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Abstract. There are two major formalisms that are developed around
concepts: (1) Formal Concept Analysis (FCA) by R. Wille and B. Ganter,
and (2) Description Logic (DL) that goes back to the universal termi-
nological logic by P.F. Patel-Schneider. It has been demonstrated that
FCA constructs (upper and lower derivatives, formal concepts) are ex-
pressible in DL. Present paper demonstrates how to interpret (positive)
DL concepts over concept lattices in a compatible manner.

1 Introduction

Two major formalisms developed around concepts are

– Formal Concept Analysis (FCA) by R. Wille and B. Ganter [4, 12],
– Description Logics (DL) that go back to P.F. Patel-Schneider [2].

Description Logic (DL) is a set of knowledge representing languages closely
related to modal [3] and program logics [6]. These languages can be used for de-
scription of the terminological knowledge in a structured way. They have become
a cornerstone of the W3C-endorsed Web Ontology Language (OWL) [7]. DL ba-
sic notions are concept and role terms. Concept terms correspond to formulas
of modal and program logics. An interpretation assigns sets of objects (that
are called concepts in DL) to concept terms. The most important DL notion is
knowledge base. A knowledge base is a collection of (subsumption) statements
between pairs of concept terms and pairs of role terms. In this way DL represents
that a concept is a subconcept of another one, a role is a subrole of another role.
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Formal concept analysis is an algebraic framework for data representation
and analysis. It takes an input matrix that specifies a relation between objects
and attributes. Then FCA finds corresponding ‘closed’ sets of attributes and
‘closed’ sets of objects. Every pair of corresponding ‘closed’ sets of objects and
attributes forms a formal concept3. The set of attributes in each formal concept
can be interpreted as a set of necessary and sufficient conditions for defining the
set of objects in the concept. The family of formal concepts obeys the mathe-
matical axioms defining a lattice, and is called a concept lattice.

To the best of our knowledge, there are few research on combination of Formal
Concept Analysis with Description Logic [9, 1, 8]. Roughly speaking, all these
attempts can be classified as follows:

– accelerating one formalism by another,
– emulating one formalism by another.

The dissertation [9] and paper [1] attempted to accelerate DL by variants
of a so-called attribute exploration technique that goes back to FCA. A vari-
ant suggested by [9] is called Relational Exploration. It allows determining all
‘attribute implications’ that follows from knowledge base presented in terms of
a simple description logic FLE. (This logic admits concept intersections, exis-
tential and universal restrictions.) A variant of attribute exploration proposed
by [1] can deal with a partial context and any description logic that is closed
under complement and conjunction. An algorithm developed in the cited paper
constructs a complete extension of a given partial knowledge base and at the
same time it guarantees a minimum communication with knowledge engineers.

In contrast, paper [8] has attempted to emulate DL universal restriction in
FCA by some algebraic fix-point construction and to demonstrate its utility for
analysis of relational data.

The present paper discusses two variants of a ‘combination’ of DL and FCA.
The first variant is sketched in brief since it has been discussed in full details in
a recent workshop paper [11]. This variant emulates FCA in DL by extending
language of any description logic L by upper and lower derivatives that come
from FCA. The resulting description logic is denoted by L/FCA. Paper [11] has
proved that L/FCA can be expressed in L(¬,−) – another variant of L that is
closed with respect to role complement and inverse.

A new variant of a ‘combination’ of DL and FCA emulates a particular
description logic – (positive fragment of) Attribute Language with Complements
(ALC) [10] – by algebraic operations on concept lattices. This emulation can
be considered also as a usage of concept lattices as domains for terminological
interpretations, i.e. as a conceptual semantics for ALC. Informal soundness of
this emulation is supported by a compatibility of the conceptual semantics with
the standard semantics of ALC.

