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Abstract. Formal Concept Analysis is based on the occurrence of symbolic attributes in
individual objects, or observations. But, when the attribute is numeric, treatment has been
awkward. In this paper, we show how one can derive logical implications in which the atoms
can be not only boolean symbolic attributes, but also ordinal inequalities, such as x ≤ 9. This
extension to ordinal values is new. It employs the fact that orderings are antimatroid closure
spaces.

1 Extending Formal Concept Analysis

Formal Concept Analysis (FCA), which was initially developed by Rudolf Wille and Bernhard Gan-
ter [3], provides a superb way of describing “concepts”, that is closed sets of attributes, or properties,
within a context of occurrences, or objects. One can regard the concept as a closed set of objects
with common attributes. Frequently clusters of these concepts, together with their structure, stand
out with vivid clarity. However, two unresolved problems are often encountered. First, when con-
cept lattices become large, it is hard to discern or describe significant clusters of related concepts.
Gregor Snelting used formal concept analysis to analyze legacy code [6, 14].1 Snelting’s goal was
to reconstruct the overall system structure by determining which variables (attributes or columns)
were accessed by which modules (objects or rows). It was hoped that the concept structure would
become visually apparent. Unfortunately, the resulting concept lattice shown on page 356 of [6] is
little more than a black blob. Visual interpretation of closure concepts does not seem to scale well.

Second, when the attribute values are numeric, as is often the case with technical data, formal
concept analysis becomes difficult. It is easy to comprehend the set of all objects whose color is
“red”; But what precisely constitutes the set of objects whose weight is “9.5”, or “near 9.5”, or “less
than 9.5” or otherwise similar to “9.5”. Fuzzy set theory [5, 18] might be appropriate here, but we
prefer a deterministic approach.

To cope with the first issue, our approach has been to work with the logical implications that
can be deduced from adjacent closed concepts in the lattice, rather than to seek clusters of such
concepts. So long as all the attributes are boolean this seems to work rather well. We have applied
formal concept analysis to relations (contexts) of sizes 8, 124 × 85 and 1, 272 × 144. The resulting
closed set lattices were large, 104,104 and 1,804 nodes respectively, but nevertheless we were able to
extract useful logical implications. In Section 3 we briefly review some of this older work.

In Section 4 we will develop our new approach to representing numeric predicates. Very briefly,
it will consist of viewing a concept, not as being a closed set of attributes associated with a set of
objects, but rather regarding it as a closed set of “closed sets” associated with the objects.

1 Siff and Reps [13] published shortly after.



A crucial contribution of FCA has been to establish the role and importance of closure operators
and closed sets in mathematical thinking. In Section 2 we review those closure concepts that we will
need later.

2 Closure Operators and Closure Spaces

The notion of “closure” plays a major role in our representation of the real world. In particular we
will be concerned with closed sets of objects, closed sets of predicates and closed sets of numbers.

2.1 Closure Concepts

By a “closure system” over a “universe” U, we mean a collection C of sets X, Y, . . . Z ⊆ U, including
U, satisfying the property that if X, Y ∈ C then X ∩ Y ∈ C. The sets of C are said to be the closed
sets of U. As an alternative to this “intersection” characterization, one can define a closure operator

ϕ : 2U → 2U satisfying the following 3 axioms for all X, Y, Z:
X ⊆ X.ϕ,
X ⊆ Y implies X.ϕ ⊆ Y.ϕ

X.ϕ.ϕ = X.ϕ.
(For technical reasons we prefer to use suffix operator notation, so read X.ϕ as “X closure”.) Readily,
a set X is closed in C, if X.ϕ = X . The equivalence of these two alternative definitions is well known
[8], and we will use both in the following sections.

Closure systems can satisfy many other axioms, and those that do give rise to different varieties
of mathematical systems. If (X ∪ Y ).ϕ = X.ϕ ∪ Y.ϕ we say ϕ is a topological closure. If the system
satisfies the “exchange axiom”, that is if p, q 6∈ X.ϕ but q ∈ (X ∪ {p}).ϕ then necessarily p ∈
(X ∪ {q}).ϕ, the system can be viewed as a kind of linear algebra, or more generally a “matroid”.
The Galois closure we will be using in this section satisfies neither of these additional axioms. But
later in Section 4, we will be using “antimatroid” closure operators, that is those which satisfy the
“anti-exchange axiom” if p, q 6∈ X.ϕ and q ∈ (X ∪ {p}).ϕ then p 6∈ (X ∪ {q}).ϕ .

