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Abstract. This paper presents an approach to Concept Analysis of
structured, multivalued and incomplete data currently present in life
science knowledge bases. We are concerned with tree structured objects,
whose size may be variable. We focus on the composition relations be-
tween attributes in the learning process. The interest of the method is
the ability to take into account both structural and value parts of the ob-
jects. An application on a coral knowledge base illustrates the advantages
of the method.

1 Introduction

One of the essential issues in classification science concerns biological specimens
and taxa representations and analysis [9]. This is particularly the case in marine
environment for groups like corals, hydroids or sponges for which descriptions
of specimens and taxonomy are particularly complex. Descriptions are often
multi-valued due to variability inside of same species, structured to take into
account characters dependencies and noisy or incomplete [4]. In the context of the
”Knowledge Base on corals project”[5], we have developed a specific knowledge
representation and analysis system: IKBS (Iterative Knowledge based System),
to achieve identification, classification and conceptual analysis from systematic
morphological descriptions.

To deal with such descriptions, we present a method for Concepts Analysis
from structured, multivalued and incomplete objects. Formal Concept Analysis
(FCA) [7] has been successfully applied to a range of knowledge engineering
problems [14]. Traditional FCA methods and tools are usually concerned with
objects described by binary contexts. Extracting concepts from more complex
contexts is a recent and challenging trend of research on FCA [13]. Indeed, real-
world data are often complex and difficult to be transformed in a binary format
without loss of information. One key difficulty lies in the presence and man-
agement of relational attributes such as references or part-of relations between
objects. For example, in [12] methods are proposed to find relational concepts in
structured datasets in which individuals are described both by their own features
and by their relations to other. Such data are currently found in relational or ob-
ject oriented databases, or software models such as UML. In a similar research



trend, [3] shows how FCA can be used to support Ontology Engineering and
how ontologies can be exploited in FCA applications as background knowledge
to assure consistency and scalability of the results [3].

In our approach, we are concerned with tree structured objects corresponding
to specimen descriptions. The object’s structure is defined in a model that repre-
sents all characteristics (attributes, relations and values) and background knowl-
edge of a particular concept, corresponding to a taxa (family, genus, species).
However, the size of each object may be different from others (different special
schemas called skeletons) because of inapplicable attributes and dependencies
between them. In this paper, we focus on using some background knowledge and
particularly the composition relations between attributes in the Concept Anal-
ysis process. The interest of the method is the ability to take into account both
structural and value part of the objects.

The paper is organized as follows: Section 2 recalls results on Galois connec-
tion on semilattices. Section 3 gives the knowledge representation model used to
describe objects. Section 4 presents a way to make Concept Analysis on struc-
tured and multivalued objects. The approach is illustrated by an application
example in Section 5.

2 Preliminaries

In this section, we recall some results on Galois Connection (GC) between semi-
lattices that will be used in further sections.

Let P and Q be ordered sets. We recall that a pair GC = (f, g) of maps
f : P → Q and g : Q → P is a Galois Connection (GC) between P and Q if,
for all p ∈ P and q ∈ Q : f(p) ≤ q ⇐⇒ p ≤ g(q). The mapping h = g ◦ f
and k = f ◦ g are closure operators in P and Q. Any pair (p, q) such that
(p = g(q), q = f(p)) is called concept [7].

The definition of GC between lattices can be found in [1] and GC between
semilattices has been studied by [8] [10] [6], it is useful because it gives a suitable
framework for concepts analysis for data which are not binary.

We denote by O a set of objects, and Γ a meet semilattice. Let δ : O → Γ be
the mapping which associate every element o ∈ O with its description δ(o) ∈ Γ.
The context K = (O, Γ, δ) is called pattern structure in [8]. The descriptor δ
induces a GC between (P(O);⊂,∪) and (Γ ; <,∧) by means of the map, such
that for γ ∈ Γ ext(γ) = {o ∈ O|γ ≤ δ(o)} and for L ⊂ O int(L) = ∧l∈Lδ(l).
The GC is denoted by GC = (ext, int). A concept or pattern concept is a pair
c = (L, γ) such that γ = int(L) and L = ext(γ). The subset L is called the
extension of the concept c and γ its intension.

