

Atomicity and Normalization

Andy Carver and Terry Halpin

Neumont University, Utah, USA.
e-mail: {andy, terry}@neumont.edu

Abstract: A common aim of data modeling approaches is to produce schemas
whose instantiations are always redundancy-free. This is especially useful when
the implementation target is a relational database. This paper contrasts two very
different approaches to attain a redundancy-free relational schema. The Object-
Role Modeling (ORM) approach emphasizes capturing semantics first in terms
of atomic (elementary or existential) fact types, followed by synthesis of fact
types into relation schemes. Normalization by decomposition instead focuses on
“nonloss decomposition” to various, and progressively more refined, “normal
forms”. Nonloss decomposition of a relation requires decomposition into small-
er relations that, upon natural join, yield the exact original population. Nonloss
decomposition of a table scheme (or relation variable) requires that the decom-
position of all possible populations of the relation scheme is reversible in this
way. In this paper we show that the dependency requirement for “all possible
populations” is too restrictive for definitions of multivalued and join dependen-
cies over relation schemes. By exploiting modeling heuristics underlying ORM,
we offer better definitions of these data dependencies, and of “nonloss decom-
position”, thus enabling these concepts to be addressed at a truly semantic level.

1 Introduction

In relational database design, being able to achieve a fully normalized schema is gen-
erally considered desirable, mainly because relations are then guaranteed to be free of
redundancy, thus simplifying the process of maintaining consistency as the database
is updated. The acceptance of that value-premise is in fact the starting point of the
current paper. The question which this paper addresses is not, whether we need a pro-
cedure for producing normalized relation schemes, but rather, which procedure is both
effective and most appropriate for achieving this desired result1.

The question does not have an obvious answer: indeed, various approaches are
recommended. Conceptual data modeling approaches such as Entity-Relationship
Modeling (ER) and Object-Role Modeling (ORM) use a two phase process: concep-
tualization, in which information is first portrayed in terms of conceptual schemas
suitable for communication with domain experts [22], and then deconceptualization
where these structures are mapped into relational schemas.

1 While some situations may require denormalization for performance reasons, these are best
handled by starting with a normalized schema and then adapting it as needed, applying con-
straints to ensure controlled redundancy [e.g.,13, pp. 642-647].

Proceedings of EMMSAD 2008 41

In contrast, the normalization approach to database design ignores conceptualiza-
tion, instead representing information directly in terms of relational database struc-
tures, such as relation schemes (i.e. relation variables) and various dependencies. This
paper’s treatment of normalization focuses on normalization by decomposition, ignor-
ing normalization by synthesis2. Normalization by decomposition basically follows a
process of achieving progressively higher levels of normalization (called “normal
forms”) through “nonloss decomposition” of given relational table schemes. Just how
the original tables became “given” in the first place, the procedure does not say.

The ER approach captures data in terms of entity attributes and relationships be-
tween entities, and then applies a mapping procedure to transform these structures in-
to a relational database schema [e.g., 2]. The ORM approach captures information in
terms of atomic fact types, and then applies an algorithm such as Rmap to map these
fact types and associated constraints into a relational schema [13, 18]. ORM is a
prime example of the fact-oriented modeling approach, which uses the fact type (rela-
tionship type) as its sole data structure. Features modeled as attributes in ER (e.g.,
Person.birthdate) are modeled in ORM as relationships (e.g., Person was born on
Date). Other examples of fact-orientation include Natural language Information Anal-
ysis Method (NIAM) [23] and the Predicator Set Model (PSM) [21]. Overviews of
ORM may be found in [14, 15], and a detailed coverage in [13].

Nonloss decomposition of a relation requires decomposition into smaller relations
that, upon natural join, yield the exact original population. Nonloss decomposition of
a table scheme requires that the decomposition of all possible populations of the rela-
tion scheme is reversible in this way. In this paper we show that the dependency re-
quirement for “all possible populations” is too restrictive for definitions of multival-
ued and join dependencies over relation schemes. Unlike ORM’s conceptual-schema-
design-and-relational-mapping procedure, the traditional normalization procedure nei-
ther seeks, nor invokes the concept of, “atomic” fact types, and this is the source of its
problem. By exploiting the fact-oriented nature and modeling heuristics of ORM, we
offer better, more accurate definitions of these data dependencies, and of “nonloss de-
composition”, thus enabling these concepts to be addressed at a truly semantic level.

Section 2 reviews the traditional notions of nonloss decomposition and data de-
pendency in normalization theory. Section 3 illustrates the failure of the accepted
definitions of multivalued dependency and 4th normal form. Section 4 solves these
problems by defining a semantic notion of nonloss decomposition, and applies this
notion to define semantic versions of multivalued and join dependencies that over-
come the defects in the commonly accepted notions of 4th and 5th normal form. Sec-
tion 5 summarizes the main contributions and lists references.

2 Normalization by synthesis assumes as input the set of all attributes and functional dependen-
cies, and provides an algorithm to group the attributes into relation schemes. As such input is
typically unavailable in practice, the synthesis technique is mainly of academic interest and has
been largely ignored by practitioners. Its main transforms, however, have analogous mapping
transforms in ORM (e.g., all FDs are determined by semantic uniqueness constraints).