The paper is organized as follows. The next section introduces basic notions
of Description Logic. Then Section 3 presents basic definitions and some facts of
Formal Concept Analysis. In Section 4 we present our proposal of a description
3 For explicit distinction with DL, we use here a combined term ‘formal concept’.



logic on concept lattices. Section 5 discuses the compatibility of the conceptual
semantics ofALC with the standard one. Topics for further research are discussed
in Conclusion.

2 Basics of Description Logics

There are many variants of description logics, but we define only some of them.

Definition 1. Syntax of every description logic is constructed from disjoint al-
phabets of concept, role, and object symbols CS, RS, and OS, respectively. The
sets of concept terms (or concepts) CT and role terms (or roles) RT are defined
by induction. Usually definition admits the following clauses.

– (Concept terms)
• the top concept > and the bottom concept ⊥ are concept terms;
• any concept symbol is a concept term;
• for any concepts X and Y their union (X tY ) and intersection (X uY )

are concept terms;
• for any concept X its complement (¬X) is a concept term;
• for any role R and any concept X the universal (∀R. X) and the exis-

tential (∃R. X) restrictions are concept terms;
– (Role terms)
• the top role ∇ and the bottom role 4 are role terms;
• any role symbol is a role term;
• for any roles R and S their union (R t S), intersection (R u S), and

composition (R ◦ S) are terms;
• for any role R its complement (¬R), inverse (R−), and transitive closure

(R+) are role terms.

Concept and role terms altogether form the set of terminological expressions.

Definition 2.

– For any concepts X and Y , any roles R and S the following expressions are
called terminological sentences: X

.
v Y , X .= Y , R

.
v S, and R

.= S. A
TBox is a set of terminological sentences.

– For any concept X, any role R, and any object symbols a and b the following
expressions are called assertional sentences: a concept assertion a : X and a
role assertion (a, b) : R. An ABox is a set of assertional sentences.

– A knowledge base is a finite set of terminological and assertional sentences.
Every knowledge base consists of an appropriate TBox and ABox.

Definition 3. Semantics of any description logic is defined in Kripke-like ter-
minological interpretations. Every terminological interpretation is a pair (D, I),
where D is a set (that is called domain) and I is a mapping (that is called
interpretation function). This function maps object symbols to elements of D,
concept symbols to subsets of D, role symbols to binary relations on D: I =



IOS ∪ ICS ∪ IRS, where IOS : OS → D, ICS : CS → 2D, and IRS : RS → 2D×D.
The unique name assumption holds for this function: I(a) 6= I(b) for all differ-
ent object symbols a and b. The interpretation function can be extended to all
terminological expressions as follows.

– (Concept semantics)
• I(>) = D and I(⊥) = ∅;
• I(X t Y )) = I(X) ∪ I(Y ) and I(X u Y ) = I(X) ∩ I(Y );
• I(¬X) = D \ I(X);
• I(∀R. X) = {s ∈ D : ∀t ∈ D(if (s, t) ∈ I(R) then t ∈ I(X))},
I(∃R. X) = {s ∈ D : ∃t ∈ D((s, t) ∈ I(R) and t ∈ I(X))};

– (Role semantics)
• I(∇) = D2 and I(4) = ∅;
• I(RtS) = I(R)∪ I(S), I(RuS) = I(R)∩ I(S), I(R ◦S) = I(R) ◦ I(S)

(righthand side ‘◦’ is composition of binary relations);
• I(¬R) = D2 \ I(R), I(R−) = (I(R))−, and I(R+) = (I(R))+

(righthand side ‘+’ is transitive closure of binary relations);
• I(R!X) = {(s, t) ∈ I(R) : s ∈ I(X)},
I(R?X) = {(s, t) ∈ I(R) : t ∈ I(X)}.

Definition 4. Semantics of sentences is defined in terminological interpreta-
tions in terms of satisfiability relation as follows:

– (D, I) |= a : X iff I(a) ∈ I(X);
– (D, I) |= X

.
v Y iff I(X) ⊆ I(Y );

– (D, I) |= X
.= Y iff I(X) = I(Y );

– (D, I) |= (a, b) : R iff (I(a), I(b)) ∈ I(R);
– (D, I) |= R

.
v S iff I(R) ⊆ I(S);

– (D, I) |= R
.= S iff I(R) = I(S).