2.2 Galois Closure and Concept Lattices

The approach we will follow is similar to that was first developed by Rudolf Wille and is best
presented in [3]. Formal concept analysis begins with a relation R between two sets, say a set O of
objects and a set P of object predicates, or attributes. Using standard relational terminology, each
object oj ∈ O can be regarded as a row in R and each predicate pk ∈ P is a column. Each attribute
pk is a binary, logical property, i.e. pk(o) is either true or false, because the object exhibits property
pk or it doesn’t. A concept Cn is a pair of closed subsets Cn = (On, Pn) where On ⊆ O, Pn ⊆ P
with the property T that for every oi ∈ On, every pk ∈ Pn, pk(oi) is true. Each concept is assumed
to be maximal, that is for the set On there is no larger subset P ′

n ⊃ Pn satisfying property T , and
for Pn there is no larger subset O′

n ⊃ On satisfying T .
The collection C of all concepts Cn, so defined, forms a closure system; that is, the intersection of

any two concepts in C is a concept. Consequently, the collection C of concepts forms a lattice when
partially ordered by containment with respect to the predicate sets Pn. 2 If we start with the relation

2 Ganter and Wille prefer to order with respect to object set containment yielding the dual lattice, c.f.

page 20 [3].
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R of Figure 1(a) we obtain the concept lattice L shown as Figure 1(b).3 Each node is labeled with a
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Fig. 1. A relation R and its corresponding concept lattice L

closed set of predicates and a closed set of objects satisfying those predicates, or properties. These
two closed sets constitute the concept pair. For example, the combination of properties adf is found
in rows, or objects, 5, 6 and 8.

In the case of FCA, the closure operator is a Galois closure between O and P , and has been well
studied [1, 2, 7] In this paper we will emphasize the closure aspect as denoted by ϕ, rather than the
concept aspect developed in [3].

2.3 Closed Sets, Generators and Logical Implication

Let C denote a closed set. Then there is some set A ⊆ C such that A.ϕ = C. If A is a minimal
such set, w.r.t. set inclusion, we call it a generator of C denoted by C.γ, or by A → C [8]. The
latter symbolism is not accidental. If ϕ is a Galois closure, then closed set generation and logical
implication are identical [9].

Whenever the closure operator is antimatroid, there is a unique generating set for any closed set
[8]. This is the property we will need in Section 4. This need not be true in the case of a Galois
closure. For example, the generating sets of abcgh in Figure 1(b) are bcg and bch, which can be
expressed logically as

bcg ∨ bch → abcgh.
We use concatenation as a short hand to express set enumeration, and when the elements are logical
predicates to express conjunction. Similarly, we often suppress the dependent variable. One could
expand the expression above to

(∀o ∈ O)[(b(o) ∧ c(o) ∧ g(o)) ∨ (b(o) ∧ c(o) ∧ h(o)) → a(o) ∧ b(o) ∧ c(o) ∧ h(o)]
which seems to be unnecessarily unwieldy. Note, that the universal quantification is restricted to O,
the set of observed objects.

3 This figure is taken directly from [3].
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The issue now becomes: “given a lattice of closed concepts, such as Figure 1(b), how does one
derive the generating sets?” For example, what is the generator of the closed set acde in Figure 1(b)?
In [4] it is shown that

Theorem 1. Let C be a closed set with respect to ϕ. Let F denote the family of difference sets

Dk = C−Ck where Ck are the closed sets covered 4 by C in Lϕ. A set C.γ ⊆ C is a generator of C

if and only if C.γ ∩ Dk 6= Ø for all Dk ∈ F .

With this theorem, we can construct the generator of any closed set C as a combination of elements
ei ∈ Di = C−Ci where C covers Ci in L. The node acde covers only one node acd in the lattice
L, so C−C1 = {e}. Thus, using the result above we can show that the generator acde.γ = {e}, or
e → acde. That this is true is evident from Figure 1(a). Property e is only found in observation 7,
where a, c, and d are also seen. So the property e, in this case, trivially implies properties a, c and d.
In the case of abcgh, D1 = {gh}, D2 = {c} and D3 = {b}, so bcg and bch must both be generating
sets.

