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Abstract. In our works, we use a concept lattice as classifier of noised symbol
images. On the contrary of others methods of classification based on Formal
Concept Analysis [12], our approach is adapted to the special case of noisy since
it is based on a navigation into the lattice structure to classify a noised symbol
image : the navigation is performed from the minimal concept, until a final
concept is reached, according to the cover-relation between concepts. Class of
the input noised symbol is then the class associated to the reached final concept.

We use Bordat’s algorithm to generate the concept lattice since it generates
the cover relation of the lattice. In this paper, we present three extensions of
Bordat’s algorithm : the first extension generates the reduction of the concept
lattice to its attributes, i.e. a closure system on attributes ; the second extension
generates concepts only when required during the navigation, thus a reduction
of the total number of generated concepts ; the third extension generates the
concept lattice together with the canonical direct basis, i.e. a basis of implication
rules between attributes to describe them.
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1 Introduction

In our current works in [16], we use a concept lattice as classifier of noised
symbol images, where objects are symbols and attributes are features issued
from images of symbols. On the contrary of others methods of classification
based on Formal Concept Analysis [12], our approach is based on a navigation
into the lattice structure to classify a symbol image : the navigation consists in
a breadth-first search in the concept lattice starting from the bottom, until a
final concept is reached, using a choice criteria to choose according to the cover-
relation between concepts. Class of the input noised symbol is then the class
associated to the reached final concept. This approach is similar to the use of a
decision tree, adapted to the special case of noisy objects.

Bordat’s algorithm is an appropriate algorithm to generate the concept lattice
since it generates the cover relation between concepts. A concept is a pair (A, B)
where A is a subset of attributes and B is a subset of objects. Since we only need
attributes during the navigation in the concept lattice, Bordat’s algorithm is first
extended to compute the reduction of the concept lattice to the attributes. Such
a reduction forms a closure system on attributes.

Only a small part of the concept lattice is explored by navigation, the others
concepts are not required. Thus, the navigation implies the possibility to on-line
generate a concept only when it is reached by navigation, aims of our second
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extension of Bordat’s algorithm. As the main drawback of the concept lattice is
its exponential complexity in the worst case, we understand the interest to build
only the concepts necessary to the recognition.

Implication rules between attributes represents an efficient tools to describe
relationship between attributes in different areas research (databases area [18] ;
data-mining [26], [25] ...). Among equivalent implicational systems, there exists
two basis : the canonical basis [14] that has the canonical and minimality pro-
perties ; the canonical direct basis [17] that has the directness, canonical and
minimality properties. As a third extension of Bordat’s algorithm, we describe
the generation the canonical direct basis while generated of the cover relation of
the concept lattice.

Section 2 gives definitions of a concept lattice, a closure system and an im-
plicational system. The three extensions of Bordat’s algorithm for classification
of noisy symbols are descried in Section 3.

2 Definitions

In this paper, all sets are finite sets and a subset X = {x1, x2, . . . , xn} is
written as the word X = x1x2 . . . xn. Moreover, we abuse notation and use
X + x (respectively, X − x) for X ∪ {x} (respectively, X\{x}), with X ⊆ S and
x ∈ S.

Binary relation and lattice. An order relation ≤ on a set S is a binary
relation on S which is reflexive (∀x ∈ S, x ≤ x), antisymmetric (∀x 6= y ∈ S,
x ≤ y imply y 6≤ x) and transitive (∀x, y, z ∈ S, x ≤ y and y ≤ z imply x ≤ z).
A partially ordered set P = (S,≤), also called a poset, is a set S equipped with
an order relation ≤. The cover relation ≺ on S is the transitive reduction of the
order relation ≤. A poset L = (S,≤) is a lattice if any pair {x, y} of elements
of L has a join (i.e. a least upper bound) denoted by x ∨ y and a meet (i.e. a
greatest lower bound) denoted by x∧y. Therefore, a lattice contains a minimum
(resp. maximum) element according to the relation ≤ called the bottom (resp.
top) of the lattice, and denoted ⊥S or simply ⊥ (resp. >S or simply >.)