This satisfiability relation can be extended on knowledge bases in a natural way:
(D, I) |= KBase iff (D, I) |= φ for every sentence φ ∈ KBase. In the case of
(D, I) |= KBase, the terminological interpretation (D, I) is said to be a (ter-
minological) model for the knowledge base KBase. Let us say that a knowledge
base KBase entails a sentence ψ (and write4 Kbase |= ψ) iff (D, I) |= ψ for
every model (D, I) of KBase.

Definition 5. A concept X is said to be coherent (or satisfiable) with respect to
a knowledge base KBase iff there exists a terminological model (D, I) for KBase
such that I(X) is not empty. A knowledge base KBase is said to be satisfiable
iff the top concept > is coherent with respect to KBase.

Attribute Language with Complements (ALC) [10] is a particular example
of description logic. In simple words, ALC adopts role symbols as the only role
terms, concept symbols – as elementary concept terms, and permits ‘Boolean’
constructs ‘¬’, ‘t’, ‘u’, universal and existential restrictions ‘∀’ and ‘∃’ as the
only concept constructs. The formal definition follows.
4 When KBase is empty then ‘|= ψ’ can be written instead of ‘∅ |= ψ’.



Definition 6. ALC is a fragment of DL that comprises concepts that are defined
by the following context-free grammar:

CALC ::=
CS|>|⊥|(¬CALC)|(CALC t CALC)|(CALC u CALC)|(∀RS. CALC)|(∃RS. CALC)

where metavariables CS and RS represent any concept and role symbols, respec-
tively. Semantics of ALC is defined in the standard way in accordance with Def-
inition 3.

Many description logics can be defined as extensions of ALC by concept
and/or role constructs. For example, the website [13] uses the following approach:
for any collection of concept and/or role constructs C&R, let ALC(C&R) be a
closure of ALC that admits all concept and/or role constructs in C&R.

Definition 7. A variant of DL is a description logic L with syntax that

– contains all concept and role symbols CS and RS,
– is closed under concept constructs ‘¬’, ‘t’, ‘u’, ‘∀’ and ‘∃’.

From the viewpoint of the above definition, ALC is the smallest variant5 of DL.

Definition 8. Let L be a variant of DL and C&R be a collection of concept
and/or role constructs. Then let L(C&R) be the smallest variant of DL that
includes L and is closed under all constructs in C&R.

For instance, ALC(¬,−) is an extension of ALC where any role symbol can
be negated and/or inverted.

The following definition takes into account DL variants without role con-
structs for so-called domain restriction and range restriction.

Definition 9. A concept term is said to be positive if it does not use the con-
cept complement construct. For every DL variant L the positive fragment of L
comprises all positive concept terms of L and all role terms of L. The positive
fragment of DL variant L is denoted by L+.

For example ALC+, the positive fragment of ALC, comprises concepts that are
defined by the following context-free grammar:

CALC+ ::=
CS|>|⊥|(CALC+ t CALC+)|(CALC+ u CALC+)|(∀RS. CALC+)|(∃RS. CALC+).

The following lattice-theoretic characterization of semantics of concept con-
structs ‘>’, ‘⊥’, ‘t’, ‘u’, ‘∀’, and ‘∃’ is easy to prove.