42 Proceedings of EMMSAD 2008

2 The Traditional Version of the Normalization Procedure

As mentioned above, the traditional version of the normalization procedure comprises
a process of achieving progressively higher levels of normalization (called “normal
forms”) through “nonloss decomposition” of given relational table schemes. In ma-
thematics, the term “relation” means a set of ordered n-tuples. In relational databases
[3], tuples are ordered by name (by pairing value entries with their attribute name).
By the Principle of Extensionality, sets are determined by their membership, and
hence are fixed (unchanging). So in relational databases a relation is basically a table
population (fixed set of tuples). In contrast, a relation scheme is a table structure or
table variable, whose population may vary at different times. A relation scheme is
sometimes referred to as a relation schema [6] or “relvar” [5]. We now explain what
is meant by “nonloss decomposition”.

2.1 The traditional definition of “nonloss decomposition”

The notion of “decomposition” involved here means, the breaking up of a table
scheme, through relational projection, into smaller schemes, the union of whose head-
ings includes all the attributes of the original scheme, and whose headings are usually
overlapping, so that natural joins might be performed on the smaller, resulting
schemes. The notion of “nonloss” involved here means: any facts recorded in (a tuple
in) the original table may still be retrieved, and therefore no information (or in other
words, no question-answering ability) has been lost by doing the decomposition.

This is not to say that there is any worry that tuples will be lost from the original
table: on the contrary, all the original tuples will definitely be retrieved in (what we
might call) any “recomposition” through natural join. The concern is rather that some
scheme-decompositions result in spurious (i.e. extra, non-original) tuples occurring in
the relation that results from the natural join; and this inability to reproduce exactly
the original table-population is said to compromise our question-answering ability, or
as it’s usually said, “information has been lost”. After all, the population resulting
from the natural join might just as well have been the result of decomposition-and-
recomposition performed on a different starting population. Thus, the traditional defi-
nition of “nonloss” (or “lossless”) decomposition could be stated as, a decomposition
of the table-scheme such that it is guaranteed that, for any population of the scheme,
the decomposition will be reversible, that is, a natural join on the relations resulting
from the decomposition would produce the same, exact, original population as was
decomposed [5, p. 353; 17, pp. 374ff.].

What we need then, it is alleged, is a way to predict what table-scheme decomposi-
tions will be “nonloss” according to the above definition. And this question gets its
traditional answer from the theory of data dependencies.

Proceedings of EMMSAD 2008 43

2.2 Data dependencies (as traditionally defined)

Normalization theory defines various population-tuple-patterns, called “data depend-
encies”, which guarantee the feasibility of this sort of “nonloss decomposition”. The
original dependency, which Codd defined in 1971 [4], was “functional dependency”
(FD). Later, Fagin defined “multivalued dependency” (MVD) [7], and at about the
same time, others defined the more general “join dependency” (JD) [1]. If we can de-
termine that every possible population of a given relation scheme has one of these da-
ta dependencies, and that it is a “nontrivial” dependency and not enforced by a key-
constraint on the relation scheme, then (according to the traditional normalization
theory) we can perform on this relation scheme a “nonloss decomposition”, and we
should do so, in order to approach the desired goal of a normalized relational schema.

As an example of a decomposition based on a nontrivial MVD, consider Fig. 1,
where the intended semantics is “Person (identified by Surname) plays Sport (identi-
fied by SportName) and speaks Language (identified by LanguageName)”.

Surname Sport Language
Halpin judo English
Halpin karatedo English
Halpin judo Japanese
Halpin karatedo Japanese
Carver judo English

Fig. 1. A relation with a nontrivial MVD between Surname and Sport/Language

If we decompose this relation (i.e., population) by doing a relational projection on
{Surname, Sport} and one on {Surname, Language}, we get the relations in Fig. 2.
Performing a natural join on these relations reproduces exactly the relation of Fig. 1.

Surname Sport
Halpin judo
Halpin karatedo
Carver judo

Surname Language

Halpin English
Halpin Japanese
Carver English

Fig. 2. Relations from decomposing Fig. 1’s on {Surname, Sport} and {Surname, Language}

While that relation is thus nonloss-decomposable into two smaller relations, some
relations cannot be so decomposed into two relations, but can be so decomposed into
some larger number of relations (e.g., 3) [1]. This more general case of decomposabil-
ity is called a (nontrivial) “join dependency”. An MVD is a special case of a JD, and
an FD is a special case of an MVD.

44 Proceedings of EMMSAD 2008

2.3 Distinguishing scheme-dependency and population-dependency

As Date has emphasized [5, p. 65], “it is an unfortunate fact that much of the literature
uses the term relation when what it really means is a relation variable (as well as
when it means a relation per se—i.e., a relation value). Historically, however, this
practice has certainly led to some confusion.... most of the current database literature
still fails in this respect”. Indeed, it may be said that even Codd [4, pp. 34-35, 62-63]
and Fagin [8, p. 266; 9, p. 534] seem rather guilty of this; Fagin assumed (rather than
argued) that all that was needed, in order to make the population-based definitions of
“FD” and “MVD” relevant to table schemes as found in a real database, was to (spec-
ify, as usual, the relation’s heading, and then) claim the relation may be “time-
varying” (i.e. a time-varying set of tuples). Codd also defined schemes in this way.

