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Abstract. In this work we want to discuss an algorithm for drawing
line diagrams of lattices based on force directed placement (FDP). This
widely used technique in graph drawing introduces forces acting on nodes
and lines. A balanced state of the system will result in a diagram fulfill-
ing the desired properties due to the underlying physical model. In our
framework the aim was to maximize the conflict distance. In contrast
to existing programs our approach provides attribute additive diagrams
since forces act on

V
-irreducibles only. Another relevant aspect is a care-

ful initialization that helps to minimize the number of edge crossings.

1 Motivation

We observe a growing demand on visualizations of concept lattices for repre-
senting knowledge in FCA. Several programs [1, 7, 15] use diagrams for explor-
ing and analyzing database structures. Unfortunately, the automatic layout of
the diagrams remains a difficult task. In order to gain the acceptance of the
user, who is in general not an expert, the drawings should be easily readable.
However, nobody knows exactly what that means since it is obviously not pos-
sible to mathematize human esthetic sensations. Nevertheless, there exist some
algorithms for drawing lattices with the computer [1, 9, 19] based on different ap-
proaches. In this work we want to present such an attempt combining the FCA
view on diagram layouting with tools developed in the theory of graph drawing.

2 Preliminaries

2.1 How to Draw a Diagram

The graph drawing community developed a variety of methods to classify layout
algorithms [5]. First we have the drawing conventions declaring general con-
straints of the resulting drawings. In our attempt this includes the following:

1. line diagrams, a common principle for drawing lattices automatically,
2. upward diagrams, sometimes also called Hasse-diagram, a common method

in order to avoid arrows on diagram lines,
3. attribute additive diagrams, a principle introduced more generally in [11].
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While the first two conventions are canonical in lattice drawing algorithms, the
third is not. Also layer diagrams [9] or hybrid diagrams [2] are employed. The
first alternative seems less applicable for our purpose since in general it does
not emphasize the grid structure of a lattice. The second however offers some
advantages in case of non-distributive lattices1. Nevertheless it still adheres to
the layer convention.

The second technique to create algorithms is the employment of esthetic criteria.
They are mostly given by optimization tasks whose compliance is supposed to
increase the diagrams quality, i.e. readability. Examples include

– minimize the number of slopes,
– maximize the smallest angle between incident lines,
– put the nodes onto an orthogonal grid.

There is little empirical analysis about the importance of that criteria. Two
studies were made [16, 17] but only for general lattices. They highlighted the
criterion of minimizing the number of edge crossings. Therefore we tried to em-
phasize it in our algorithm. The second criterion taken into our consideration is
maximizing the conflict distance [12], i.e. the least distance between a node and
a non-incident line.

Finally, diagram algorithms are distinguished in classes characterizing the way
how the actual layout process is done. The layer method (see [5] for an overview)
is fairly prominent [2] as well as force directed methods (introduced in [8], see [5]
for an overview) implemented in [19] or a combination of both [9]. We decided
to implement a force directed method since it is a natural way to maximize the
conflict distance. Unlike other attempts, we keep the diagram attribute additive,
thereby better satisfying the esthetic criterion of displaying symmetries.

2.2 Diagrams of Lattices

We consider diagrams in the usual way (see for instance [14] for a formal defi-
nition). Instead of the lattice V = (V,≤) itself we draw only its graph (V,≺)
(where ≺ denotes the upward neighbourhood relation in V). A line diagram
(briefly diagram) is an injective mapping pos fulfilling the upward drawing con-
vention that assigns a point pos(v) in the Euclidian plane (called node) to each
lattice element v. An element e = (v, w) of ≺ is mapped to a straight line segment
between pos(v) and pos(w), for convenience we write pos(e) for the image.

Next we want to remind the already mentioned attribute additivity [11, 18]. Since
we consider lattices instead of concept lattices in this work, we sloppily define:
A diagram of a lattice V is attribute additive if the

∧
-irreducibles m ∈ M(V)

are assigned to vectors vec(m) and all elements v are mapped to the sum of the
vectors of

∧
-irreducibles greater or equal than them, i.e.

pos(v) =
∑
m≥v

vec(m).

1 That can be easily observed at the lattice Mn. Hybrid diagrams do not push the
0-element of the lattice disproportional downwards.
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Finally we introduce the conflict distance due to [12]:

Definition 1 Let G = (V, E) be a simple graph and pos(G) a diagram of it.
Let v ∈ V be a vertex and e ∈ E be a non-incident line w.r.t. v. The node-
line-distance between pos(v) and pos(e) is the least Euclidian distance between
pos(v) and any point w ∈ pos(e). The conflict distance of pos(G) is the smallest
of all node-line-distances in pos(G).