Proposition 1. Let (D, I) be a terminological interpretation and P (D) = (2D,
∅, ⊆, D, ∪, ∩) be the complete lattice of subsets of D. Then ALC+ semantics
enjoys the following properties in P (D):

5 Of course, ‘smaller’ description logics can be defined by means of stronger syntax
restrictions.



– for any concept symbol I(p) is an element of the lattice P (D);
– I(>) = supP (D) and I(⊥) = inf P (D);
– I(X t Y ) = sup(I(X), I(Y )), and I(X u Y ) = inf(I(X), I(Y ));
– I(∀R. X) = sup{S ∈ P (D) : ∀s ∈ S∀t ∈ D((s, t) ∈ I(R)⇒ t ∈ I(X))},
I(∃R. X) = sup{S ∈ P (D) : ∀s ∈ S∃t ∈ D((s, t) ∈ I(R) & t ∈ I(X))}.

3 Basics of Formal Concept Analysis

Basic Formal Concept Analysis (FCA) definitions below follow monograph [4],
but we use a little bit different notation.

Definition 10. A formal context is a triple (O,A,B) where O and A are sets
of ‘objects’ and ‘attributes’ respectively, and B ⊆ O × A is a binary relation
connecting objects and attributes. Let us say that a formal context (O,A,B) is
homogeneous6 iff O = A, i.e. the set of objects coincides with the set of attributes.
A symmetric context is a homogeneous context with symmetric binary relation7

Every terminological interpretation (D, I) and every role term R define a
formal context (D,D, I(R)). It implies that every terminological interpretation
(D, I) defines a family of homogeneous formal contexts (D,D, I(R)) indexed by
role symbols R ∈ RS or by role terms R ∈ RT .

Vise versa, there is a number of ways to define a terminological interpretation
for given formal contexts. For example, if we have a family of formal contexts
(Oj , Aj , Bj) indexed by elements of some set J , then we can adopt the set of
indexes J as the alphabet role symbols RS, a set of symbols {oj : j ∈ J} ∪ {aj :
j ∈ J} as the alphabet of concept symbols CS, and define a terminological
interpretation (D, I) as follows:

– D = ∪j∈J(Oj ∪Aj),
– I(j) = Bj ⊆ (Oj ×Aj) ⊆ D ×D for every j ∈ J ,
– I(aj) = Aj ⊆ D and I(oj) = Oj ⊆ D for every j ∈ J .

Two major algebraic operations for formal contexts are upper and lower
derivations. These operations are used in the definition of a notion of a formal
concept, its extent and intent.

Definition 11. Let (O,A,B) be a formal context.

– For every set of objects X ⊆ O its upper derivation X↑ is the following set
of attributes {t ∈ A : for every s ∈ O, if s ∈ X then (s, t) ∈ B}, i.e. the
collection of all attributes that all objects in X have simultaneously.

– For every set of attributes Y ⊆ A its lower derivation Y ↓ is the following
set of objects {s ∈ O : for every t ∈ A, if t ∈ Y then (s, t) ∈ B}, i.e. the
collection of all objects that all attributes in Y have simultaneously.

6 ‘Homogeneous context’ is our own term.
7 Recall that a binary relation B is symmetric, if (x, y) ∈ B ⇔ (y, x) ∈ B for all x

and y. ‘Symmetric context’ is also our own term.



– A formal concept is a pair (Ex, In) such that Ex ⊆ O, In ⊆ A, and Ex↑ =
In, In↓ = Ex; components Ex and In of the formal concept (Ex, In) are
called its extent and its intent respectively.

Definition 12. For every formal context K = (O,A,B)

– let FC(K) be the set of all formal concepts over K, >K be a formal concept
(O,O↑), and ⊥K be a formal concept (A↓, A);

– let �K be the following binary relation FC(K):
(Ex′, In′) �K (Ex′′, In′′) iff Ex′ ⊆ Ex′′ and/or8 In′′ ⊆ In′;

– let supK be the following operation on subsets of FC(K):
supK{(Exj , Inj) ∈ FC(K) : j ∈ J} = ((∪j∈JExj)↑↓ , ∩j∈JInj);

– let infK be the following operation on subsets of FC(K):
infK{(Exj , Inj) ∈ FC(K) : j ∈ J} = (∩j∈JExj , (∪j∈JInj)↓↑).