3 Knowledge representation model

The knowledge representation model is made of the descriptive model and its
instances, the structured objects.



3.1 Attributes

The descriptive model represents all the observable characteristics (objects, at-
tributes and values) pertaining to individuals belonging to a particular taxa. It
is organized in a structured schema forming a tree. Each node of the tree is a
component of the description defined by a list of attributes with their respective
definition domain and a set of meta-data as rules, comments, hyperlinks and
pictures. See Figure 1 for an overview of a descriptive model structure com-
posed by two components, ”identification” and ”description”, itself composed
by ”colony”, ”microstructure” and so on.

Fig. 1. Partial description of the genus Astrocoeniidae Stylocoeniella

Moreover, this component defines a particular boolean property, called ”pos-
sible absence”. It means that the component should necessarily be described or
could be described in an object instance of the model. The attributes noted from
A to G in the Figure 1 are ”contingent”, the other are ”necessary”.

Two types of attributes are considered. First, basic attributes that are usual
attributes whose types are qualitative (ordinal, nominal, boolean) or quanti-
tative (discrete or interval), and hierarchical attribute (also called taxonomic
attribute) for which values are organized in a hierarchy. Second, structured at-
tributes formed using any kind of distinct attributes.

3.2 Objects

In this section, we are concerned with the structures of objects and we shall
define the meet semilattice of the structured description space of objects.



Notation We suppose given a set of basic attributes names, AQ = {Aq}q∈Q

and their corresponding domains DQ = {Dq}q∈Q. A structured attribute is
recursively defined as a sequence A :< A1, . . . , Al, . . . , Ap > of basic or structured
attributes. We say that Al is a component of A. A structured attribute is used
to describe composite objects. We assume that a structured attribute A called a
schema is given for describing a collection of objects. The set of attributes that
composes A is denoted A = {Aj}j∈J . A structured attribute A is represented
by a rooted tree M = (A,U) where the set of nodes and edges are denoted by
A and U , respectively. The root of M is A, and the nodes are the attributes,
basic attributes are the leaves. If (B, B′) ∈ U is an edge, it means that B or B′

is a component of the other.

Skeleton Let O be a set of objects described by a schema M = (A,U). A
skeleton represents the structure of an object. In the Figure 1, missing parts
of the object are represented with a cross, and ? means that the component
is undefined or unknown. In [11] to deal with unknown and missing values, an
incomplete context is defined as Ki = (O, A, {+, ?,−}, J) with an extension of
KLEENE-logic is proposed. In our approach, we use a semi-lattice to represent
missing and unknown values. We give the formal definition of a skeleton:

S = {+ = ”existing, present”,− = ”missing, absent”, ∗ = ”unknown,undefined”},
a skeleton is a labeled rooted tree M using the alphabet S i.e. each node Aj ∈ A
of M is assigned a symbol from S. A map σ : A → S defines a labeled rooted
tree Hσ :

Hσ = (Aσ,U) with Aσ = {(Aj , σ(Aj))j∈J}.
The skeleton nodes satisfy the following properties: the descendants of a missing
(respectively unknown) node must be missing (respectively unknown). If a node
is present, its children may be present, absent or unknown. Then, all the labeled
rooted trees Hσ defined from a mapping σ ∈ SA are not a valid representation
of a skeleton object, it leads to:
Definition 1. Let B :< Bl >l∈L be any structured attribute. The mapping
σ ∈ SA is said to be consistent, if it satisfies the following conditions:
1) σ(B) = − ⇒ σ(Bl) = − for l ∈ L, 2) σ(B) = ∗ ⇒ σ(Bl) = ∗ for l ∈ L. The
set of consistent maps is denoted SA

c .