Date is more careful in his thinking here, in defining a table scheme as really a re-
lation-variable (a.k.a. relvar), of a particular relation-type. And this added level of in-
direction opens up scope for more attention to the relation’s heading, and in particular
to the meaning of that heading, which is in fact a predicate [5, pp. 65-67, 129]. By
contrast, Codd’s and Fagin’s treatments of dependencies were mathematically pristine
yet included only cursory consideration, if any, of the table scheme’s semantics.

One importance of this relation-vs.-relvar distinction for the current discussion is
that it clarifies our question: We want to know, not the meaning and importance of
some generic thing called a “data dependency”, but rather, we want to know what
characteristic(s) of a table scheme – or, if (but only if) it be found relevant, of “every
possible population” of a table scheme – allows us to pronounce it normalized, or not.
Also, it clarifies that what traditional normalization theory as pioneered by Codd, Fa-
gin, et al, has defined as “data dependencies”, are tuple-patterns, in relations (i.e. ta-
ble populations), not in relvars (i.e. table schemes). This leaves it an open question,
whether the connection by which scheme-dependencies have been defined in terms of
population-dependencies is really valid (viz., that in order for the scheme to have the
dependency in question, every possible population of the scheme must have the corre-
sponding relation-dependency: “corresponding” here means, the dependencies at both
levels must be of the same class: FD, MVD, or JD). But as just suggested, what we ul-
timately need is to be able to detect which schemes may be nonloss decomposed.

3 Failure of the Traditional Normalization Procedure

And that, as it turns out, is where this version of the normalization procedure fails.
The failure of this approach to defining “scheme-dependency” can be very easily il-
lustrated for MVDs. An analogous but more general illustration would apply to JDs.

3.1 Illustrating the failure of the definitions of ‘MVD’ and (thus) ‘4NF’

Let us reconsider the relation of Fig. 1. Suppose that for whatever reason, we delete
from this relation the particular tuple listed fourth in Fig. 1, leaving the population
shown in Fig. 3.

Proceedings of EMMSAD 2008 45

Surname Sport Language
Halpin judo English
Halpin karatedo English
Halpin judo Japanese
Carver judo English

Fig. 3. A smaller version (i.e. fewer tuples) of the relation of Fig. 1

Given our earlier interpretation of this scheme, “Person plays Sport and speaks
Language”, there is still fact-redundancy in the population, even after removal of this
tuple (e.g., the fact that Halpin plays judo is stored twice). However, once this tuple
has been removed, the remaining population is lacking that particular tuple-data-
pattern which is the criterion for presence of a (nontrivial) MVD. There being no non-
trivial MVDs in this population, and if we accept this as one “possible population” of
this relation scheme (which pragmatically it clearly is), then it follows that there is a
possible population of this table scheme lacking any nontrivial MVD, and thus, the
table scheme is in Fourth Normal Form (4NF) despite this fact-redundancy.

This perhaps surprising result follows from Fagin’s “constructive” characterization
of multivalued dependencies, which stipulated that if certain tuples are present in a re-
lation that satisfies an MVD, then certain other tuples must appear also. According to
Fagin [8], given a relation R(X, Y, Z) where X, Y, and Z are attribute sets, the MVD X
�� Y holds if and only if, whenever (x, y1, z1) and (x, y2, z2) are tuples of R then so
are (x, y2, z1) and (x, y1, z2). For further discussion, see Fagin & Vardi [10].

Since the whole purpose of defining MVDs and 4NF was to avoid fact-
redundancy, the traditional definitions of scheme-MVD and (thus) of 4NF have failed
to identify correctly the phenomenon causing the problem. If someone suggested the
table in Fig. 3 for the design of a database, we would want some way of checking
whether the design was sensible, but normalization theory fails to help. That also
brings into question the validity of the traditional criterion of “nonloss decomposi-
tion”, since when interpreted conjunctively (as here) the relation scheme populated in
Fig. 3 clearly can be semantically decomposed into two smaller relation schemes.

3.2 What went wrong? A research-historical, psychological excursus

When such a fairly obvious error in a standard, accepted theory goes undetected for
three decades, one cannot help but ask what went wrong. It is worth noting that
Codd’s original paper on normalization [4] neither defined any concept of “nonloss
decomposition”, nor stated any criterion of it; it simply gave an example of such a de-
composition, and said, “No essential information has been lost, since at any time the
original relation T may be recovered by taking the natural join ... of T1 and T2...”. It
nowhere stated that this was a necessary, and not merely a sufficient, condition of in-
formation-nonloss. Claiming this as a criterion of nonloss decomposition thus seems
to have been the contribution of others.

The problem is, it could be a necessary condition of information-nonloss only if no
one had ever discovered any other sorts of dependency (past FD). As soon as popula-
tion-MVDs or population-JDs were discovered, the definition of “nonloss decomposi-

46 Proceedings of EMMSAD 2008

tion” became in need of emendation. Thus, even more interesting than the question
what went wrong originally, is the question why no one noticed it for so long.