An equivalence relation∼ on a set S is a binary relation on S which is reflexive
(∀x ∈ S, x ∼ x), symmetric (∀x 6= y ∈ S, x ∼ y imply y ∼ x) and transitive
(∀x, y, z ∈ S, x ∼ y and y ∼ z imply x ∼ z). The equivalence class of a ∈ S is the
subset of all elements in S which are equivalent to a : bac = {x ∈ S : x ∼ a}.
The set of all equivalence classes in S given an equivalence relation ∼ is usually
denoted as S/∼, and called the quotient set of S by ∼. The quotient set S/∼
forms a partition of S.

Concept lattice. A formal context K = (G,M, I) consists of two sets G and
M , and a relation I between G and M . The elements of G are called the objects,
and the elements of M are called the attributes of the context. We define the
application f that associates to every element o ∈ G the set f(o) = {a ∈
M | (o, a) ∈ I}, and the application g that associates to every element a ∈ M
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the set g(a) = {o ∈ G | (o, a) ∈ I}. The extension of f to subsets A ⊆ G
provides :

f(A) = ∩o∈Af(o) = {a ∈ M |∀ o ∈ A, (o, a) ∈ I } (1)

Dually, the extension of g to subsets B ⊆ M provides :

g(B) = ∩a∈Gg(a) = {o ∈ G |∀ a ∈ B, (o, a) ∈ I} (2)

The two applications f and g forms a Galois connection between G and M .
A formal concept of a formal context K is a pair (A, B) with A ⊆ G, B ⊆ M ,

f(A) = B and g(B) = A. Let C be the set of all the concepts of K, and ≤C be
the following order relation on C, with (A1, B1) and (A2, B2) two concepts :

(A1, B1) ≤C (A2, B2) iff A1 ⊆ A2 (or equivalently B2 ⊆ B1) (3)

The poset (C,≤C) is a lattice called the concept lattice. This lattice is also
denoted Galois lattice by reference to the Galois connection (f, g) of the formal
context C. In particular ⊥ = (f(G), G) and > = (M, g(M)). Moreover for
all (A1, B1), (A2, B2) ∈ C, (A1, B1) ∨ (A2, B2) = (f(B1 ∩ B2), B1 ∩ B2) and
(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, g(A1 ∩ A2)). In formal concept analysis (FCA)
concept lattices are used to analyze data when organized by a binary relation
between object and attributes. See the complete book of Ganter and Wille [12]
for a complete description of formal concept analysis.

Closure system. A set system on a set S is a family of subsets of S. A closure
system F on a set S, also called a Moore family, is a set system stable by inter-
section and which contains S : S ∈ F and F1, F2 ∈ F implies F1 ∩ F2 ∈ F. The
subsets belonging to a closure system F are called the closed sets of F.

The poset (F,⊆) is a lattice with, for each F1, F2 ∈ F, F1 ∧F2 = F1 ∩F2 and
F1 ∨F2 =

⋂{F ∈ F |F1 ∪F2 ⊆ F}. Moreover, any lattice L is isomorphic to the
lattice of closed sets of a closure system (see [2] for more details).

A closure operator on a set S is a map ϕ on P(S) satisfying the three following
properties : ϕ is isotone (i.e. ∀X, X ′ ⊆ S, X ⊆ X ′ ⇒ ϕ(X) ⊆ ϕ(X ′)), extensive
(i.e. ∀X ⊆ S, X ⊆ ϕ(X)) and idempotent (i.e. ∀X ⊆ S, ϕ2(X) = ϕ(X)). Closure
operators are in one-to-one mapping with closure systems. On the first hand, the
set of all closed elements of ϕ forms a closure system Fϕ :

Fϕ = {F ⊆ S |F = ϕ(F )} (4)

Dually, given a closure system F on a set S, one defines the closure ϕF(X) of a
subset X of S as the least element F ∈ F that contains X :

ϕF(X) =
⋂
{F ∈ F |X ⊆ F} (5)

In particular ϕF(∅) = ⊥F. Moreover for all F1, F2 ∈ F, F1 ∨ F2 = ϕF(F1 ∪ F2)
and F1 ∧ F2 = ϕF(F1 ∩ F2) = F1 ∩ F2.

