
CLANN: Concept Lattice-based Artificial
Neural Network for supervised classification

Norbert Tsopzé1,2, Engelbert Mephu Nguifo2, and Gilbert Tindo1

1 Université de Yaoundé I, Faculté des Sciences,
Département d’Informatique BP 812

Yaoundé - Cameroun
2 CRIL - CNRS, IUT de Lens,

SP 16, Rue de l’Université, 62307 Lens Cedex, France

Abstract. Multi-layer neural networks have been successfully applied
in a wide range of supervised and unsupervised learning applications. As
they often produce incomprehensible models they are not widely used
in data mining applications. To avoid such limitations, comprehensive
models have been previously introduced making use of an apriori knowl-
edge to build the network architecture. They permit to neural network
methods to deserve a place in the tool boxes of data mining specialists.
However, as the apriori knowledge is not always available for every new
dataset, we hereby propose a novel approach that generates a concept
semi-lattice from initial dataset, to directly build the neural network ar-
chitecture. Carried out experiments showed the soundness and efficiency
of our approach on various UCI.

1 Introduction

Neural network (also called connexionnist network) technique is one of the most
used techniques in machine learning. Feed-forward neural networks have been
applied to solve many problems: handwritten caracters recognition, molecular
biology, etc. There exists a plethora of architectures and algorithms about neu-
ral networks. But it is very difficult to choose those which are the best for a given
task [7]. Finding the architecture of the network to be used for solving a given
problem is a very complicated task. In fact there is no existing exact method
for defining the number of layers, the number of neurons in each layer and the
connections between neurons [7]. Define the topology of neural network consists
of answering certain questions: how many hidden layers? how many neurons per
layer? which connection policy? how to define each unit threshold? Moreover,
only the decision aspect of the neural model (which consists in using the model
in the decision task) is used and no importance is given to its descriptive aspect
(how decision is taken). Besides, the intelligibility of learned model is fundamen-
tal in datamining [3]; the absence of an explanation capability limits its use [1].
Black box neural network is usually not comprehensible. In [1] authors enhance
the transparency of the network in the decompositional extraction rules process.

2

The topology becomes important for the intelligibility of the neural model and
in the process of extracting rules from neural network model.

When tackling a supervised classification problem, the widely used approach
(ad’hoc) to define a feed-forward network topology consists in using three layers:
input, hidden, output. The number of neurons of the input layer is the number of
variables or attributes. The number of neurons of the output layer is the number
of classes. The number of neurons in the hidden layer is calculated as the mean
of the number of input units and the output units. In the literature, different
approaches have been reported to build the network topology. These research
works could be divided into two groups:

1. Search an optimal network to minimize the number of units in the hidden
layers [11]. This technique brings out a constructive solution to the problem
without an apriori knowledge. Its main limitation is the intelligibility of the
resulting network, the network is a black box i.e. no semantic is associated
to each node.

2. Use a set of apriori knowledge on the problem domain and build neural
network from this knowledge [13]. The main advantage here is that the result
is a comprehensive network i.e. each node in the network represents one
variable in the rules set and each connexion between two nodes represents
one dependence between variables. But it is not possible to use it when the
apriori knowledge is not available.

The aim of this paper is to introduce CLANN, an approach based on concept
lattices which goes beyond the limitations of the existing approaches. Concept
lattices is an ordered graph composed by formal concepts. Given an input matrix
(also called formal context) specifying a set of objects and their corresponding
properties, a formal concept is a pair containing both a subset of objects (X)
and a subset of properties (Y), such that Y is the set of all properties shared
by the objects of X, and X is the set of all objects that share the properties of
Y. In fact concept lattices has been extremely used in supervised classification
[10]. The use of the concept lattices [5] in classification proceeds in two phases:
the first phase called the training phase consists in selecting interesting concepts
among the set of concepts or in extracting rules. Selected concepts and/or rules
are then used to take decision about new objects in the second phase [10].

CLANN uses directly the Hasse diagram of the built semi-lattice to define
the architecture of the neural network. Within data mining domain, concepts
and connexions defined in this diagram are generally used to extract rules into
the formal context. Here concepts and connexions are used to define neurons and
their connexions. We believe that this approach can be helpful when the apriori
knowledge is not available.