It is interesting to survey the random variety of ways in which database texts try to
handle – or, more often, simply overlook or ignore – this surprising error, in their dis-
cussions of MVDs and 4NF. For the only logical way to rebut the above critique of
the standard definition of scheme-MVD, would be to say that the population of Fig. 3
is not a legal, “possible population” of this table scheme – even though it obviously is.
In fact, this is exactly what Date [5, p. 353] and Elmasri and Navathe [7, p. 437] try to
do, but with defective, and differing, artificial arguments, discussion of which we re-
legate to a footnote.3 Other writers generally either mention, yet forego any discussion
of, MVD and 4NF (e.g., [2], [17],); or they provide as an example of nontrivial MVD
a relation like that in Fig. 3, claiming (contrary to the definition of 4NF they had just
given) that it is not in 4NF, and thus needs decomposing (e.g., [20]); or else they offer
such a relation, with its obvious fact-redundancy, yet argue that since it has no non-
trivial MVDs it presents no problem (e.g., [19])! Thus researchers have used varying,
but ultimately failed, ways to treat the topic of MVDs.

Such varied approaches suggest that there is no single logical error that most re-
searchers fell into with regard to population-MVDs and 4NF. More likely, the true
explanation is that by the time MVDs and JDs were discovered (in 1977), everyone
simply “knew” what nonloss decomposition entailed; and the idea that their assump-
tion about this was just flat wrong, was too radical a thought to occur to anyone.

3 Date [5] does avoid using a 4NF example table and calling it non-4NF; his example relation

does have a nontrivial MVD, as Fagin defines the latter. However, Date gives a poor excuse
for restricting himself to such an example: “You might suggest that [the relvar] CTX need
not include all possible teacher/text combinations for a given course; for example, two tuples
are obviously sufficient to show that the physics course has two teachers and two texts. The
problem is, which two tuples? Any particular choice leads to a relvar having a very unob-
vious interpretation and very strange update behavior (try stating the predicate for such a rel-
var! – i.e., try stating the criteria for deciding whether or not some given update is an accept-
able operation on that relvar)” (pp. 391-92). That is weak: the predicate is statable easily, as
“Course uses Text and has Teacher”; and so if the text is used by that course and the course
has that teacher, then why, logically, shouldn’t the update be accepted?

 Elmasri and Navathe [7], like Date, offer an unrealistic justification for limiting them-
selves to a truly non-4NF example relation (p. 437; the italics are ours):

In Figure 13.4(a) the MVDs ENAME��PNAME and ENAME��DNAME, or
ENAME��PNAME/DNAME hold in the EMP relation. The employee with ENAME
‘Smith’ works on projects with PNAME ‘X’ and ‘Y’ and has two dependents with
DNAME ‘John’ and ‘Anna’. If we stored only the first two tuples in EMP (<‘Smith’,
‘X’, ‘John’> and <‘Smith’, ‘Y’, ‘Anna’>), we would incorrectly show associations be-
tween project ‘X’ and ‘John’ and between project ‘Y’ and ‘Anna’; these should not be
conveyed, because no such meaning is intended in this relation. Hence, we must store
the other two tuples (<‘Smith’, ‘X’, ‘Anna’> and <‘Smith’, ‘Y’, ‘John’>) to show that
{‘X’, ‘Y’} and {‘John’, ‘Anna’} are associated only with ‘Smith’; that is, there is no as-
sociation between PNAME and DNAME.

 This is spurious reasoning. In the first place, storing the other two tuples does not at all rule

out the possibility of an “association between PNAME and DNAME”. And conversely, not
including them does not imply such an association.

Proceedings of EMMSAD 2008 47

A contributing factor to this oversight, however, seems to have been the aforemen-
tioned, and mathematicians’ natural, tendency to focus on the syntax – to the neglect
of semantics, in this case. The definition of “nonloss decomposition” solely in terms
of population-tuple-patterns and recovery of the exact, original population, even
though their purported goal was to avoid loss of information (a sort of meaning), says
something about the syntax-focused nature of most early researchers’ mindset. And as
we have seen, Date and Fagin conducted essentially all their investigations (pre-1978,
anyway) at the population level, neglecting the distinct, scheme-level.

And yet, there is a significant difference between these two, respective levels: The
relation scheme level has, as an essential part of its makeup, an expression of the
meaning of the predicate that its relation-heading represents. And it is easily demon-
strable that the basic question, “Does this relation scheme suffer from uncontrolled
fact-redundancy”, pivots fundamentally on the semantics of the relation scheme, and
not on the syntax of its populations. Let us reconsider the relation of Fig. 3, but this
time ascribe to it the alternate semantics, “Person plays Sport only if it is refereed in
Language”. By assigning it those different semantics, we eliminate the fact-
redundancy which the same relation, with the same heading, had previously. Thus,
depending only on the semantics, the relation scheme qualifies as normalized or else
as non-normalized (assuming we take “normalized” to mean: lacking any potential
fact-redundancy not fully controllable by table-scheme key-constraints).