A concept lattice (C,≤C) is composed of two particular closure systems CG

and CM respectively defined on the set G of objects, and on the set M of
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attributes : CG is the restriction of C to the objects where each concept (A, B)
is replaced by the subset A of objects ; the associated closure operator is f ◦ g.
Dually, CM is the restriction of C to the attributes and the associated closure
operator is g ◦ f . Moreover, the three lattices (CG,⊆), (CM ,⊇) and (C,≤) are
isomorphic. See the survey of Caspard and Monjardet [5] for more details about
closure systems.

Implicational system. An Unary Implicational System (UIS for short) Σ on
S is a binary relation between P(S) and S : Σ ⊆ P(S) × S. An ordered pair
(A, b) ∈ Σ is called a Σ-implication whose premise is A and conclusion is b. It is
written A → b, meaning “A implies b”. A subset X ⊆ S respects a Σ-implication
A → b when A ⊆ X implies b ∈ X (i.e. “if X contains A then X contains b”).
X ⊆ S is Σ-closed when X respects all Σ-implications, i.e A ⊆ X implies b ∈ X
for every Σ-implication A → b. The set of all Σ-closed sets forms a closure
system FΣ on S :

FΣ = {X ⊆ S |X is Σ-closed} (6)

Then we can associate to Σ a closure operator ϕΣ = ϕFΣ
which defines the

closure of a subset X ⊆ S

ϕΣ(X) = πΣ(X) ∪ π2
Σ(X) ∪ π3

Σ(X) ∪ . . . where (7)

πΣ(X) = X ∪
⋃
{b |A ⊆ X and A → b} (8)

An UIS Σ is a generating system of the closure system FΣ (using Eq. (4)),
and thus for the induced closure operator ϕ, and the induced lattice (FΣ ,⊆).
When some UISs Σ and Σ′ on S are generating systems for the same closure
system, they are called equivalent (i.e. FΣ = FΣ′).

An UIS Σ is called direct or iteration-free if for every X ⊆ S, ϕ(X) = πΣ(X)
(see Eq. (8)). An UIS Σ is minimal or non-redundant if Σ \ {X → y} is not
equivalent to Σ, for all X → y in Σ. It is minimum if it is of least cardinality,
i.e. if |Σ| ≤ |Σ′| for all UIS Σ′ equivalent to Σ. A minimum UIS is trivially
non-redundant, but the converse is not true in general. A minimal UIS is usually
called a basis for the induced closure system (and thus for the induced lattice),
and a minimum basis is then a basis of least cardinality.

The canonical direct basis described in [17] and denoted Σcd, has three main
properties : directness, canonical and minimality properties.

In the literature, an implicational system (IS for short) Σ can also be defined
as a binary relation on P(S). A Σ-implication is then an ordered pair (A,B) ∈ Σ,
written A → B, with A, B ∈ P(S). Generating systems (also called covers) and
bases can be also defined for IS. In this case, there exists an unique minimum
basis, called the canonical basis, also denoted the Guigues and Duquenne basis
([15]), enabling to get all the others minimum basis.

Other definitions and bibliographical remarks can be found in the survey of
Caspard and Monjardet in [5].
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Bordat’s algorithm. One of the first algorithm generating the concept lattice
is due to Chein [6] : concepts are generating from the inital context using sub-
matrix computation algorithm. These first algorithms has then been improved
using efficient methods for testing wether a concept has been already genera-
ted. The initial algorithms are Norris’s algorithm [23], Next Closure of Ganter
[11], Bordat’s algorithm [3]. Norris’s algorithm is an incremental algorithm, as
algorithms in [13] and [27]. Next Closure algorithm defines the lectic order (ex-
tended the inclusion order) between concept for testing wether a concept has
been already generated. Bordat’s agorithm computes the Hasse diagram of the
concept lattice, as algorithms in [4] and [27]. Nourine and Raynaud [24] use a
sophisticated tree data structure to generated concepts with the best theoretical
complexity.

Name : Concept-Lattice
Input: A context K = (G, M, I)

Output: The cover relation (C,≺) of the concept lattice of K

begin
C = {(f(G), G))};
foreach (A, B) ∈ C not marked do

F=cover (K, (A, B));
foreach B′ ∈ F do

A′ = g(B′);
if (A′, B′) 6∈ C then add (A′, B′) in C;
add the cover relation (A, B) ≺ (A′, B′)

end
mark (A, B)

end
return (C,≺)

end

For our classification problem, Bordat’s algorithm [3], or any algorithm ge-
nerating the Hasse diagram, is the more appropriate since it generates the cover
relation between concepts. Bordat’s algorithm is issued from Theorem 1 that is
redefined in Corollary 1.