We denote by H the set of skeletons related to consistent maps of SA
c .

Order Skeletons are defined from mapping σ ∈ SA
c . To order the skeleton space

H, it suffices to define an order on SA
c . The set S = {+,−, ∗} is ordered as

follows ∗ < + and ∗ < −. In the context of information orderings, it means that
+ and − is more defined or precise than ∗. Let us notice that + and − are not
comparable. Then SA is pointwise ordered, for maps s, s′ ∈ SA

s ≤ s′ ⇐⇒ ∀Aj ∈ A, s(Aj) ≤ s(Aj)

The set SA has a minimum element σ∗ such as: ∀Aj ∈ A, s∗(Aj) = ∗. The
set SA

c ⊂ SA inherits the pointwise order.



Semilattice We will define a semilattice structure on the skeleton set H. The
ordered set (S = {+,−, ∗}, <) is a meet semilattice, because ∗ = + ∧S −. It
means that an undefined value is interpreted as a missing or existing node. Then
SA is also a meet semilattice, ∧SA in SA is defined from ∧S as follows :

∀Aj ∈ A, s ∧SA s′(Aj) = s(Aj) ∧S s′(Aj).

Unfortunately, SA
c is not a meet semilattice for ∧SA because SA

c is not stable
under ∧SA . Consider B =< B1, B2 > and σ, σ′ ∈ SA

c such as: σ(B) = +, σ′(B) =
−; σ(B1) = +, σ′(B1) = −; σ(B2) = −, σ′(B2) = −. Then, we have: σ(B) ∧SA

σ′(B) = + ∧S − = ∗; σ(B1) ∧SA σ′(B1) = + ∧S − = ∗; σ(B2) ∧SA σ′(B2) =
− ∧S − = −

We see ( Figure 2) that the value − of the child B2 of B is not equal to
his father’s value ∗, σ ∧SA σ′ is not consistent (we will say that the node B2 is
inconsistent for σ∧SA σ′ ). Next proposition defines an operator ∧ that associates

+

+

- -

-

- *

*

- *

*

*

Fig. 2. Inf operator applied on simple skeletons.

a greatest lower bound in SA
c to any σ, σ′ ∈ SA

c .

Proposition 1. Let σ, σ′ ∈ SA
c . The set SA

c is a meet semilattice such that:

σ ∧ σ′ =
∨

([σ∗, σ ∧SA σ′] ∩ SA
c )

Proof. The set of all lower bounds of {σ, σ′} is the interval [σ∗, σ ∧SA σ′] in SA.
The set [σ∗, σ∧SA σ′]∩SA

c is not empty because the minimum element σ∗ ∈ SA
c .

We are going to define the upper bound σ∧σ′ of {σ, σ′} in SA
c . Let B :< Bl >l∈L

be any structured attribute. Notice that if σ∧SA σ′(B) = −, the node B does not
lead to inconsistency. Hence, σ ∧SA σ′(B) = − ⇒ σ(B) = σ′(B) = − as σ, σ′ ∈
SA

c for l ∈ L, σ(Bl) = σ′(Bl) = − and σ ∧SA σ′(Bl) = −. Any inconsistency
node Bl is such that σ(Bl) ∧SA σ′(Bl) = − with σ(B) ∧SA σ′(B) = ∗. It means
that the father B is present in one skeleton and missing in the other one and the
child Bl is missing in the two skeletons (if B is indefinite in the two skeletons,
all children will be indefinite because σ and σ′ are consistent). In this case, we
define σ ∧ σ′(Bl) = ∗. To sum up, we have σ ∧ σ′(Aj) = σ ∧SA σ′(Aj) for all
consistent nodes Aj , and σ ∧ σ′(Aj) = ∗ for all inconsistent nodes Aj . It is easy
to see that σ ∧ σ′ is the greatest consistent lower bound of {σ, σ′}.
As (SA

c ; <,∧) is a meet semilattice, then the set of skeletons set (H; <,∧) is a
meet semilattice, such that for Hσ, Hσ′ ∈ H :

