(2):193–224, 1996.