Many constraints (or heuristics) presented in the literature can be used to
prune the concept lattices in order to reduce the number of generated concepts.
The CLANN approach has two main advantages: first it finds a comprehensive
model when the knowledge is not available, secondly it is possible to justify
the built neural network topology. Another advantage of this approach is the

3

possibility to easily extract rules from the network. Carrying out experimenta-
tions of this method using benchmarks from UCI repository shows interesting
results in terms of precision, and also that CLANN can be better than many
comprehensive models such as C4.5 and IB1.

The rest of this paper is organized as follows: the next section presents some
notions used in Formal Concept Analysis (FCA). The third section presents
the CLANN approach. Experimentation and obtained results are described in
section four. Related works about extracting rules in trained neural networks
end this paper.

2 PRELIMINARIES

2.1 FCA basic notions

This section presents some important notions used in FCA. More notions about
FCA could be found in [5].

A formal context is a triplet C = (O, A, I) where O is a non empty fi-
nite set of objects, A a non empty finite set of attributes (or items) and I
is a binary relation between elements of O and elements of A (formally I ⊆
{(o, a) /o ∈ O and a ∈ A}). A context C can be represented as binary matrix M
(where Mi,j = 1 ⇐⇒ (o, a) ∈ I, 0 otherwise) or transactions database (a row
o is the collection of attributes which are verified by the object o). A(resp. O)
is also called set of items (resp. transactions). Table 1 is an example of con-
text. We denote in the next sections the set {a, b, c, d} (resp. {1, 2, 3, 4}) as abcd
(resp.1234). The objects in table 1 could be divided into two parts: a set of ex-
amples O+ (for instance O+ = {1, 2, 3, 4, 5, 6} for the context table 1) and the
set of counterexamples O− (for instance O− = {7, 8, 9, 10} for the context table
1).

Table 1. Example of context presented as boolean matrix; two-class (+ and -) data
indicated by class column.

Objects a b c d e f class

1 1 1 1 1 1 +
2 1 1 1 1 +
3 1 1 1 1 +
4 1 1 1 +
5 1 1 1 1 +
6 1 1 1 +
7 1 1 1 -
8 1 1 1 -
9 1 1 1 -
10 1 1 1 -

4

Let f and g be two applications defined as follows: f : 2O −→ 2A, such
that f(X) = X ′ = {a ∈ A / ∀o ∈ X , (o, a) ∈ A} , X ⊆ G and g : 2A −→ 2O,
such that g(Y) = Y ′ = {o ∈ O / ∀a ∈ Y , (o, a) ∈ I} , Y ⊆ A; a pair (X, Y) is
called concept iff X = Y ′ and Y = X ′. X (resp. Y) is called extension (resp.
intention) of the concept, an intention of concept is also called description.

Let (X1, Y1) and (X2, Y2) be two concepts, and ≤ a relation defined on a
entire set of concepts extracted from the context. (X1, Y1) ≤ (X2, Y2) if X1 ⊆
X2 (Y1 ⊇ Y2). (X1, Y1) is called successor of (X2, Y2) and (X2, Y2) predecessor
of (X1, Y1) if there is no concepts between them. The relation ≤ defines an order
relation on the entire set L of concepts [5]; the set of all concepts L with the
order relation ≤ define the concept lattices.

A lattice is a partially ordered set (or poset) in which every pair of elements
has a unique supremum (the elements’ least upper bound; called their join) and
an infimum (greatest lower bound; called their meet). A semilattice is a partially
ordered set (poset) closed under one of two binary operations, either supremum
(join) or infimum (meet). Hence we speak of either a join-semilattice or a meet-
semilattice. If an ordered set is both a meet- and join-semilattice, it is also a
lattice.

2.2 Supervised classification

In a supervised classification process, the system works into two phases [10]:
training (learning) phase and testing (evaluation) phase. The dataset is sepa-
rated into two subsets, the first subset is used to build and train the model
during the training phase while the second is used to evaluate the model during
the testing phase. For instance, the dataset of table 1 could be divided into two
subsets {1, 2, 5, 6, 9, 10} as training set and {3, 4, 7, 8} as test set. In the litera-
ture, different techniques were reported for supervised classification problem [7]:
instance-based learning, decision trees, artificial neural network, support vec-
tor machine, bayesian network, . . . We are here concerned with artificial neural
network.