2.3 Left-Relations on Lattices

Left-relations give a possibility to characterize planar lattices and to describe
plane diagrams of them [20–22]. They are closely related to conjugate orders [6].
Intuitively, a left-relation on a diagram describes, whether a lattice element v is
left or right of another element w incomparable to v. In contrary, comparable
elements are considered to be above or below each other. We do not need a formal
definiton here but only one result given in [21] which explains the heuristics we
use in Section 3.1, namely the first planarity condition (FPC). In Figure 1 an
intuitive explanation for the necessity of the FPC is given.

Definition 2 [21] A conjugate relation2 R on a lattice V fulfills the first pla-
narity condition (FPC) if the implication mi R mk R mj =⇒ mk > (mi ∧ mj)
holds for all

∧
-irreducibles mi, mk, mj ∈ M(V).

Proposition 1 [21] Let L be a left-relation on a lattice V, then the following
equivalence holds:

L satisfies the FPC ⇐⇒ V is planar.

0V

mi ∧ mj

mi

mj

mk

0V

mi ∧ mj

mj

mi

mk

Fig. 1. When considering a diagram of a lattice, the necessity of the FPC is obvious
for its planarity: If mi L mk L mj or mj L mk L mi holds then also mk > (mi ∧ mj).
Otherwise every chain of diagram edges from mk to the bottom element of the lattice
intersects with a chain of edges from either mi or mj to mi ∧ mj .

2 That is a relation satisfying R ∪ R−1=‖, where ‖ denotes the incomparability rela-
tion in V.
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3 The FDP-Algorithm

Force Directed Placement (FDP) is a widely used technique for drawing diagrams
of graphs [8, 10, 13] and is also applied for the layout of lattice diagrams [19, 9].
Nodes and sometimes also edges are considered as physical bodies which interact
by a set of repulsive and attractive forces. If the system is in a balanced state,
i.e. a local minimum of the appropriate energies, then the resulting diagram
will hopefully be nicely drawn w.r.t. the properties that determine the forces. In
general an FDP-algorithm consists of three parts:

– choice of an adequate model,
– determination of an initial state,
– seeking for a balanced state using an optimization algorithm.

In many cases attention is rather put on the optimization process, for instance
with simulated annealing or genetic algorithms. The models are kept simple
and the initial state is rather arbitrary. The two layout styles provided by [19]
distribute the lattice elements on layers. This may work well if either a global
minimum of the included energies is found or if several minima are found and
ranked by a quality function acting on the respective diagrams.

Our approach tries to include a more sophisticated initialization. This is done by
applying a heuristics to minimize the number κ of edge crossings in the diagram.
The final optimization step is not allowed to shift any node out of its surrounding
cell. Therefore, κ does not change as well as the left-relation of the diagram.

3.1 Initialization

As mentioned already this is the crucial step of our approach. Since the diagram
is determined just by the coordinates of the

∧
-irreducibles we only have to assign

vectors to them. We distinguish between the coatoms and other
∧

-irreducible
elements. The first are distributed on a parable

y = −0.09x2 − 1.75

which was derived heuristically from the position of the
∧

-irreducibles in suit-
able diagrams of the boolean lattices B4 and B5. In case of an even number of
coatoms they obtain the coordinates given by the x-component ±0.9,±2.7, . . .,
if otherwise an odd number occurs, we assign 0,±1.8,±3.6, . . .. All other vectors
are obtained by

pos(mi) = ∆i +
∑

mj>mi

pos(mj),

i.e. the mean of the vectors of
∧

-irreducibles mj situated above mi. If the
∧

-
irreducible elements above mi form a chain then the respective coordinates will
lay on a line in the initial diagram. The symbol ∆i represents a small shift which
is necessary when two

∧
-irreducibles share the same upper neighbour.3

3 Otherwise they would obtain the same diagram vector.



5

Finally we have to clarify in which way the nodes of the
∧

-irreducibles are sorted.
We mentioned already that we want to minimize the number of edge crossings in
the diagram. Since there exists no efficient analytical algorithm for that purpose
we introduce a heuristical model called planarity enhancer.