Hσ ∧ Hσ′ = Hσ∧σ′



The procedure that computes σ ∧ σ′(Aj) is given below:

Procedure σ ∧ σ′(Aj) =
∧

(σ(Aj), σ′(Aj))

– If Aj is a basic attribute then return σ(Aj) ∧S σ′(Aj);
– elseif Aj :< Al >l∈L is a structured attribute,

• If σ(Aj) = σ′(Aj) = + then { σ ∧ σ′(Aj) = +; For l ∈ L, σ ∧ σ′(Al) =∧
(σ(Al), σ′(Al)); } elseif σ(Aj) = σ′(Aj) = − then return − else

return ∗;
The skeleton Hσ∧Hσ′ is built from the root down by applying, in breadth-first

way, the procedure
∧

(σ(A), σ(A)). It stops when all common present structured
attributes have been processed. Then, descendant of missing nodes must be
labeled with − and descendant of unknown nodes with ∗. The procedure

∧
,

only on common present nodes, computes the greatest lower bound recursively
this leads us to the definition of the skeleton level. Let l(Aj) be the level
number of the node Aj i.e. the length of the unique simple path from the root
to Aj .

Definition 2. The level ν(Hσ) of the skeleton Hσ is the largest level number of
present nodes in Hσ : ν(Hσ) = max{l(Aj)|σ(Aj) = +, Aj ∈ A)

4 Concepts Analysis on structured and multivalued data

In the Section 2, GC on semilattices has been introduced, and in previous sections
a semilattice structure has been built on the skeleton set. Here, we apply these
results to concepts determination for structured data.

Let denote by Hσo the skeleton of the object o, where σo : A → S. The
mapping d : O → H associates every element o ∈ O with its description
d(o) = Hσo . Consider the semilattice skeleton (H; <,∧) and (P(O);⊂,∪). The
pair GC = (int, ext) of maps ext : H −→ P(O) and int : P(O) −→ H, is a GC
such as, for any Hσ ∈ H :

ext(Hσ) = {o ∈ O|Hσ ≤ Hσo}
and for L ⊂ O

int(L) =
∧

l∈L

Hσl
= H∧l∈Lσl

.

The structure context is Ks = (O,H, d), and the set of concepts induced by GC
will be denoted by C.

Let r be the height of the rooted tree M = (A,U) i.e. the largest level number
of a node, and let k be an integer such that 1 ≤ k ≤ r. and

– Ak = {Aj ∈ A|l(Aj ≤ k} the set of attributes with a level less or equal to k,
– Mk = (Ak,Uk) the rooted tree such that the eight is k,
– SAk

C the set of consistent mappings σk : Ak → S,
– Hk = {Hσk} the semilattice skeleton defined by Mk,



– dk the mapping dk : O → Hk such that dk(o) = Hσk
o
, the subtree of Hσo

limited to nodes whose levels are less or equal to k.
– GCk = (intk, extk) the GC, related to the context Kk = (O,Hk, dk), such

that extk(Hσk) = {o ∈ O|Hσk ≤ Hσk
o
} and intk(L) =

∧
l∈L Hσk

l
= H∧l∈Lσk

l
,

– Ck the set of concepts induced by GCk

The relationship between the set of concept Ck and C is precised by the
following proposition

Proposition 2. Let k be an integer 1 ≤ k ≤ r, and let ck ∈ Ck be a concept
induced by GCk. If the level ν(intk(ck)) of the skeleton intk(ck) is strictely less
than k then it exists one concept c ∈ C induced by GC, such that its intension
int(c)k, limited to nodes whose levels are less or equal to k, is intk(ck) and
ext(c) = extk(ck). Conversely, if c ∈ C is a concept such that its level ν(int(c)) <
r then, for any integer k such that ν(int(c)) ≤ k ≤ r, ck = (intk(c), ext(c)) is a
concept of Ck.