2.3 Feed-forward neural networks

Neural networks is a set of interconnected neurons (also called units), which
exchange information with one to another and communicate with the external
environment. Different type of neural networks were reported in the literature
[2]: the feed forward neural networks (perceptron, multilayer perceptron, ...) and
the reverse feed forward neural networks (for instance the ”Adaptive resonance
theory” networks). More notions about artificial neural networks can be found
in [2]. A feed forward neural network is composed of different layers:

1. The input layer is composed of neurons which receive information from out-
side.

2. The internal layer is composed of units which make intermediate treatment;
it could be composed of many layers.

5

3. The output layer is formed by units which make decision.

A neuron is a process unit which has an internal memory, communicates with the
external environment. Its state is defined as a function of its inputs; this function
is called activation function [2]. The connexions between neurons define the
architecture of the network. The neuron can also be called unit, it is active if its
internal state value is 1 and inactive if this value is 0. After defining the network
topology, the connexion weights between units are trained by backpropagation
[12]. The connexion weights between two units a and b define the effect of the
neuron a on the neuron b.

3 CLANN APPROACH

We describe in this section the different steps of our new approach as shown by
figure 1. The process of finding the architecture of neural networks are three-
folds: (1) build a join semi-lattice of formal concepts by applying constraints
to select relevant concepts; (2) translate the join semi-lattice into a topology of
the neural network, and set the initial connections weights; (3) train the neural
network.

Learning

semi - lattice

Neural network topology

Training
data

Translation

and setting

Neural classifier

Training

dataHeuristics

Fig. 1. Neural network topology definition.

3.1 Semi-lattice construction

There are many algorithms [8] which can be used to construct concept lattices;
few of them build the Hasse diagram. Lattice could be processed using top-down
or bottom-up techniques. In our case, a levelwise approach presents advantage to
successively generate concepts of the join semi-lattice and the Hasse diagram. For
this reason, we choose to implement the Bordat algorithm [8] which is suitable
here. Concepts included in the lattice are only those which satisfy the defined
constraints.

6

Algorithm 1 Modified Bordat algorithm
Require: Binary context K
Ensure: concept lattices (concepts extracted from K) and the Hasse diagram of the

order relation between concepts.
1: Init the list L of the concepts (G, {}) (L ← (G, {}))
2: repeat
3: for concept c ∈ L such that his successors are not yet been calculated do
4: Calculate the successors c′ of c.
5: if the specified constraint is verified by c′ then
6: add c′ in L as successor of c if c′ does not exit in L else connect c′ as

successor of c.
7: end if
8: end for
9: until no concept is added in L.

10: derive the neural network architecture as described in section 3.3 from the concept
semi-lattice.

3.2 Constraints

In order to reduce the size of lattice and then the time complexity, we present a
few constraints regularly used to select concepts during the learning process.

Frequency of concept. A concept is frequent if it contains at least α (also
called minsupp is specified by the user) objects. The support s of a concept
(X, Y) is the ratio between the cardinality of the set X and the total number of
objects (|O|) (s = 100×|X|

|O| %). Frequency is an anti-monotone constraint which
helps in pruning the lattice and reduce it computational complexity. Support
could be seen as the minimal number of objects that the intention of one concept
must verified before being taken in the semi-lattice. The figure 3.2 presents
a semi-lattice built from the class ”+” examples of the table 1 (a) and the
equivalent topology of the neural network (b); the specified minsupp value is
30%.

 {},{123456}

{e},{12356} {c},{2346} {bd},{1345}

{ce},{236} {ae},{2356} {bde},{135}

Output

a f b c d e

Internal

Input

(a)
(b)

Fig. 2. (a) Join semi-lattice with minsup=30% and (b) network topology.

7

Validity of concept. Many techniques are used to reduce the size of lattice.
The following notions are used in order to the select concepts: a concept (X,Y) is
complete if Y recognize all examples in dataset. A concept (X, Y) is consistent
if Y throws back all counterexamples (formally, the set of consistent concept is
{(X, Y)/Y ∩O− = {}} where O = O+∪O−). To reduce the restriction imposed
by these two constrains, others notions are used:

1. Validity. A concept (X, Y) is valid if its description recognizes most ex-
amples; a valid concept is a frequent concept on the set of examples O+;
formally the set of valid concepts is defined as {(X, Y) / |X+| ≥ α} where
0 < α ≤ |O+|.

2. Quasi-consistency. A concept (X, Y) is quasi-consistent is if it is valid
and its extension contains few counterexamples. Formally the set of quasi-
consistent concepts is defined as {(X, Y) / |X+| ≥ α and |X−| ≤ β}.