Theorem 1 (Bordat [3]). Let (A,B) and (A′, B′) two concepts of a context
(G,M, I). Then (A,B) ≺ (A′, B′) if and only if B′ is inclusion-maximal in the
following set system FA defined on G :

FA = {f(a) ∩B : a ∈ M −A} (9)

Corollary 1 (Bordat [3]). Let (A,B) be a concept. There is a one-to-one
mapping between Cover((A,B)) and the inclusion-maximal subsets of FA where :

Cover((A,B)) = {(A′, B′) : (A, B) ≺ (A′, B′)} (10)
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Bordat’s algorithm in Algorithm Concept-Lattice computes all the concepts
of C by computing cover(A,B) for each concept (A,B), starting from the bottom
concept ⊥ = (f(G), G), until all concepts are generated. It is in O(|C||M |α), with
2, 5 ≤ α ≤ 3, since each concept is issued from the computation of cover((A,B))
that is in O(|M |α).

Algorithm cover-objects describe the two steps of the computation of
cover((A, B)) : the set system FA has first to be generated in a linear time
since FA can be computed in an incremental way ; then inclusion-maximal sub-
sets of FA can easily be computed in O(|M |3), but the inclusion-maximal subsets
problem is known to be resolved in O(M |2,5) using sophisticated data structures
([10,22]).

Name : Cover-objects
Input: A context K ; A concept (A, B) of K

Output: The inclusion-maximal subsets of FA

begin

1. Compute FA : FA = {f(a) ∩B : a ∈ M −A};
2. Compute F : the maximal-inclusion subsets of FA;

return F
end

3 Extensions of Bordat’s algorithm for recognition of
noised symbols

Classification with a concept lattice. In our current works in [16], we use a
concept lattice as classifier of noised symbol images. Each symbol X is giving by
a vector of features (xi)i≤n, denoted its signature, and extracted from the image
of a symbol X using image analysis treatment. A class information c(X) is also
associated to each symbol.

The classification problem consists then in computing the class information
of not classed and noised symbols. This problem is usually decomposed into two
step : a learning step aiming at generating a classifier from a set of symbols as
input ; a classification step aiming at classify noised symbols using the classifier.
The noised symbol recognition problem takes as learning input a set of symbols
given by their signature and their class ; and as classification symbols a set of
noised symbols given by their signatures.

In the learning step, features of the signature are discretized into intervals
in order to separate between symbols of different classes. The relation between
the learning symbols (objects) and the features’s intervals (attributes) forms a
context K = (G,M, I) and the classifier is then the cover relation of the concept
lattice of K.
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This concept lattice classifier is used to classify a noised symbol X = (xi)i≤n

in a second step by navigation into the concept lattice. The navigation consists
in a breath-first search in the concept lattice starting from the bottom concept,
until a final concept is reached, using a choice criteria to choose according to the
cover-relation between concepts. Class of the input noised symbol is then the
class associated to the reached final concept, thus a concept is a final concept
when it is composed of objects of the same class. A final concept is covered by the
top concept. This classifier is based on three extensions of Bordat’s algorithm :

1. We need attributes and not objects during the navigation in the concept
lattice. Thus a first extension of Bordat’s algorithm to compute the closure
system on attributes instead if the concept lattice.

2. We explore by navigation only a small part of the concept lattice depending
on the input symbols to classify. So, all concepts are not required. The second
extension of Bordat’s algorithm consists to on-line generate a concept only
when it is reached by navigation.

3. Implication between attributes represents an efficient tools to describe at-
tributes. The third extension of Bordat’s algorithm is a generation of the
canonical direct basis while generating concepts.

Generation of the closure system on attributes. In the context of recog-
nition of noised symbols, the cover relation (CM ,≺) of the closure system on
attributes is sufficient for the navigation.