The intuitive understanding of Theorem 1 is simple. Let C be a closed set covering Ck. Readily
we cannot have C.γ ⊆ Ck else C.γ.ϕ = Ck. So C.γ must have at least one element ek that is “not in”
Ck to insure Ck ⊂ C. The union of these ek is sufficient to generate a closed set strictly larger than
all the Ck. And, since C covers all of the Ck, this closed set must be C. The negative motifs “not
in” and “not contained” will be repeated in Section 4. With this “covering” result, the derivation of
generating sets is an inexpensive, local construction whose details can be found in [11].

2.4 Path Closures in Partially Ordered Sets

Recall that a set S is partially ordered by the relation ≤ if it is reflexive, weakly anti-symmetric and
transitive.5 Partially ordered sets (posets) are often represented as acyclic directed graphs, such as
Figure 2, which we illustrate left to right like a number line rather than up and down in a Hasse
diagram.6

a

b

c

d

e

Fig. 2. A poset on 5 points.

Given any poset there are three naturally associated path closures defined
Y.ϕL = {x|x ≤ y, y ∈ Y }
Y.ϕR = {z|y ≤ z, y ∈ Y }
Y.ϕC = {y|y1 ≤ y ≤ y2, y1, y2 ∈ Y }.

These path closures have been variously called “downset” or ↓, “upset” or ↑, or “convex” closures
respectively. In the case of Figure 2, these three path closures respectively yield the closed sets

4 C covers Ck if we do not have a closed C′ such that Ck ⊂ C′ ⊂ C.
5 It is customary to denote partial order relations with ≤ rather than R.
6 Since x ≤ x,∀x, one could add loops at all vertices (points), but these are customarily omitted.
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CL = C↓ = {Ø, a, b, ab, bd, abc, abcd, abcde}

CR = C↑ = {e, ce, de, cde, ace, acde, bcde, abcde}

CC = 2{abcde}−{ae, be, abe, ade, bce, bde, abce, abde}
In the case of convex closure it is easier to enumerate the eight subsets that are not closed, e.g. not
convex.

It is shown in [8] that these path closures on posets are antimatroid. Consequently all closed sets
have unique generators. For example, consider downset closure ↓ on Figure 2. The closed sets have
the indicated generating sets.

C Ø a b ab bd abc abcd abcde
C.γ Ø a b ab d c cd e

3 Logical Implication in Large Concept Lattices

In Section 1 we said that by interpreting a concept lattice, L, as a set of logical implications rather
than trying to analyze it visually, we could begin to cope with large lattices. We briefly review here
the logical analysis of two such lattices, of 104,104 and 1,804 nodes each. Details can be found in [11,
12] and [10]. Our purpose is to reinforce the practicality of extracting generating sets (the premise(s)
of the implications) using a local covering algorithm based on Theorem 1 of Section 2.3.

According to the “Audubon Society Field Guide of North American Mushrooms” mushrooms
can be characterized with respect to 22 physical attributes, including “cap shape” and “cap surface”.
Cap shape can take the form of “bell”, “conical”, “flat”, “knobbed”, “sunken” or “convex” for 6
distinct logical attributes which we encode as b1, c1, f1, k1, s1 and x1. Similarly a cap surface can be
“fibrous”, “grooved”, “smooth” or “scaley”, which were encoded as f2, g2, s2, y2. By encoding the
possible logical predicates for each of the 22 physical attributes, we get 85 distinct logical predicates
characterizing the 8,125 different species of North American mushrooms.

The complete lattice of mushroom data has 104,104 nodes, or closed concepts. And, since each
closed concept has at least one, but often many, generators we have many more logical implications
— almost all of which are totally useless. But, it is not too hard to extract “useful” implications
from this mass. For example, a simple AWK script that searches for the predicate p0 (poisonous) in
the closed set (consequent) and a singleton predicate for the generator (premise) yields implications
such as:

g2 → p0, w3, t4, n5, f6, w7, n8
or, “don’t eat mushrooms with grooved cap surfaces”. Expanding the AWK script to retrieve similar
implications, but with exactly two predicate generators yields, for example:

c1, y2 → p0, n5, f6, w7, n8
or, “avoid those with conical, scaley caps”.

An important concept in science is that of deterministic causality in which the occurrence of
some event, or conjunction of events, must necessarily “cause” a consequent event. Indeed, this was
the holy grail of Newtonian physics and much of 19th century science. “Causality” implies necessity,
or logical implication. But, it also involves a temporal aspect. The consequent event must temporally
follow all assumed antecedent events. One arena where we expect deterministic causality is software
execution.