The following fact is a part of the Basic Theorem on Concept Lattices [4]
(Theorem 3).

Fact 1 For any formal context K an algebraic system (FC(K),�K ,>K ,⊥K ,
supK , infK) is a complete lattice.

The definition below makes sense due to the above theorem.

Definition 13. For every formal context K let the concept lattice CL(K) be a
complete lattice (FC(K),�K ,>K ,⊥K , supK , infK).

The next fact is a corollary of the Basic Theorem on Concept Lattices.

Fact 2 Every complete lattice is isomorphic to some concept lattice.

For example, for any set D the complete lattice P (D) = (2D, ∅,⊆, D,∪,∩) is
isomorphic to the concept lattice of a homogeneous context K 6=D = (D,D, 6=). A
particular isomorphism is a function ι : 2D → FC(K 6=D) that maps every subset
S ⊆ D to a formal concept (S, S). Let us remark that for every S ⊆ D, ι(S) =
(S, S), i.e. permutation of ι(S). – Let us refer this observation by complement
property of the powerset concept lattice.

4 Towards Description Logics on Concept Lattices

One can observe that ‘concepts’ in Description Logic and in Formal Concept
Analysis are of different nature. The former are just subsets of domains in ter-
minological interpretations, the later are compatible pairs of object and attribute
sets in formal contexts.

We see two opportunities to combine these two formalizations of ‘concepts’.
The first opportunity is ‘integration’ of basic constructions of Formal Concept
Analysis to a framework of Description Logic. The second opportunity is to
‘interpret’ concept terms by formal concepts.
8 These two conditions are equivalent each other.



The first opportunity has been examined in a workshop paper [11]. But there
was criticism after publication of [11], that the paper has adopted a pure set-
theoretic approach to concepts. As a consequence of this, a lattice-theoretic
structure (that is very special advantage of Formal Concept Analysis) has been
lost. Hence it is important to investigate the second opportunity of combination
of FCA and DL and develop (in a compatible manner) a description logic directly
on concept lattices. Below we present our proposal of a particular variant of
description logic on concept lattices.

Syntax of description logics on concept lattices is the same as in Definition 1.
Semantics of description logics on concept lattices comes from lattice-theoretic
characterization of semantics of ‘positive’ concept constructs that is given in
Proposition 1 and the complement property of the powerset concept lattice. Con-
ceptual interpretation is a formal context provided by an interpretation function.

Definition 14. Conceptual interpretation is a four-tuple (O,A,B, I) where (O,
A, B) is a context, and I is an interpretation function. This function maps object
symbols to elements of O, attribute symbols to elements of A, concept symbols
to formal concepts in FC(O,A,B), role symbols to binary relations on O ∪ A:
I = IOS ∪ IAS ∪ ICS ∪ IRS, where IOS : OS → O, IAS : AS → A, ICS : CS →
CL(O,A,B), and IRS : RS → 2(O×O)∪(A×A). The unique name assumption
holds for this function: I(o′) 6= I(o′′) and I(a′) 6= I(a′′) for different object and
attribute symbols o′, o′′, a′, and a′′. A conceptual interpretation (O,A,B, I) is
said to be homogeneous (symmetric), if (O,A,B) is a homogeneous (symmetric
respectively) context.

Definition 15. Semantics of any description logic on concept lattices is de-
fined by means of conceptual interpretations. Let (O,A,B, I) be a conceptual
interpretation, K be a formal context (O,A,B), and CL(K) be a concept lat-
tice (FC(K),�K ,>K , ⊥K , supK , infK). The interpretation function I can be
extended to all role terms in a terminological interpretation ((O ∪ A), I) in the
standard manner in lines with the definition 3 so that I(R) is a binary relation
on (O∪A) for every role term R. The interpretation function I can be extended
to all concept terms as follows.