4 Redefining Nonloss Decomposition and Scheme-MVD, -JD

We must, however, return to the traditional definition of “nonloss decomposition”.
For Date indeed had an argument for that definition—although he considered his ar-
gument so noncontroversial that he relegated it to a footnote! [5, p. 353]: he claimed
that if the recomposition (after the decomposition) does not reproduce the exact, orig-
inal pre-decomposition population, “we have no way in general of knowing which tu-
ples [in the natural-join table] are spurious and which genuine, [therefore] we have
indeed lost information”. The question arises: is this argument sound?

Let us test it on the example we used in Fig. 3. If we decompose this relation on the
attribute-sets {Surname, Sport} and {Surname, Language}, we get in fact the two ta-
bles shown in Fig. 2. Doing a natural join of these tables, we get back, not the original
table (of Fig. 3), but the table displayed in Fig. 1, repeated for convenience in Fig. 4
with its additional (non-original) tuple shown in boldface.

Surname Sport Language
Halpin judo English
Halpin karatedo English
Halpin judo Japanese
Halpin karatedo Japanese
Carver judo English

Fig. 4. The relation resulting from natural join of the tables in Fig. 2

48 Proceedings of EMMSAD 2008

To facilitate further discussion, we introduce the notion of relation transparency.
With respect to a given state of the universe of discourse (UoD), we say that a relation
is transparent if and only if each candidate tuple (of that relation) that is composed of
attribute values present in the relation and encodes a fact true of that UoD state, is ex-
plicitly present in the relation. This is similar to our notion of semiclosed fact types
[16, ch. 10], except that the extension is relative to the role populations not the object
type populations. For example, with respect to the relation scheme in Fig. 4, a relation
composed of no rows, or just the first row, or just the first two rows, is transparent.
Assuming the relation scheme means “Person plays Sport and speaks Language”, the
relation composed of just the first three rows is not transparent, since it does not in-
clude the fourth row (which is known to be true given the underlying semantics and
the second and third rows).

Now, is Date correct, that we have (now) no way of knowing which of the tuples
populating this relation scheme are true and which are spurious? Before answering
this, let’s specify the intended semantics, since this seems potentially relevant. First,
let’s ask the question based on the assumption of our newer semantics, “Person plays
Sport only if it is refereed in Language”. Even if we knew which rows were original
(and not simply, that the original rows were true), we could not tell whether this addi-
tional tuple was true, without knowing whether, and indeed that, the original popula-
tion was transparent.

But if we ascribe to the relation scheme our earlier semantics for it, “Person plays
Sport and speaks Language”, it is clear that the new, additional tuple must be true, if
the original ones were. But what is it that is importantly different, about the meaning
ascribed? It is that this meaning may be split into two predicate meanings without loss
of information, because the original predicate’s meaning is that of a logical conjunc-
tion, and the meanings of the predicates into which we split it were those of its (two)
conjuncts. Examination of the tuples shows us that if we know the conjunctions ex-
pressed by the original tuples were true, then we know that the conjunction expressed
in the additional one is true, because we can see from the four original tuples that both
conjuncts are true which, conjoined, make up the conjunction asserted by the fifth,
added tuple.

This suggests a better definition for “nonloss decomposition”. For it is manifest
that if and only if we can determine that the original relation scheme is conjunctive in
meaning, we can know that it is nonloss-decomposable. (Finding a non-key-based,
nontrivial FD in a relation scheme is one way of implying that its meaning is conjunc-
tive.) Nor do we assume too much, by assuming that we can tell whether its meaning
is conjunctive: Codd’s and Date’s discussions clearly assume that we have access to
the meaning of the relations, e.g., we know which populations are “possible” for the
domain, and which tuples assert truths.

Having found the true criterion for “nonloss decomposition”, may we continue to
use the traditional definitions of scheme-MVD, 4NF, etc.? No, we cannot continue to
use the definition of scheme-MVD, since it requires “every possible population” of
the relation scheme to have the (population-)MVD, which we have now seen is not a
necessary (though it be a sufficient) condition for MVD-based decomposability. Nor
can we continue to use the traditional definition of 4NF, since it is defined in terms of
that traditional, incorrect sense of “scheme-MVD”.

Proceedings of EMMSAD 2008 49

Is this a problem, though? For we have now found a completely effective way to
tell whether a table-scheme is nonloss-decomposable, and one which has nothing to
do with finding population-MVDs or -JDs. So do we even need a definition for
scheme-MVD? Do we really even need to think about 4NF?

So as not to beg our question of which approach to ensuring normalization is most
efficient, let us emend so as to correct, if possible, traditional definitions of scheme-
MVD and scheme-JD. We may generalize this correction to the definition of scheme-
FD as well:

scheme { functional | multivalued | join } dependency:

There is a scheme {functional | multivalued | join} dependency over a se-
quence of attribute sets in relation scheme R* if and only if for every possible
state of the UoD, each transparent relation R that instantiates R* has a rela-
tional dependency of the same kind over those arguments.