Proof. Let us note that for any skeleton Hσ, the projection of Hσ on Ak is
Hσk . Let ck ∈ Ck, and denoted by L = ext(ck) and Hσk = int(ck) =

∧
l∈L Hσk

l
.

Consider that the level ν(Hσk) is strictely less than k then nodes Aj ∈ Hσk , such
that l(Aj) = k, is missing or unknown. There is an unique consistent skeleton
Hσ ∈ H, such that its projection on Ak is Hσk . Hσ is obtained by labeling the
descendants of missing nodes, whose level is greater or equal to k, by − and
the descendants of unknown nodes of Hσk , whose level is greater or equal to k.,
by ∗. Consider that level ν(Hσk ) < k, and Hσk =

∧
l∈L Hσk

l
, this means that

the objects of the extension L of ck have not present nodes in common such
that the level is greater than k, then Hσ =

∧
l∈L Hσo , is the intension of L and

c = (Hσ, L) is a concept of C with the same extension than ck.
Let c ∈ C whose intension is int(c) = Hσ =

∧
o∈ ext(c) Hσo , whose level

ν(int(c) is strictely less than r. Let denote by Hσk the projection of Hσ at the
level k. The level of Hσ is strictely less than r, then, for k such that ν(int(c)) ≤
k ≤ r, we can state that Hσk =

∧
o∈ ext(c) Hσk

o
. And ck is a concept of Ck such

that its intension is Hσk and its extension ext(ck) = ext(c) .

This proposition gives a top down algorithm for structure concepts search. If ck

is a concept of Ck, we can derive concepts c of C from ck as follows

Procedure {c} = DeriveConcepts(Hσk = int(ck), ext(ck))

– Compute A+
k = {Aj ∈ Ak|σk(Aj) = +, l(Aj) = k};

– If A+
k = ∅ then return c = ck,

– elseif {ck+1} = ConceptAnalysis(Kk+1 = (ext(ck),Hk+1, dk+1));
– For each ck+1 do DeriveConcepts(int(ck+1), ext(ck+1));

The procedure {ck+1} = ConceptAnalysis(Kk+1 = (ext(ck),Mk+1, dk+1))
extracts concepts ck+1 from the extension of ck. One can show that it may be
implemented using a standard Formal Concept Analysis algorithm applied to
the observations of ck using only the attributes of A+

k .



4.1 Semilattice on object values

In this section, we deal with the values of objects, we construct a meet semi-
lattice structure on the values space of objects. Assume that is given a set
of basic attributes names, AQ = {(Aq}q∈Q and their corresponding domains
DQ = {Dq}q∈Q. For any object o, a basic attribute is valued in Dq only if the
attribute is present.

Denote by Γq = Dq∪{⊥}∪{∗}}where ⊥ is interpreted as ”undefined” or ”not
applicable” values and will be used as the values for missing basic attributes, ∗
means that the value is unknown because the corresponding basic attribute is
unknown. Denote by ΓQ = �q∈QΓq. We assume that each set Dq ∈ DQ is a meet
semilattice according to the type of the basic attribute, it means that :

vq, v
′
q ∈ Dq ⇒ vq ∧ v′q ∈ Dq.

Consider (Γq; <,∧, ∗)q∈Q as the meet semilattice with ∗ as the minimum and
the element ⊥ is not comparable with vq ∈ Dq, vq ∧ ⊥ = ∗. Then ΓQ = �q∈QΓq

is a meet semilattice as product of meet semilattice such as, for

v = (vq)q∈Q, v′ = (v′q)q∈Q ∈ ΓQ : v ∧ v′ = (vq ∧ v′q)q∈Q ∈ ΓQ.