For this application we secured trace data detailing all method invocations in the transaction
management module of the open source Jboss 1.4.2 statistical package. My colleagues, JinLin Yang
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and David Evans [17] had instrumented this module and generated 1,227 trace sequences consisting
of 498,489 module invocations, of which 144 were distinct. Many invocations are repeatedly executed
in a single trace. These yielded a 1, 227 × 144 relation, or context, with a resultant lattice of 1,804
nodes and again many more logical implications.

These were run agains a rather simple temporal filter which ensured that all invocations in the
premise (generator) preceded every invocation in the consequent (closed set) in every trace. This
process yielded 43 likely causal dependencies of which

17 ⇒ 22, 23
46 ⇒ 47, 48, 49, 60, 62 7

are two representative examples. All appear to be true dependencies.
Our goal in recounting these two examples of past results is simply to establish (1) that software

exists to process rather large binary relations, (2) that using Theorem 1 is a practical way of deter-
mining generator sets and (3) that considering the lattice to be a source of logical implications can
have practical value. The software, which employs an incremental approach to creating the lattice,
that we believe was first proposed by [15, 16], is available from the author.

4 Numeric Values

Formal Concept Analysis, as well as our own development to date, has been focused on binary
predicates. Either a predicate p is true for a given object/observation, or it is not. This made it easy
to reason about sets of true predicates. However, much of our understanding of the natural world is
numeric. We count and we measure.

Every boolean algebra, or lattice L, is a closure system because x, y ∈ L implies x ∧ y ∈ L. In
particular, any predicate p = 0 or 1 is a trivial boolean algebra, or closure system Cp. Each element,
0 or 1, is its own generator. We achieve far greater expressive power if we let each predicate pk of
an observational tuple (p1, . . . , pn) be the generator of a closed set in a closure system Ck, where
Ck can be more complex than just {0, 1}. If each closure system Ck is antimatroid, as defined in
Section 2.1, then every closed set has a unique generator [8]. Consequently, if the tuple of predicates
(p1 . . . , pn) is a tuple of generators, then (p1 . . . , pn) denotes a unique closed set in the n-fold direct
product C1 . . . , Cn.

It will be easier to understand the theory we are about to develop if we first consider a concrete
example. Figure 3(a) has been shamelessly copied from ([3], p.44). It summarizes the ratings of 14
monuments on the Forum Romanum by different travel guides. Here, B = Baedecker, G = Les
Guides Bleus, M = Michelin and P = Polyglott.

The 14 numeric 4-tuples can be partially ordered in the usual way, that is (x1, x2, x3, x4) ≤
(y1, y2, y3, y4) if and only if xk ≤ yk, k = 1, . . . 4. Figure 3(b), in which individual tuples have been
prefixed with a letter denoting the monument giving rise to that tuple, illustrates this ordering.
In order to make it a closure lattice, whenever two tuples are covered by a common tuple, their
“intersection tuple” has been entered into the order, as required in any well-formed closure system.
These intersection tuples have been underlined for emphasis.

Consider the tuple n : (0, 2, 2, 1) which covers the tuples (0, 1, 2, 1) and (0, 2, 2, 0) in L. Recall
from Section 2.3 that the generators of a set are determined by the sets it covers. We claim that the
generators of n : (0, 2, 2, 1) are (G > 1)∧(P > 0). Moreover, we claim that the implication embodied

7 In a preprocessing step, each method invocation was uniquely identified by an integer, 1 through 144
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Fig. 3. (a) Ratings of Roman monuments by 4 guide books, (b) Lattice of closed sets implicit in (a).

by this closed set is [(G > 1)∧ (P > 0)] → [(M ≥ 2)∧ (B ≥ 0)]. First, verify that in Figure 3(a) this
implication is in fact true, with j and n being confirming instances.

The principle behind this derivation, which was sketched in Section 2.3 and rigorously proven
for sets in [4], is to show “what constitutes the difference between this closed set and the closed
sets it covers”. In our case, the only difference between (0, 2, 2, 1) and (0, 1, 2, 1) is that “G is not
≤ 1”, or equivalently “G is > 1”. Similarly, since P cannot be ≤ 0, we must have P > 0. The
conclusion, i.e. those predicates with no differences, could be B = 0 and M = 2. But, what we
really know is that ¬(B < 0) and ¬(M < 2); so B ≥ 0 and M ≥ 2 represent the best inferences.
The adjacent tuple in Figure 3(b) is a : (1, 1, 2, 1) which covers the tuples (0, 1, 2, 1) and (1, 1, 2, 0).
Thus the same reasoning yields [¬(B ≤ 0) ∧ ¬(P ≤ 0)] → [¬(G < 1) ∧ ¬(M < 2)] or equivalently
[(B > 1) ∧ (P > 1)] → [(G ≥ 1) ∧ (M ≥ 2)] which is verified by observations a, i and j.