This definition-pattern does indeed give us conditions both sufficient and necessary

for a table-scheme’s being nonloss-decomposable due to its having a pattern involv-
ing the corresponding relation-level data-dependency. However, if this emendation is
of theoretic significance, it seems nevertheless of very little practical significance; for
the crucial addition of transparency to the definition-pattern makes the definition un-
usable (except for FDs, as we shall see) apart from a prior, independent knowledge
that the meaning of the relation scheme is conjunctive!

So, practically speaking, database design might as well forget about MVDs and
4NF—as well as JDs and 5NF—and focus instead on the question: is this relation
scheme’s predicate-meaning conjunctive? However, as practitioners and theoreticians
may still want to say things about particular patterns of non-normalization that can
give rise to fact-redundancy, one may adopt the above definition-pattern for scheme
data dependencies, and give these new concepts that follow this definition-pattern
some special name, such as “semantic MVD”, “ semantic 4NF”, and so on.

However, someone might object that this redefinition does too much, since the de-
finition of scheme-FD we have used for all these years worked just fine—i.e., the de-
finition which did not include that segment boldfaced in the above definition-pattern.
If we need this boldfaced interpolation in the definition, why didn’t we have to have it
in there before, to define FD in a valid way? The answer is twofold: First, even
though defining FD without this interpolated clause gives a correct definition, it is not
really as good a way to define FD, since it doesn’t really define by essentials: the es-
sential question pertains, not to every possible population, but only to those particular
populations, for each respective, possible state of the universe of discourse, that are
transparent with respect to that relation scheme.

Second, an FD is a special case of MVD, one whose functional nature makes it a
constraint on each individual tuple in the relation, and not just on the relation (popula-
tion) as a whole; thus, mere removal of a tuple cannot possibly eliminate a popula-
tion-FD, whereas it very easily, as we have seen, may eliminate a population-MVD or
-JD. Thus, if an FD applies to each population that is transparent for a given relation
scheme, it applies also to any other population that is true of this same state of the
UoD. That is the only reason the traditional definition of FD actually worked. But be-

50 Proceedings of EMMSAD 2008

cause it worked, it also gives us a way to detect conjunctive (and hence nonatomic)
predicates in other, less direct ways, e.g. comparing the arity of the candidate keys
with the arity of the relation scheme, or looking for scheme-FDs that are not implied
by any whole-candidate-key constraint (i.e., “embedded” FDs).

A rational procedure for ensuring fully normalized relation schemes should thus
begin by decomposing the relation schemes into atomic (and hence nonconjunctive)
relation schemes, by looking for conjunction in the given predicates (a necessarily in-
formal process that can be reliably performed only by a domain expert), and double-
checking this by looking for nontrivial FDs of certain forms incompatible with atom-
icity, as is done in ORM’s Conceptual Schema Design Procedure (CSDP) [13].

In ORM, a fact is a proposition taken to be true by the community of users in the
business domain. An atomic fact is either an elementary fact or an existential fact. An
elementary fact is essentially the instantiation of a typed logical predicate that is irre-
ducible in the sense that it cannot be (re)phrased as a conjunction of simpler facts with
the same object types. For example, Person was born in Country is an elementary fact type.
An existential fact is an assertion that an object exists (e.g., There is a Country that
has CountryCode ‘AU’).

From an ORM perspective, each tuple of a relation encodes one or more atomic
facts. In step 1 of ORM’s CSDP, the domain expert verbalizes information examples
(e.g. table rows in an output report) in natural language sentences, and the modeler
rephrases the information in terms of atomic facts, checking with the domain expert
that the meaning is as intended. Part of this step includes the conjunction check: Can
this sentence be (re)phrased as a conjunction of simpler sentences with the same ob-
ject terms? While the presence of conjunctive connectors (e.g., “and”) can help in an-
swering this question, such a presence is neither necessary nor sufficient, since natural
language is not formally regulated. Another requirement for atomicity is the absence
of nulls in sample fact populations (if a null occurs in a fact tuple, the remaining non-
null portion corresponds to a smaller fact, so the original fact is nonatomic).

Knowledge of constraints sometimes helps. For example, the ternary fact type Flight

goes from Airport to Airport can be seen to be nonatomic because of FDs from the flight
role to each airport role. ORM detects such cases using checking procedures such as
its n-1 rule which provides a sufficient (though not necessary) condition for splittabil-
ity [13].

Sample populations (relations) can help to reveal the absence of constraints, but
they cannot, even in principle, determine whether a relation scheme is atomic. This is
because there is no formal way that a sample population can be determined to be sig-
nificant in this sense. In the final analysis, the atomicity of a relation scheme depends
on what the relation scheme means and on the nature of the business domain. The on-
ly safe way to resolve this is to check with a domain expert who understands both
these aspects, and this is necessarily an informal process.

ORM includes formal machinery for determining whether one fact type is equiva-
lent to a conjunction of other fact types, but equivalence proofs rely on the provision
of contextual definitions for defining predicates in one representation in terms of pre-
dicates in the other representation [11, 12], and the provision of such context is an in-
formal process that again relies on a domain expert who understands both the predi-
cate meanings and the business domain. This is a matter of logic that applies
regardless of the modeling approach used.