For example, for any categorical attribute (Aq, Dq), we will consider Dq ∪⊥
as an antichain, and the meet semilattice Γq has ∗ as minimum. If the type of
a basic attribute is real interval, the domain is the set of values u = [u, u] with
u, u ∈ R such that u ≤ u. The order relation chosen is the dual order of ⊂, and
the ∧ operator is such that u ∧ v = [u ∧ v, u ∨ v].

The partial valuation function vq related to the basic attribute Aq associates
to each object o, a value vq ∈ Γq such as:

σ(Aq) = ∗ ⇐⇒ vq = ∗; σ(Aq) = − ⇐⇒ vq = ⊥; σ(Aq) = + ⇐⇒ vq ∈ Dq.

The valuation function v : O → ΓQ is such as;

v(o) = (vq(o))q∈Q with vq(o) ∈ Γq

The value context is Kv = (O, ΓQ, v).
Let δ : O → Γ = H×ΓQ be the mapping d× v which associates every object

o with its skeleton d(o) = Hσo and its values v(o) = (vq)q∈Q taken on the basic
attributes:

δ(o) = d × v(o) = (Hσo , v(o)) ∈ Γ = H× ΓQ.

The conditions that the values must verify, lead us to

Definition 3. Let Hσ ∈ H be a skeleton and let v = (vq)q∈Q ∈ ΓQ, and let Aq

be any basic attribute. (Hσ, v) is said to be consistent if σ and v satisfies the
following conditions:

σ(Aq) = ∗ ⇐⇒ vq = ∗; σ(Aq) = − ⇐⇒ vq = ⊥; σ(Aq) = + ⇐⇒ vq ∈ Dq.



In previous sections, we have shown how to provide the skeleton set H and ΓQ

with a meet semilattice structure. The description space Γ = H× ΓQ is a meet
semilattice as a product of the meet semilattices H and ΓQ. The greatest lower
bound of the description of o and o′ is written:

δ(o) ∧ δ(o′) = (Hσo∧σo′ , v(o) ∧ v(o′))

we shall ask the question : is this description consistent ? The next proposition
shows that ∧ preserves the consistency property

Proposition 3. If (Hσ, v) and (Hσ′ , v′) are consistent then (Hσ∧σ′ , v ∧ v′) is
consistent.

Proof. Let v = (vq)q∈Q and v′ = (v′q)q∈Q be values related to consistent descrip-
tions (Hσ, v) and (Hσ′ , v′). Assume Aq a basic attribute such that σ∧σ′(Aq) = ∗.
Then, the first possibility is σ(Aq) = σ′(Aq) = ∗ ⇐⇒ vq = v′q = ∗, because the
descriptions are consistent, then we have vq∧v′q = ∗. Or Aq is missing in one skele-
ton and present in the other one. Let us suppose that σ(Aq) = + ⇐⇒ vq ∈ Dq,
and σ′(Aq) = − ⇐⇒ v′q = ⊥. We always have vq ∧ v′q = vq ∧ ⊥ = ∗,
and conversely, if Aq is a basic attribute such that σ ∧ σ′(Aq) = −, then
σ(Aq) = σ′(Aq) = −, and vq = v′q = ⊥,then we have vq ∧ v′q = ⊥. (Hσ∧σ′ , v ∧ v′)
is consistent.

4.2 Concepts

The goal of the previous sections has been to define a complex context K =
(O, Γ, δ) for structured, and multi-valued and incomplete data.

Let Γ (O) be the meet semilattice generated by the descriptions of the objects
Γ (O) = {∧l∈Lδ(l)|L ⊂ O} = {∧l∈L(Hσl

, v(l))|L ⊂ O}. Consider the semilattice
(Γ (O), <,∧) and (P(O),⊂,∪). The pair GC = (int, ext) of maps
ext : Γ (O) −→ P(O) and int : P(O) −→ Γ (O), is a GC such as, for L ∈ P(O) :

int(L) =
∧

l∈L

(Hσl
, v(l)) = (H∧l∈Lσl

,∧l∈Lv(l))

which is a consistent description according to the previous proposition, and for
any (Hσ, ν) ∈ Γ (O) :

ext((Hσ , ν)) = {o ∈ O|(Hσ , ν) ≤ (Hσo , v(o))} = {o ∈ O|Hσ ≤ Hσo , ν ≤ v(o)}.
The set of concepts induced by GC is denoted by C. The relationship between
skeleton concepts of C and complex concepts of C is made precise below:

Proposition 4. Let L be a set of objects, σL = ∧l∈Lσl and vL = ∧l∈Lv(l). If
γ = (HσL , L) ∈ C is a skeleton concept, and if we have for any basic attribute
Aq, σL(Aq) �= + then Υ = ((HσL , vL), L) is a complex concept of C.

Proof. The proof is easy as we can notice, that all basic values are missing or
unknown if the corresponding basic attributes are missing or unknown.



5 Application: concepts extraction from coral base

A straight-forward application is conducted on coral description base. The con-
cepts lattice is extracted from information about the structure of objects. One
concept is exhibited with its resulting multi-values properties. We consider for
this application a subset of 10 descriptions extracted from the coral genera base
(16 families, 58 genera, 185 species). The whole knowledge base is actually made
of 10 models corresponding to the 10 main coral families present in the south-west
of the Indian ocean and about two thousands descriptions (see Figure 1). In order
to use classical FCA methods, each structured attribute B is coded by two bina-
ries attributes B+ and B− to express the presence or absence of a component.
For a given object o, an unknown state is represented by B + (o) = B − (o) = 0.
Following table shows the resulted context:

A B C D E F G

Object n° Family Genus
Monocentric
corralites Coenosteum

Pluricentri
c corralites Septal teeth Synapticuls

Intercorallite
s pillars Columella

1 Astrocoeniidae Stylocoeniella + + - + - + +
2 Pocilloporidae Pocillopora + + - + - - +
3 Pocilloporidae Stylophora + + - + - - +
4 Pocilloporidae Seriatopora + + - + - - +
5 Pocilloporidae Madracis + + - + - - +
6 Siderastreidae Psammocora + + - + + + +
7 Siderastreidae Siderastrea + - - + + - +
8 Fungiidae Fungia + - - + + - +
9 Faviindae Faviinea Leptoria - - + - - - -
10 Acroporidae Acropora + + - + - - +

Fig. 3. An example of corals data set

We used the Galicia platform [12] and the Bordat algorithm [2] with the
classical inf operator ∧SA to build the concepts semilattice (Figure 4) on the
previous context. Each concept is presented with its intension, extension and
the associated skeleton. We verify that C2, C3, C8 and C9 are inconsistent con-
cepts: for them, the structured attribute A is undefined whereas at least one of
its subpart is defined. At this stage, a concept regroups objects having similar
skeletons. The interest to use the consistent inf operator ∧ (see proposition 1)
is that inconsistent concepts are not computed. The concept C11 groups the
different Pocilloporidae family’s genera and the quite near genus Acropora of
the Acroporidae family. From the expert’s point of view, this analysis is mean-
ingful to organize taxonomies, according to M. Pichon, an nternational coral
expert. From the extension of skeleton concepts, further analysis such as Con-
cept Analysis on multivalued contexts or clustering methods can be performed.
For example, Figure 5 gives the intension of the concept C11 computed, using
IKBS system, from the complete objects description of the extension of C11.
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Fig. 4. Concepts semilattice build upon structured objects with ∧SA .

Fig. 5. Intension of the concept C11



6 Conclusion

In this paper, we presented an approach which allows Concept Analysis to deal
with structured, multivalued and incomplete data. This kind of analysis is useful
to extract knowledge from observations in Life Sciences and to help experts in the
Knowledge Bases building process. However, the number of consistent concepts
generated may be huge due to model’s complexity. We are exploring strategies
to reduce the concepts research space by using datamining methods such as
clustering or suitable distances on structured and multi-valued objects.
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