Height of semi-lattice. The level of a concept c is defined as the minimal
number of connexions from the supremum concept to c. The height of the lattice
is the greatest value of the level of concepts. Using levelwise approach to gener-
ate the join semi-lattice, a given constraint can be set to stop concept generation
at a fixed level. The height of the lattice could be performed as the depth with-
out considering the cardinality of concepts extension (or intention). In fact at
each level, concept extensions (or intentions) do not have the same cardinality.
The number of layers of the semi-lattice is a parameter corresponding to the
maximum level (height) of the semi-lattice.

3.3 From Semi-Lattice to Neural network

Mapping Hasse diagram of lattice into neural networks is described as following:

– Each lattice concept becomes one unit (or node) in the neural network; a
node is thus seen as a group of objects which verify a given set of attributes.

– A layer of n units (n is the number of attributes) is created as the input
layer of the system; each neuron of this layer is connected to any neuron of
the first hidden layer (concepts in the semi-lattice, with no successor) inside
internal layers.

– The supremum concept of lattice is translated into the neural unit repre-
senting the output of the network; this concept is the one whose extension
contains all the training set of objects.

– Other concepts are rewritten as hidden units (or hidden layers). The units
which do not have successor constitute the first hidden layer.

– There is a connection between two neurons if and only if there is a link
between their associated concepts in the join semi-lattice.

3.4 Connection weights and threshold

Connection weights are initialized as follows:

8

– Connection between two nodes, that derived directly from the semi-lattice
is initially weighted to 1. This implies that when the node (or neuron) is
active, all its predecessors are active too.

– Connection between an input layer unit and hidden layer unit is weighted as
follows: 1 if the attribute associated by the input layer node appears in the
intention Y of concept associated to the hidden layer node, and -1 otherwise.

– Threshold is set to zero for all nodes (or units).

These connection weights are modified during the training process, using the
learning algorithm (which is the backpropagation algorithm [2] in our case).
The activation function is also a parameter of CLANN approach. We choose to
implement the sigmoid function among those reported in the literature [2].

4 EXPERIMENTATIONS AND RESULTS

This section presents the experimental comparisons conducted with our method.
CLANN has been implemented in C++, and run on a personal computer Pen-
tium IV (1,8Ghz, 1Go RAM and 80Go Hard Disk) in the Linux fedora core
environment. Table 2 describes the two-class datasets with contain nominal at-
tributes, taken from UCI repository 3. We use the Weka binarization procedure
”NominalToBinary” to convert multivalued attribute to binary one.

Dataset #Nominal attributes #Binary attributes training test data-size

Spect 23 23 80 187 267
Chess end-of-game 36 38 10-CV 10-CV 3196

Tic-tac-toe 9 27 10-CV 10-CV 958
Monsk1 7 15 124 432 556
Monsk2 7 15 168 432 600
Monsk3 7 15 122 432 554

Table 2. Experimented Datasets; ’10-CV’ indicates that training and test data are
defined by 10-fold cross validation technique

Neural network obtained from the Hasse diagram of the join semi-lattice are
trained with backpropagation algorithm using 500 iterations. Activation func-
tion used in the experiments is the sigmoid function (f(x) = 1

1+exp(x)). The ex-
perimentations were done using 10-fold cross validation for datasets with none
already defined test set as Chess and Tic-tac-toe. For other datasets, our model
is built and trained using provided training dataset, and evaluate on test set.
CLANN results are depicted by three tables : 3, 4 and 5. These tables present
the accuracy rate which is the percentage of correctly classified test objects.
Table 3 shows the results obtained on one dataset (SPECT) with the different
constraints and various parameter values. Considering the frequency or validity
3 available on the web site http://www.ics.uci.edu/AI/ML/MLDBRepository.html

9

constraint, when the minimum support (δ or α) decreases, the accuracy rate
increases. This is certainly due to the fact that the number of hidden nodes also
increases when the minimum support decreases. With a high number of hidden
nodes, the neural network model produces good perfomance. Considering the
quasi-consistency constraint, when its minimum value decreases, the accuracy
rate slightly decreases. The effect of this constraint is not so significant in our
case. Considering the semi-lattice height constraint, the accuracy rate slightly
increases until level 2, and then significantly decreases. Thus it is not necessary
to build more than two levels from of the semi-lattice. We choose to use this
constraint (setting the default value to 1) in order to compare CLANN to other
machine learning classifiers.

Table 3. Results obtained from SPECT database using different constraints.