Figure 4 provides a rather typical relationship between numeric data that is a bit more complex
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Fig. 4. A semi-random distribution of points

than Figure 3(a). We will again use downset closure, ≤, to order both the x and y values.
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The resultant closure lattice is shown in Figure 5(b). Using the same logic that we have described

(19, 12)

(18, 8)

(19, 9)

(16, 9)

(15, 9)

(15, 8)

(10, 8) (13, 7)
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(4, 1)b:

(3, 1)

(9, 3)

(6, 3)d:
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(8, 2)e:

(3, 3)a:

(3, 2)

(16, 8)

Fig. 5. The closure lattice corresponding to the points of Figure 4.

above, we can assert that y > 3 → x ≥ 5, based on node c; that x > 10 → y ≥ 5, based on node i

(12,5) covering (10,5), among many others. These can be verified in Figure 5(a). We have begun to
reason about the relationship between x and y.

In both the two preceding examples we used downset closure to define the numeric closure spaces.
We can be more creative. For our next example we consider the same semi-random distribution
of points of Figure 4, but consider 3 numeric closure spaces, specifically x with ϕ↓, y with ϕ↓
and y with ϕ↑. Thus the point i is encoded as (12, 5, 5). A node p = (xp, y1p, y2p) is less than

q = (xq, y1q, y2q) if xp ≤ xq, y1p ≤ y2q and y2p ≥ y2q. Thus i ∧ m is not i as before, but rather
i ∧ m = (12, 5, 5) ∧ (18, 8, 8) = (12, 5, 8).

Figure 6 illustrates the resultant closed set lattice. The original points from Figure 4 are embold-
ened. Many of the intersection nodes are labeled with respect to these original data points. The zero
element is (3, 1, 12) or (min, min, MAX), while the supremum, or one element, is (MAX, MAX, min).
We have indicated it in just this way because our software requires such a virtual supremum as its
initial condition.

We observe that this lattice has a very different shape than that of Figure 5. One can see various
substructures emerging within it; but nevertheless it is reaching the limit of visual comprehension.

However, we can still reason about these numeric values. For instance the node (12, 5, 8) = i∧m

covers nodes (10, 5, 8) and (12, 5, 9). Consequently ¬(x ≤ 10) and ¬(y ≥ 9) else (12, 5, 8) could not
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Fig. 6. The lattice of closed sets in Figure 4.

cover both nodes. Thus we know that x > 10 and y < 9 constitute the generator of i ∧ m, which
together imply that y ≥ 5. Inspection of Figure 5(a) shows that this describes the elements i, j, and
m. The node (16, 8, 12) = l∧m∧o covers only the single node (15, 8, 12). If ¬(x ≤ 15), then because
(16, 8, 12) is closed we must have y ≥ 8 and y ≤ 12), or more compactly, (x > 15) → (8 ≤ y ≤ 12).
This encompasses the elements l, m, n and o.

5 Conclusions

The substitution of closed sets from an antimatroid closure space for some, or all, binary predicates
in FCA is very new. We are not confident that we fully understand this process. For example, we
have not yet written software that will automatically produce the lattice of closed concepts nor
their generators. Figures 5 and 6 were tediously produced by hand, and even now may still contain
errors. However, a method that allows us to treat numerical inequalities as boolean predicates offers
considerable promise. We can imagine uncovering from legacy code rules such as:

if not get lock and ntries > 10 then abort .
Undirected data mining that can yield assertions such as

if 5 < x < 13 then −4 ≤ y ≤ 0
from raw numeric input could bound the error of imprecise observation.
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We have applied the antimatroid path closures to totally ordered integer (or real) data sets, but
they are equally defined for all partial orders. This opens the potential of using this technique to
analyze the behavior of concurrent computer systems, or biological systems in which the expression
of phenomena can occur along possibly multiple paths. None of this is yet reality; but the potential
for greatly expanding the application of Formal Concept Analysis is here.

References

1. Gabriele Castellini. Categorical Closure Operators. Birkhauser, Boston, 2003.
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