The underlying idea is the following: Similar concepts, i.e. concepts sharing sim-
ilar intents should be positioned more closely than non-similar ones. This is mo-
tivated by the FPC, see Proposition 1. It refers to the fact that, in a plane
diagram, a

∧
-irreducible n should be drawn “inbetween” m1 and m2 only if it is

greater than the infimum m1∧m2, i.e. if m1∧n ≥ m1∧m2 or m2∧n ≥ m1∧m2.
Hence pairs (m, n) of elements with a large infimum, i.e. with a small cardinal-
ity of M(m ∧ n)4 shall be drawn close together. In order not to favor those∧

-irreducible elements situated near the bottom of the lattice we only count∧
-irreducibles not included in M(m ∨ n). Based on these ideas, we define the

sup-inf-distance between two incomparable
∧

-irreducibles m and n as follows:

dSI(m, n) := |M(m ∧ n) \ M(m ∨ n)| − 1.

This allows us to create a complete weighted graph ΓSI where M(V) is the
vertex set and each edge between m and n obtains the weight dSI(m, n). This
graph can be considered as a 2-dimensional physical body with rings instead
of nodes and springs instead of edges. The spring force is due to the standard
physical model given as F = −k · x, where k is the spring constant and x the
displacement of the idle state. The springs are thought to be in rest position if
their length is equal to the weight in the appropriate graph. This results in a
system energy

ESI =
∑

mi,mj∈M(V)

(|pos(mi) − pos(mj)| − dSI(mi, mj))2.

We find the force acting on a vector pos(m) by differentiating the last formula
to each

∧
-irreducible m yielding

FSI(pos(m)) = −2 ·
∑
n∈M

|pos(m) − pos(n)| − dSI(m, n)
|pos(m) − pos(n)| · (pos(m) − pos(n)).

After reaching an equilibrium state of this system by applying a robust minimizer
we do a linear regression of the emerged scatter plot, followed by an orthogonal
projection of the nodes onto the obtained line. The sorting of the nodes repre-
senting the attributes finally gives their sorting relation [20]. This is a relation
indicating in which order the

∧
-irreducibles with common upper neighbour shall

be sorted from left to right.

4 With M(v) we denote the set of
V

-irreducibles greater or equal than v.
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3.2 The Model

Implemented Forces

Since we want to draw attribute additive diagrams the energies and forces do
not act on the node of an element v ∈ V itself but on the vectors vec(m) of the∧

-irreducibles m ∈ M(v). Therefore, the systems energy is the sum of the ones
inherent in the vectors of the elements of M(V). Equivalently, the resulting force
is a vector of forces on vectors on

∧
-irreducibles (see Figure 2). This yields

E =
∑

m∈M

E(vec(mi)) and F = −∇E = (F (vec(m1)), . . . F (vec(m0)))T .

� �

� �

�w0

w1 w2

w3 w4 w5

w6vec(m1)
vec(m2) vec(m3)

Fig. 2. The force acting on the node w2 affects the nodes w0, w1, w4 and w5 too. Since
the latter three contain only one of the

V
-irreducibles m2 or m3, the resulting force is

half the original.

The aim of the model is to maximize the conflict distance. It is therefore based
on a repulsive force Frep. Since we want to avoid the occurence of any conflict,
the following definition on the graph (V,≺) of a lattice is obvious:

Frep = −∇Erep, Erep =
∑
v∈V

∑
e∈≺,v/∈e

1
d(pos(v), pos(e))

.

Thereby d(pos(v), pos(e)) is the distance between a node and an edge introduced
in Definition 1. A node positioned on a non-incident line causes Erep to be
infinite, hence this never results in a stable state.

To prevent the diagram from blowing up we need an attractive force Fatt which
minimizes the edge length. This is done due to the physical model of a spring
supplying the formulas

Fatt = −∇Eatt, Eatt =
∑
e∈≺

|pos(e)|2.

Finally, we employ a gravitative force Fgrav to ensure the upward-drawing-
constraint. It acts on vectors ni = vec(mi) of

∧
-irreducibles only. Since this
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force is supposed to be dependent on the angle ϕ(n) between the vector of an∧
-irreducible and a horizontal line, we define as follows:

Fgrav(ni) = −dEgrav

dni
,

dEgrav(ni)
dϕ(ni)

=
sin2 ϕ(ni) − sin2 ϕ0

sin2 ϕ(ni)
·



1 , ϕ(ni) ∈ [0, ϕ0]
0 , ϕ(ni) ∈ [ϕ0, π − ϕ0]

−1 , ϕ(ni) ∈ [π − ϕ0, π]

This formula seems to be quite clumsy. However, the underlying idea is to push
“nearly horizontal” vectors stronger downwards than the more slanted ones (see
Figure 3). The gravitative force may not act if the vectors are “vertical enough”,
i.e. if their angle is between ϕ0 and π − ϕ0, which is chosen by (see Figure 3 for
an explanation)

ϕ0 :=
π

|M(B(K))| + 1
.