Let A ∈ CM be a closed set. The cover of A in the lattice (CM ,≺) is redefined
as :

Cover(A) = {A′ : A′ ≺ A} (11)

Although the set system FA is composed of subsets of objects of G, it is
defined according to attributes of M \A (see 9). Let us consider the two following
cases for a and a′ two attributes of M \A :
1. If f(a) ∩ B = f(a′) ∩ B then a and a′ give raise to one subset f(a) ∩ B in

FA. Thus a and a′ are equivalent in this case.
2. If f(a)∩B 6= f(a′)∩B, then the two subsets f(a)∩B and f(a′)∩B belong

to FA. The maximal-inclusion subsets of FA are deduced from the inclusion
relation between f(a) ∩B and f(a′) ∩B, and can be extended to a relation
between a and a′.
To formalize the first case, we introduce an equivalence relation ∼ on at-

tributes of M \ A. The second case can then be reformulated using an ordered
relation /A on the set of equivalence classes of ∼. This set is called the quotient
set by ∼ and denoted (M \A)/∼ :
1. ∼ is an equivalence relation ∼ on M \A defined by

∀a, a′ ∈ M \A, a ∼ a′ ⇐⇒ f(a) ∩B = f(a′) ∩B (12)

2. /A is the order relation defined on the quotient set (M \A)/∼ by :

∀a, a′ ∈ M \A, bac /A ba′c ⇐⇒ f(a) ∩B ⊆ f(a′) ∩B (13)
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Therefore, FA can be be extended to an order relation on equivalence classes
on attributes of M \A. The following corollary extends Theorem 1 to an use of
the only attributes, and gives raise to Algorithm Closure-System that generates
the cover each closed set A using Algorithm cover-attributes.

Corollary 2. Let A ∈ CM . There is a one-to-one mapping between Cover(A)
and the maximal elements of the poset ((M \A)/∼, /A).

Name : Closure-System
Input: A context K = (G, M, I)

Output: The cover relation (CM ,≺) of the lattice (CM ,⊆)

begin
CM = {f(G))};
foreach A ∈ CM not marked do

F=cover-attributes (K, A);
foreach X ∈ F do

A′ = A + X;
if A′ 6∈ CM then add A′ in CM ;
add a cover relation A ≺ A′

end
mark A

end
return (CM ,≺)

end

Algorithm cover-attributes is very similar to Algorithm cover-attributes,
and can also be resolved in O(|C||M |α) using sophisticated data structure. Howe-
ver, the maximal elements of the inclusion relation /A can be updated in a incre-
mental way in O(|M |3) since equivalence classes for a closed set A are included
in those of closed set successors of A. Therefore, Algorithm cover-attributes
is in O(|M |3), and Algorithm Closure-System is in O(|C||M |3), as Bordat’s
algorithm.

A similar poset introduced by Morvan and Nourine and denoted G′A in [20]
or Pred∗A in [21] is defined according to B \f(a) instead of f(A)∩B. They state
the following equivalent theorem :

Theorem 2 (Morvan, Nourine [20]). Let A ∈ CM . There is a one-to-one
mapping between Cover(A) and min(G′A).

They derive from this theorem a generation algorithm of ”minimal interval
extensions” based on a one-to-one mapping between theses extensions and the
maximal chains of a closure system ordered by inclusion (i.e. a lattice). In ano-
ther paper [21], this algorithm has been simplified to the distributive case (case
where the concept lattice is distributive) in O(|C|) : in this case, the /A’s similar
poset can be computed in a post-treatment, and thus has not to be updated for



Extensions of Bordat’s algorithm for attributes 9

each closed set. This generation is called the strong simplicial elimination scheme
and corresponds to the decomposition process of a distributive lattice in inter-
vals described by Markowski in [19] ; as to the duplication process of intervals
introduced by Day in [7] and generalized to other duplications in [8,9,1].

Name : cover-attributes
Input: A context K ; closed set A ∈ CM of attributes

Output: The maximal elements of ((M \A)/∼, /A).

begin

1. Compute (M \A)/∼ : the equivalences classes of ∼ on M \A.

2. Compute /A : the inclusion relation on (M \A)/∼;

3. Compute F : the maximal elements of /A

return F
end

Extension to an on-line generation. Algorithm On-Line-Closure-System
is an extension of Bordat’s algorithm to on-line generate closed sets according to
a choice criteria to select a closed set between cover(A). Since Bordat’s algorithm
generates concepts with a breath-first strategy, it has been adapted to a death-
first strategy in a recursive way, and has initially to be called with ϕ(∅) as first
closed set.