Proceedings of EMMSAD 2008 51

A

B

C

R

A

B

C

S

T

 CS1: CS2:

 D1: D2:

∀x:A ∀y:B (xSy ≡ ∃z:C Rxyz) ∀x:A ∀y:B ∀z:C (Rxyz .≡. xSy & xTz)
 ∀x:A ∀y:C (xTy ≡ ∃z:B Rxzy)

Fig. 5. A projection-join equivalence

For example, Fig. 5 depicts one of many projection-join equivalence patterns in

ORM. Conceptual schema 1 (CS1) is a ternary fact type, while conceptual schema 2
(CS2) comprises two binary fact types. The equivalence formulae in contextual defi-
nition D1 define the predicates of CS2 in terms of the predicates of CS1, and the D2
formula defines the CS1 predicate in terms of CS2’s predicates, thus providing con-
servative extensions to each schema, which allow the equivalence to be formally
proved using standard logical techniques such as deduction trees [11].

The relation schemes in Fig. 1 and Fig. 2 respectively conform to the ternary and
binary patterns CS1 and CS2. Whether these relation schemes are equivalent depends
on whether the semantics of the schemes match the patterns shown in the contextual
definitions D1 and D2. Using our first interpretation of the schemes (Person plays Sport

and speaks Language), D1 and D2 become (using sorted logic with mixfix predicates):

D1: ∀x:Person ∀y:Sport (x plays y ≡ ∃z:Language x plays y and speaks z)
 ∀x:Person ∀y:Language (x speaks y ≡ ∃z:Sport x plays z and speaks y)
D2: ∀x:Person ∀y:Sport ∀z:Language (x plays y and speaks z .≡. x plays y & x speaks z)

Although this example is trivial, whether the ternary is decomposable into the two

binaries depends totally on whether these definitions apply, and this decision is an in-
formal issue to be decided by the domain expert. ORM provides a sugared textual
language to render the equivalences in a form more digestible to nontechnical users,
essentially asking whether the ternary can be rephrased as a conjunction of the bina-
ries. As no such definitional context can be provided for the alternative semantics
(Person plays Sport only if it is refereed in Language), the decomposition is ruled out, and again
this is an informal issue. These decisions can be made merely by understanding the
semantics or meaning of the predicates, rather than relying on inspection of sample
relations that are possibly not transparent.

From a proof-theoretic perspective, once the domain expert agrees to the conjunc-
tion claim (and hence the relevant definitional context), the matter is settled. From a
model-theoretic perspective, the equivalence applies if and only if the conservatively
extended schemas have exactly the same models (interpretations that are true for the
UoD), and this requires agreement between transparent relations. But pragmatically,
the model theoretic approach is of little direct, practical use, because in assigning a re-
lation to each predicate (part of the task of providing an interpretation), one tacitly as-

52 Proceedings of EMMSAD 2008

sumes that the relation contains all the true tuples for that population of individuals
(i.e. the relation is transparent). But in order to know the relation is transparent, we
need to know whether the relation is conjunctive for that business domain.

The essential confusion in the traditional definitions of MVDs etc. hinged on the
loose notion of “possible instance” of a relation scheme. In practice, many possible
but nontransparent instances may be provided, and the only way to detect problems
with these is to return to the fundamental notion of logical conjunction. Recasting the
notions of MVDs, 4NF, JDs, and 5NF in terms of logical equivalence involving con-
junctions provides the only truly semantic formulation of these concepts.

For example, let R(X, Y, Z) be an ORM fact type where R is the logical predicate
and X, Y, Z are role sequences (null, unit, or composite). We say that R includes the
semantic MVD X ↠ Y if and only if for each possible UoD state, each fact instance
R(x, y, z) has the same truth value as that of the conjunction S(x, y) & T(x, z) for some
predicates S and T. This is equivalent to the definition of semantic MVD given earlier,
but is more useful as it relates directly to the fundamental equivalence question to be
answered by the domain expert in determining atomicity of a fact type. Similarly, se-
mantic JDs may be defined in terms of n-term conjunctions (n > 1).

Once atomic relation schemes are determined, to get a relational schema all of
whose relation schemes are in 5NF, we synthesize new, possibly nonatomic relation
schemes from the atomic relation schemes where that can be done without introduc-
ing nontrivial scheme-MVDs or -JDs, or any nontrivial FDs not enforceable by key
constraints. This synthesis can be done algorithmically, based on key and other con-
straints, as illustrated by ORM’s Rmap algorithm [13].

Thus, we see that the steps which ORM includes pursuant to a fully normalized re-
lational database schema, including conceptualization in terms of atomic facts fol-
lowed by application of its Rmap procedure, effectively cover not only the formal as-
pects of normalization theory but also the informal semantic interpretation that is
pragmatically needed.

5 Conclusion

This paper identified problems in traditional normalization theory regarding accepted
definitions of nonloss decomposition and multivalued and join dependencies (and
hence 4NF and 5NF), which unrealistically rely on relations being completely repre-
sentative. The notion of relation transparency was introduced to refine these defini-
tions, thus providing a theoretical resolution of these issues. However, a pragmatic so-
lution to these problems was seen to require a judgment on conjunction based,
semantic equivalences, an essentially informal process involving the understanding of
the domain expert rather than inspection of sample relations.