� �

ϕ(n1) ϕ(n2) ϕ(n3)

n1

n2

n3

Fgrav(n1) Fgrav(n3)

ϕ0 1V

n1

n2

n3

n4

Fig. 3. left: The diagonal lines represent ϕ0 and π − ϕ0. The nodes n1 and n3 are
pushed down by the gravitative force, but not n2.
right: If all attribute concepts are coatoms then their vectors can be assigned, s.t. the
angles between two of them and to the horizontal dashed line are all equal to ϕ0.

Integrating by ϕ0 in consideration of the reasonable boundary condition given
by ϕ(ni) ∈ {ϕ0, π−ϕ0} =⇒ E(ni) = 0 to make the energy function continuous
in (0, π) yields

E(ni) =
{

ϕ(ni) + cotϕ(ni) sin2 ϕ0 + E0 , 0 ≤ ϕ(ni) ≤ ϕ0

−ϕ(ni) − cotϕ(ni) sin2 ϕ0 + E1 , π − ϕ0 ≤ ϕ(ni) ≤ π

with E0 = E1 − π = −ϕ0 − sin ϕ0 cosϕ0.

The total energy and the total force respectively are obtained as a linear com-
bination of its components, i.e.

E = r · Erep + a · Eatt + g · Egrav,

F = r · Frep + a · Fatt + g · Fgrav.
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Calculation of the Forces

The calculation of the repulsive force demands the observation of various cases.
Firstly we have to distinguish how a node and a non-incident line are related to
each other in the plane. We discover the three possibilities given in Figure 4.

�

w

w2

w1 �

w

w2

w1

�
w

w2

w1

Fig. 4. The three cases of node-edge-relationship.

Secondly we must take into consideration which of the sets M(v), M(v1) and
M(v2) contain the

∧
-irreducible m. The alternatives are depicted in Figure 5.

�

�
pos(v)

pos(v2)

pos(v1)
F3 �

��
pos(v)

pos(v2)

pos(v1) F4

�
�

pos(v)
pos(v2)

pos(v1)

F5

�

�

�
pos(v)

pos(v2)

pos(v1)
F7

Fig. 5. Four possibilities of forces acting between a node and a non-incident line de-
pending on the containment of a

V
-irreducible m in the sets M(v), M(v1) and M(v2)

of the respective lattice elements (shaded).

After some calculation we find the following table determining the repulsive
force for each case. Due to abbreviation reasons we write n instead of pos(m)
for attribute vectors, w instead of pos(v) for nodes and f instead of pos(e) for
vectors of diagram lines. The symbol ew denotes the unit vector of a node w,
furthermore n+(z) is the vector arising from the vector z by turning by π/2 in
positive direction of rotation and l either +1 in case of the node w being situated
left of the line f and −1 otherwise.

F3 F4 F5 F7

case 1 e(w1−w) e(w1−w) e(w−w1) 0

case 2 0 e(w2−w) e(w−w2) e(w−w1)

case 3 −
q

(w2−w)2−|h|2
|f |2 · n+(f)·l

|f | −n+(f)·l
|f |

n+(f)·l
|f |

q
(w1−w)2−|h|2

|f |2 · n+(f)·l
|f |

Table 1. Summary of all occuring forces dd(w,f)
dni

for the different cases.
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The appropriate repulsive force acting on an attribute vector ni is given by

Frep(ni) = −dErep(ni)
dni

= −
∑
v∈V

∑
e∈≺,v/∈e

d
(

1
d(w,f)

)
dni

=
∑
v∈V

∑
e∈≺,v/∈e

1
d(w, f)2

· dd(w, f)
dni

.

For the attractive force we gain the formula

Fatt(ni) = −
∑
e∈≺

d|f |2
dni

= 2 ·
∑

v1v2 ∈≺,
mi ∈ v1\v2

f,

and finally for the gravitative force

Fgrav(ni) = −dEgrav(ni)
dni

= n+(ni)· sin
2 φ(ni) − sin2 φ0

y(ni)2
·
{

1 , 0 < φ(ni) < φ0

−1 , φ0 < φ(ni) < π
.