Let us notice that a death-first generation of all closed sets would consists in
replacing Select X in F by the loop ForEach X in F to consider all subsets
of F in the same way, thus uselessness of the else statement.

Algorithm On-Line-Closure-System is in (O(|Con−line||M |3) where Con−line

is the set of closed set on-line generated. This set depends of the symbols to clas-
sify : |M | ≤ |Con−line| ≤ |C|

Table 3 illustrates the interest of an on-line generation for recognition of
noised symbols.

Learning Recognition Number of concepts

Total generation 430,2 sec 2 sec 3185

On-line generation 0,5 sec 9,8 sec 282

Tab. 1. Recognition of 10 noised symbols ; Learning with 25 not noised symbols

Extension to generation of the canonical direct basis. It is possible to
extend relation /A to be defined on M \A instead on the quotient set (M \A)∼ :

∀a, a′ ∈ M \A, a /A a′ ⇐⇒ f(a) ∩B ⊂ f(a′) ∩B (14)
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Name : On-Line-Closure-System
Input: A context K = (G, M, I) ; a suborder (C′M ,≺) of the cover relation (C,≺) ;

a closed set A ∈ C′M
begin

if A not marked then
F=Cover-Attributes (K, A);
Select X in F according to the choice criteria;
A′ = A + X;
add the cover relation A ≺ A′;
if A′ 6∈ C′M then add A′ in C′M ;
mark A;

end
else

Let F = {A′ \A : A′ ∈ C′M and A ≺ A′};
Select X in F according to the choice criteria;

end
if A′ 6= M then On-Line-Closure-System(K,C′M ,≺, A′);

end

It’s important to notice that the relation /A defined on M \A isn’t an ordered
relation since a /A a′ and a′ /A a for two ∼-equivalent attributes a and a′.

It is stated in [?] that Pred∗A (i.e. relation /A) is equivalent to the dependance
relation δ defined for a lattice, and introduced in [?] (see also [?]). The dependence
relation δX is defined on S, with x, y ∈ S and X ⊂ S, by :

xδXy if and only if x 6∈ ϕ(X), y 6∈ ϕ(X) and x ∈ ϕ(X + y) (15)

In [?], the authors state the equality between the canonical basis and five
implicational systems issued from different works and satisfying various proper-
ties. One of the five implicational system is the dependence relation’s basis on
S is issued from the dependence relation :

Σcd = {X + y → x : xδXy and X is minimal for this property} (16)

Therefore, using relation /A, it is possible to compute the canonical direct ba-
sis Σcd of the closure set C′M using Eq.16 as done by Algorithm Canonical-Direct-Basis.
In particular /∅ corresponds to the inclusion relation on M , and to unitary im-
plicational rules in Σcd (i.e. rules with a singleton as premise).

The canonical direct basis Σcd can be computed in (O(|CM ||M |3), thus a
complexity of Algorithm On-Line-Closure-System in (O(|CM ||M |3), as Bor-
dat’s algorithm.

4 Conclusion

We present in this paper three extensions of Bordat’s algorithm. Although
these extensions have been introduced for the noised symbol recognition problem,
it can be implemented with any concept lattice.
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Name : Canonical-Direct-Basis
Input: A context K = (G, M, I)

Output: The Cover relation of the lattice (CM ,⊆) ; The canonical direct basis Σcd

begin
CM = {f(G)};
Σcd = ∅;
Let /∅ be the inclusion relation on M ;
foreach (a, a′) ∈ M2 such that a /∅ a′ do

add a′ → a in Σcd

end
foreach A ∈ CM not marked do

Let F =cover-attributes (K, A);
Let /A= the inclusion relation on M \A;
foreach X ∈ F do

A′ = A + X;
foreach (a, a′) ∈ M \A′ such that a /A′ a′ and a 6 /Aa′ do

add A + a′ → a in Σcd

end
if A′ 6∈ CM then add A′ in CM ;
add a cover relation A ≺ A′

end
mark A

end
return (CM ,≺) and Σcd

end

Acknowledgments to Philippe Sachot and Antoine Mercier for the implementa-
tion of the algorithms presented in this paper.
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