– I(>) = supK FC(K) and I(⊥) = infK FC(K);
– I(X t Y ) = supK(I(X), I(Y )), and I(X u Y ) = infK(I(X), I(Y ));
– Let K be a symmetric context and I(X) = (Ex, In) ∈ CL(K).

Then I(¬X) = (In,Ex).
– Let I(X) = (Ex′, In′) ∈ CL(K). Then
• I(∀R. X) = supK{(Ex, In) ∈ CL(K) :
∀o ∈ Ex ∀a ∈ In ∀o′ ∈ O ∃a′ ∈ A

((o, o′) ∈ I(R)⇒ o′ ∈ Ex′, (a, a′) ∈ I(R), and a′ ∈ In′)},
• I(∃R. X) = supK{(Ex, In) ∈ CL(K) :
∀o ∈ Ex ∀a ∈ In ∃o′ ∈ O ∀a′ ∈ A

((a, a′) ∈ I(R)⇒ (o, o′) ∈ I(R), o′ ∈ Ex′, and a′ ∈ In′)}.



Proposition 2.

1. For any conceptual interpretation (O,A,B, I), for every positive concept
term X, semantics I(X) is an element of FC(O,A,B).

2. For any symmetric conceptual interpretation (D,D,B, I), for every concept
term X, semantics I(X) is an element of FC(D,D,B).

Proof. By induction on structure of a (positive) concept. It is trivial in all cases
but exploits (a) completeness of concept lattices (i.e. sup always exists), and
(b) that permutation of extent and intent of a formal concept is also a formal
context in every symmetric context. �

It follows from the above proposition that in general the positive fragment
ALC+ is ‘the smallest’ description logic on concept lattices, while ALC is ‘the
smallest’ description logic on symmetric concept lattices.

5 ALC on a powerset concept lattice

Let (D, I) be a terminological interpretation. We remarked in section 3 (after
fact 2), that the powerset lattice P (D) = (2D,⊆, ∅, D,∪,∩) is isomorphic to the
concept lattice of a homogeneous formal context K 6=D = (D,D, 6=). A particular
isomorphism is a function ι : 2D → FC(K 6=D) that maps every subset S ⊆ D
to a formal concept (S, S). This isomorphism defines conceptual interpretation
(D,D, 6=, (ιI)) where (ιI) equals to I on all object symbols and on all role sym-
bols, but on concept symbols it is ‘induced’ by ι: (ιI)(p) = (I(p), I(p)) for
every concept symbol p. The following proposition demonstrates that semantics
of ALC in terminological interpretation (D, I) and in conceptual interpretation
CL(D,D, 6=, (ιI)) are closely connected.

Proposition 3. For every ALC concept term Z and every terminological inter-
pretation (D, I), the following equality holds: (ιI)(Z) = ι(I(Z)).

Proof. Since ι(I(Z)) = (I(Z), I(Z)), hence we have to prove that (ιI)(Z) =
(I(Z), I(Z)). The proof proceeds by induction on structure of a concept term.

Basis of induction: Z is ⊥, >, or a concept symbol. For concept symbols proof
follows from the definition of (ιI). For ⊥ and > proofs are similar to each other,
so let us present just one of them: (ιI)(>) = supK 6=

D
{(S, S) : S ⊆ D} = (D, ∅).

Induction hypothesis: let us assume that (ιI)(Z) = (I(Z), I(Z)) for every
positive concept term that has at most k ≥ 0 concept constructs ¬, t, u, ∀, ∃.

Induction step: Z is (1) (¬X), (2) (X t Y ), (3) (X u Y ), (4) (∀R. X), or (5)
(∃R. X), where concept terms X and Y contain at most k constructs ¬, t, u,
∀, and ∃. Let us remark that proofs for cases (2) and (3) are very similar to each
other, as well as proofs for cases (4) and (5). So we present proofs for cases (1),
(2) and (5) only.