3.3 The Minimizing Algorithm

This step requires robustness rather than speed. We definitely want to avoid a
node stepping out of its cell in order to keep the shape of the initialized diagram.
Running time is no issue, the calculation of the local minimum is done in less
than a second in most cases. We chose the well known conjugate gradient method
as optimization algorithm (see for instance [4]).

4 Results

Instead of displaying some arbitrary chosen diagrams we just give the drawings of
all lattices with four

∧
-irreducible elements. The calculation of all diagrams took

less than 10 seconds. We also produced the respective diagrams of lattices with
five

∧
-irreducible elements. The process of determining all 13596 lattices and

drawing their diagrams took 25 minutes on an ordinary PC, which is an average
of about 0.1 seconds per diagram. Unfortunately they are not publishable due
to space limitations.
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5 Conclusion

We presented an algorithm for drawing lattice diagrams designed in three steps.
The initialization serves for implementing some esthetic criteria whose compli-
ance is desired for the resulting drawing. In our particular approach we chose
minimization of the number of edge crossings as such an criterion. The sec-
ond step, namely the choice of a model, aims to maximize the conflict distance,
thereby considering particular drawing conventions. Here we chose the attribute
additivity. Finally, the optimization step seeks for a minimal energy state (i.e.
a maximal conflict distance) while keeping the properties of the initial state
and the model. Ino ur algorithm the underlying left-relation and the attribute
additivity are preserved.

We think that our approach is fairly convenient for drawing lattice diagrams. The
framework of an initialization employing esthetic criteria and an FDP-algorithm
including drawing conventions gives a clear image of the desired properties of
the resulting diagram. This modularity seems to be the main advantage of this
approach.

As already mentioned, diagrams with few edge crossings are favoured by users.
Therefore a drawing algorithm should emphasize that issue. Although our ap-
proach contains a very simple initialization heuristics only, all planar lattices
with four

∧
-irreducibles are indeed drawn without edge crossings.

Layer assignment is a favoured way of lattice drawing algorithms. Even though
we think that layer diagrams are satisfactory and user preferred for many (in
particular distributive) lattices, one should not restrict to this convention in
general.

Despite these advantages of our approach we do not think that the results are
superior to those of other algorithms. In the following we want to give some
possibilities that could improve the diagrams quality:

• The involvement of additional or different constraints like the visualization
of chains (by chain decomposition) or the hybrid convention could result in
more symmetrical diagrams.

• The initialization step can be improved by including techniques given in [20–
22] to improve the quality of layouts of planar lattices. Also, we recently try
to find strategies to characterize and draw “nearly planar” lattices as well.

• It may be useful to produce several diagrams that can be compared by some
set of quality functions (proposed for instance in [3]).
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tierte Einführung. de Gruyter Verlag, 1991.

5. G. DiBattista, P. Eades, R. Tamassia, I. G. Tollis, Graph Drawing. Prentice Hall,
1999.

6. B. Dushnik, E.W. Miller: Partially Ordered Sets. Amer. J. Math. 63, 1941, pp.
600-610.

7. J. Ducrou, P. Eklund, Combining Spatial and Lattice-Based Information Land-
scapes. Proc. of ICFCA05, LNAI 3403, pp. 64-78, 2005.

8. P. Eades: A Heuristic for Graph Drawing. Congressus Numerantium 42, pp. 149-
160, 1984.

9. R. Freese, Online Java Lattice Building Application.
http://maarten.janssenweb.net/jalaba/JaLaBA.pl

10. T. Fruchterman, E. Reingold, Graph Drawing by Force Directed Placement. Soft-
ware - Practice and Experience 21, no.11, pp. 1129-1164, 1991.

11. B. Ganter, R. Wille: Formal Concept Analysis. Springer, 1999.
12. B. Ganter: Conflict Avoidance in Order Diagrams. preprint, TU Dresden, 2003.
13. S. Kamada, T. Kawai, An Algorithm for Drawing General Undirected Graphs. In-

formation Processing Letters 31 (1989), pp. 7-15, 1989.
14. D. Kelly, I. Rival: Planar Lattices. Can. J. Math. Vol. 27, No. 3, pp. 636-665, 1975.
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