Constraints Generalization Constraints Generalization

α=10, β=10 93,74% δ=20 93,59%
α=20, β=10 92,60% δ=30 93,59%
α=30, β=10 91,30% δ=40 90,65%
α=40, β=10 90,4% δ=50 89,84%
α=10, β=50 93,90% height=1 93,60%
α=20, β=50 93,90% height=2 93,90%
α=30, β=50 92,40% height=3 92,40%
α=40, β=50 88,40% height=4 90,65%

Table 4 presents accuracy rates of CLANN and four other classifiers taken
from the Weka datamining tool 4 among which two decision tree method (C4.5
and ID3), one instance based learning method (IB1), and one neural network
method (MLP). MLP is built with the ad-hoc method as described in the section
1 and trained using gradient backpropagation algorithm [12]. Considering the
accuracy rate average over the datasets used, CLANN is never the last classifier
when ranking them on the accuracy rate. It is always better than at least one
other classifier. MLP outperforms all the other classifier in terms of accuracy
rates, however it is not a comprehensible model for datamining. CLANN results
are comparable to decision-tree ones, and CLANN outperforms IB1. Considering
the SPECT dataset, CLANN significantly outperform all those classifiers.

Table 5 presents comparative results between CLANN and other constructive
neural networks models [11] among which Tiling, Upstart, Tower, Distal. Those
constructive neural networks are still non compresensible model for data mining.
Our comparison is only to analyse the soundness of our approach. The three
first algorithms construct the neural model by successive addition of neurons
until the network has a maximum number (specified by the user) of layers or the
desired accuracy is obtained. The parameters used are described as following: the
maximum number of layer is 10 and the desired accuracy is 100% (default value

4 available on the web site http://www.cs.waikato.ac.nz/ml/weka/

10

Table 4. Accuracy rate of CLANN versus other standard models

Dataset CLANN MLP C4.5 ID3 IB1

Spect 93,90% 65,77% 66,7% 65,24% 66,31%
Chess 93,60 % 99,30% 98,30% 97,80% 89,90%

Monsk1 82,70% 100% 100% 92,59% 89,35%
Monsk2 78,91% 100% 70,37% 86,57% 66,89%
Monsk3 83,61% 93,52% 100% 89,81% 81,63%

Tic-tac-toe 83,57% 96,86% 93,21% 93,84% 81,63%

Average 86,05% 92,56% 88,10% 87,64% 79,29%

used in their implementation), added unit is trained by Pocket Perceptron with
racket modification [11]. Distal uses one hidden layer and clusters the training
set into disjoint groups and each group becomes one neural unit of the hidden
layer. Distal is similar to our approach. They differ by the fact that: Distal uses
only one hidden layer, Distal uses disjoint group while the node extension in
CLANN may overlap and furthermore each node in CLANN model is clearly
characterized by an intention.

Table 5. Classification rate of CLANN versus other constructive neural network models

Dataset CLANN Tiling Upstart Tower Distal

Spect 93,90% 89,60% 83,29% 71,40% 93,90%
Chess 93,60% 93,90% 90,65 92,40% 89,74%

Monsk1 82,70% 83,13% 77,78% 85,85% 90,23%
Monsk2 78,91% 77,13% 87,30% 66,90% 89,10%
Monsk3 83,61% 74,91% 87,22% 82,08% 86,46%

Tic-tac-toe 83,57% 98,40% 99,89% 100% 95,85%

Average 86,05% 86,17% 87,67% 83,11% 90,88%

From table 5, considering the accuracy rate average, Distal outperforms all
the classifiers, CLANN outperforms Tower and is comparable to Tiling and Up-
start. As shown in the previous comparison, CLANN is better on the SPECT
dataset. CLANN outperforms Distal on CHESS dataset. In addition of these re-
sults, CLANN built a comprehensive model and is more suitable for data mining
than the other constructive approaches. In fact concept lattices can be useful in
rules extraction process [6]. The other constructive neural network model as well
as MLP are seen as black box by the user, and their interpretation remains a
difficult task. Providing explanation when dealing with datamining applications
brings up an added-value [1, 3], which will be easily obtained with CLANN than
other methods.

KBANN [13] is not compared to CLANN because the apriori knowledge
about the previous dataset (table 2) are not available.

11

5 RELATED WORKS

To the best of our knowledge, KBANN [13] is the only algorithm able to build
comprehensive neural network. KBANN derives from the knowledge provided
by the user as set of rules, the network topology. Unlike KBANN, CLANN does
not need apriori knowledge, its model is based on semi-lattice built directly from
data.