Case Z ≡ (¬X): Let (ιI)(X) = (Ex, In). Then (ιI)(Z) = (In,Ex). By
induction hypothesis, In = I(X) and Ex = I(X). But I(Z) = I(X) and I(Z) =
I(X) = I(X). Hence (ιI)(Z) = (In,Ex) = (I(X), I(X)) = (I(Z), I(Z).



Case Z ≡ (X t Y ): (ιI)(Z) = supK 6=
D

((ιI)(X) , (ιI)(Y )) = (by induction

hypothesis) = supK 6=
D

((I(X), I(X) ) , (I(Y ), I(Y ) )) = ((I(X)∪I(Y )) , (I(X)∩
I(Y ) )) = ((I(X) ∪ I(Y )) , (I(X) ∪ I(Y ) )) = (I(Z), I(Z)).

Case Z ≡ (∃R. X): Let (ιI)(X) = (Ex′, In′). Then (ιI)(Z) =
= supK 6=

D
{(Ex, In) ∈ CL(K 6=D) : ∀o ∈ Ex ∀a ∈ In ∃o′ ∈ D ∀a′ ∈ D

((a, a′) ∈ I(R)⇒ (o, o′) ∈ I(R), o′ ∈ Ex′, and a′ ∈ In′)} =
(by induction hypothesis and

the complement property of the powerset concept lattice)
= supK 6=

D
{(S, S) : S ⊆ D and ∀o ∈ S ∀a ∈ S ∃o′ ∈ D ∀a′ ∈ D

((a, a′) ∈ I(R)⇒ (o, o′) ∈ I(R), o′ ∈ I(X), and a′ ∈ I(X) )}.
Let us denote the righthandside set of formal concepts by SX . Since I(∃R.X) =
I(∀R.(¬X)), then (I(∃R.X), I(∃R.X)) = (I(∃R.X), I(∀R.(¬X))) ∈ SX . Hence
(ιI)(Z) �K 6=

D
(I(∃R.X), I(∀R.(¬X))). At the same time it follows from propo-

sition 1, that I(∃R.X) is the greatest subset S of D such that ∀o ∈ S ∃o′ ∈
D ((o, o′) ∈ I(R) & o′ ∈ I(X)). Hence (ιI)(Z) = (I(∃R.X), I(∃R.X)) =
(I(Z), I(Z)). �

Informally speaking, the above proposition states that semantics of ALC on
concept lattices that is defined in Definition 15 is compatible with the standard
Kripke-like set-theoretic semantics of ALC that is given in Definition 3. Due to
this interpretation of the proposition, we would like to refer it as the compati-
bility property, and consider as a strong evidence for a naturalness of Definition
15.

Definition 16. A concept term X is said to be a tautology, if I(X) = D for
every terminological interpretation (D, I). A concept term X is said to be a
conceptual tautology, if I(X) = >(O,A,B) for every conceptual interpretation
(O,A,B, I). Conceptual tautology problem for a particular description logic is
an algorithmic problem to decide for an input concept term (in the given logic)
whether it is a conceptual tautology.

It follows from the compatibility property that every conceptual tautology is a
tautology. But we do not know yet whether the inverse implication holds. We
also do not know whether the conceptual tautology problem for ALC or the
positive fragment of ALC is decidable.

6 Conclusion

The present paper presents a variant of a description logic on concept lattices.
It expands a research on an emulation-based combination of Description Logic
and Formal Concept Analysis that has been started by a workshop paper [11].
The cited paper has discussed how to emulate basic constructs of Formal Con-
cept Analysis in terms of Description Logic. It has been demonstrated in [11]
that FCA can be ‘integrated’ by Description Logic at least from a viewpoint of
‘abstract’ expressive power. More formally it can be explained as follows.



Assume that S is a finite collection of set-theoretic (in)equalities written in
terms of uninterpreted symbols for individual objects and attributes, for sets of
objects and attributes, for formal contexts and concepts, with aid of set-theoretic
operations, upper and lower derivative, intent and extent operations. Then S can
be translated to a description logic knowledge base KBase(S) so that KBase(S)
is satisfiable iff there S is ‘consistent’, i.e. there exists a formal context that
realizes all (in)equalities of S simultaneously. Since the satisfiability problem is
decidable for many description logics, the realization problem for collections of
(in)equalities of this kind can be solved (as a rule) automatically (i.e. by some
algorithm).