Research works about rules extraction from neural networks presented two
main algorithms for this task. These algorithms [1] execute on neural model
according to the assumptions which stipulate that neurons are maximally active
(activation near 1 or 0) and that training does not significantly alter the meaning
of the neuron, implicite rules present in the model after mapping Hasse diagram
into neural network will not significantly change after training. These algorithms
are:

1. Subset. Its principle [1] consists of clustering internal links of hidden and
output units, into subsets of links, and then using only the subsets of links
whose the sum of weights is greater than the unit threshold. Extracted rules
are in written in the form ”If...then...”

2. MofN. It assumes that individual links are not important and weights form
small number of clusters. It clusters the connections for each hidden and
output neuron and delete those clusters which can not affect the unit result.
It finds the average weight for each remaining cluster and retrain the bias
of each cluster. Finally a single rule for each hidden and output neuron X
is derived. The rules are in the form ”If N of the M antecedents are active
then X is active”.

Each of these algorithms could be applied to extract rules in CLANN model.
As the architecture of CLANN model is based on semi-lattice, extracting

rules using concept lattices approaches [9] could also be applied. Each node of
CLANN model contains a closed set and the connexion weight between two
nodes could help to weight the extracted rules.

6 CONCLUSION

This work proposes an approach to define a constructive comprehensive neural
network without an apriori knowledge. Experiments conducted has shown the
soundness and efficiency of our approach.

CLANN is limited to the binary data set. Binarization techniques could be
applied on dataset such that CLANN is able to handle nominal, discrete and
continuous values. Various approaches are proposed in the literature to deal with
many-valued context directly when generating concept lattice. Further research
will focus on those approaches. Many constraints are also presented but it is
not easy to define the default values. Extensive experimental study is currently
ongoing to find out the default values. Computational complexity of CLANN is
similar to those of Weka MLP, this complexity will be further explicitly explored.

12

CLANN is also limited to two-class supervised classification problem. Ongoing
research is dealing with multi-class design, constraint criteria setting and rules
extraction from CLANN topology.

Acknowledgment

This research is partially supported by the French Embassy service SCAC (Ser-
vice de la Coopération et d’Action Culturelle) in Yaounde. Thanks to the anony-
mous reviewers for their helpful comments.

References

1. R. Andrews, J. Diederich, A. B. Tickle. Survey and critique of techniques for ex-
tracting rules from trained artificial neural networks. Knowledge-Based Systems
8(6): 373-389, 1995.

2. Y. Benani. Apprentissage Connexionniste, Editions Herms Science, Paris 2006.
3. M.W. Craven and J.W. Shavlik. Using Neural Networks for Data Mining. Future

Generation Computer Systems, 13(2-3): 211-229, 1997.
4. S. Gallant. Perceptron based learning algorithms. IEEE Transactions Neural Net-

works, 1:179-191, 1990.
5. B. Ganter and R.Wille. Formal Concepts Analysis: Mathematical foundations.

Springer - Verlag,1999.
6. G. Gasmi, S. Ben Yahia, E. Mephu Nguifo, Y. Slimani. A new informative generic

base of association rules. Advances in Knowledge Discovery and Data Mining,
3518:81-90,2005.

7. J. Han, M. Hamber. Datamining: Concepts and Techniques. Morgan Kauffman Pub-
lishers, London, 2001.

8. S. Kuznetsov, S. Obiedkov. Comparing Performance of Algorithms for Generating
Concept Lattices, JETAI 14(2/3):189-216,2002.

9. J.L Guigues and Vincent Duquenne, ’Familles minimales d’implications informatives
resultant d’un tableau de donnes binaires, Mathmatiques et sciences sociales, 95:5-18
1986.

10. E. Mephu Nguifo, P. Njiwoua. Treillis de concepts et classification supervisée. Tech-
niques et Sciences Informatiques, 24:449-488, 2005.

11. R. Parekh, J. Yang, V. Honavar. Constructive Neural-Network Learning Algo-
rithms for Pattern Classification. IEEE Transactions on Neural Networks, 11(2):
436-451, 2000.

12. D.E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-
propagating errors. Nature,323: 318-362, 1986.

13. J.W. Shavlik, G. Towell. Kbann: Knowledge based articial neural networks, Arti-
ficial Intelligence, 70:119-165, 1994.