The present paper defines a particular variant of description logic on concept
lattices that emulates major Description Logic constructs in terms of operations
on concept lattices. The paper demonstrates that one of the basic description log-
ics ALC with the standard set-theoretic semantics can be naturally interpreted
on powerset concept lattices. Hence the proposed approach to Description Logic
on concept lattices can be considered compatible with the standard Kripke se-
mantics.

Application of ALC/FCA and FC-ALC to the knowledge representation and
processing will be illustrated with examples and discussed in the full version of
publication. Algorithmic and reasoning issues9 for description logics extended
by upper and lower derivatives, for ALC on concept lattices, interpretation of
ALC on concept lattices in terms of standard description logics are topics for
further research.

Acknowledgement. We would like to thank Prof. Karl Erich Wolff, Prof.
Bernhard Ganter, and Prof. Franz Baader for discussions at early stage of this
research. We are especially obliged to anonymous review of our paper who found
out a mistake in Proposition 2, and suggested a correction. We follow this cor-
rection in the present version.

References

1. Baader F., Ganter B., Sattler U., and Sertkaya B. Completing Description Logic
Knowledge Bases using Formal Concept Analysis. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-07). AAAI Press,
2007.

2. Baader F., D. Calvanese, D. Nardi D.McGuinness, and P. Patel-Schneider, editors.
The Description Logic Handbook: Theory,Implementation and Applications. Cam-
bridge University Press, 2003.

3. Bull R.A., Segerberg K. Basic Modal Logic. Handbook of Philosophical Logic, v.II,
Reidel Publishing Company, 1984 (1-st ed.), Kluwer Academic Publishers, 1994
(2-nd ed.), p.1-88.

4. Ganter B., Wille R. Formal Concept Analysis. Mathematical Foundations. Springer
Verlag, 1996.

5. Hustadt U, Schmidt R.A., and Georgieva L. A Survey of decidable first-order frag-
ments and description logics. J. Relational Methods in Computer Science, Vol. 1,
2004, pp. 251-276.

9 like decidability, complexity, axiomatization, and model checking



6. Kozen D., Tiuryn J. Logics of Programs. Handbook of Theoretical Computer Sci-
ence, v.B, Elsevier and The MIT Press, 1990, p.789-840.

7. OWL Web Ontology Language Guide: W3C Recommendation 10 February 2004.
W3C (2004-02-10).

8. Rouane A.H., Huchard M., Napoli A., Valtchev P. A proposal for combining formal
concept analysis and description logics for mining relational data. Lecture Notes in
Artificial Intelligence, Vol. 4390, 2007, pp. 51-65.

9. Rudolph S. Relational Exploration - Combining Description Logics and Formal
Concept Analysis for Knowledge Specification. PhD Dissertation, Universitatsver-
lag Karlsruhe, 2006.

10. Schmidt-Schauß M., and Smolka G. Attributive concept descriptions with comple-
ments. J. Artificial Intelligence, Vol. 48, 1991, pp. 1-26.

11. Shilov N.V. Garanina N.O., Anureev I.S. Combining Two Formalism for Reasoning
about Concepts. Manuscript. Has been accepted for presentation at 20th Interna-
tional Workshop on Description Logics (DL-2007), Brixen-Bressanone, Italy 8-10
June 2007.

12. Wolff K.E. A first course in Formal Concept Analysis. F. Faulbaum StatSoft’93,
Gustav Fischer Verlag, 1994, p.429438.

13. Zolin E. Complexity of reasoning in Description Logics. Web-resource available at
URL http://www.cs.man.ac.uk/∼ezolin/logic/complexity.html.