The modeling techniques used in ORM, which begin with establishing atomic fact
types, later grouped into relation schemes using a well known mapping algorithm,
provide one practical realization of the recommended approach. While this basic ap-
proach could be adapted to other modeling approaches such as ER and the Unified
Modeling Language (UML), ORM’s emphasis on communication in natural language
sentences seems to make it especially suitable for this kind of procedure.

Proceedings of EMMSAD 2008 53

Step 1 of ORM’s Conceptual Schema Design Procedure begins by having domain
experts verbalize concrete information examples of interest in natural language sen-
tences. A later stage of this step requires the modeler to rephrase the information in
terms of atomic facts, checking atomicity with the domain expert by asking whether a
sentence of the specified kind can be equivalent to a conjunction of smaller sentences
(using concrete instances). Once this is established, the modeler abstracts from the
fact instances to the fact types. Either now or later in the design procedure, modelers
may also draw on ORM theory that clarifies how the presence of uniqueness con-
straints impacts atomicity. This procedure has time and again proved effective in in-
dustrial modeling. By ensuring atomicity at the front end, it is relatively easy to later
ensure that fact types are grouped into fully normalized relation schemes.

The current paper strikes at the heart of the procedure promoted by standard nor-
malization theory, inasmuch as it undermines the syntactically-based, too restric-
tive definition of “nonloss decomposition” that underlies that procedure. Clearly, a
more semantics-based “normalization procedure” is required: as we have shown, only
a procedure based on the informal semantics, and specifically one that will determine
whether that semantics is conjunctive, is adequate to the problem of normalization.
The implication for teaching normalization is that both the theory and the procedure
taught, must be adjusted to compensate for these problems in the traditional treat-
ments.

 It is true that current normalization practice tends to ignore 4NF and 5NF; and
some might see that fact as undermining the relevance of our findings about the the-
ory and method of normalization. However, to ignore 4NF and 5NF does not fix the
problem in the theory, nor provide an alternative way to arrive at a fully normalized
schema. As we stated at the outset, normalization is a good, needful thing; however, a
theory that incorrectly states the criteria of “fully normalized”, and thereby makes
reaching that goal impractical, is a theory that needs amending.

References

1. Aho, A. V., Beeri, C. & Ullman, J. D. 1979, ‘The Theory of Joins in Relational Data-

bases’, ACM Transactions on Database Systems, vol. 4, no. 3. First published in Proc. 19th
IEEE Symp. on Foundations of Computer Science (October 1977).

2. Batini, C., Ceri, S. & Navathe, S. 1992, Conceptual Database Design: an entity-
relationship approach, Benjamin/Cummings, Redwood City.

3. Codd, E. 1970, ‘A Relational Model of Data for Large Shared Data Banks’, Communica-
tions of the ACM, vol. 13, no. 6, pp. 377–87.

4. Codd, E. F. 1971, ‘Further Normalization of the Data Base Relational Model’. (Presented
at Courant Computer Science Symposia Series 6, "Data Base Systems," New York City,
May 24th-25th, 1971.) IBM Research Report RJ909. Republished in Rustin, R. J. (ed.),
Data Base Systems: Courant Computer Science Symposia Series 6, Prentice-Hall, 1972,
pp. 33–64.

5. Date, C. J. 2000, An Introduction to Database Systems, 7th ed., Addison Wesley Longman.
6. Date, C. J. & Fagin, R. 1992, ‘Simple Conditions for Guaranteeing Higher Normal Forms

in Relational Databases’, ACM Transactions on Database Systems, vol. 17, no. 3, pp. 465–
476.

7. Elmasri, R. & Navathe, S. 1994, Fundamentals of Database Systems, 2nd ed., Addison-
Wesley.

54 Proceedings of EMMSAD 2008

8. Fagin, R. 1977, ‘Multivalued Dependencies and a New Normal Form for Relational Data-
bases’, ACM Transactions on Database Systems, vol. 2, no. 3, pp. 262–278.

9. Fagin, R. 1977, ‘Functional Dependencies in a Relational Database and Propositional Log-
ic’, IBM Journal of Research and Development, vol. 21, no. 6, pp. 534–544.

10. Fagin, R. & Vardi, M. Y. 1986, ‘The Theory of Data Dependencies’, Mathematics of In-
formation Processing, eds. M. Anshel & G. Gewirtz, Proceedings of Symposia in Applied
Mathematics, vol. 34, pp. 19–71, American Mathematical Society, Providence.

11. Halpin, T. 1989, ‘A Logical Analysis of Information Systems: Static Aspects of the Data-
Oriented Perspective’, PhD thesis, University of Queensland.

12. Halpin, T. and Proper, H. 1995, ‘Database Schema Transformation and Optimization’,
Proc. OOER’95, ed. M. Papazoglou, Springer LNCS, no. 1021, pp. 191–203.

13. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann,
San Francisco.

14. Halpin, T. 2006, ‘Object-Role Modeling (ORM/NIAM)’, Handbook on Architectures of
Information Systems, 2nd edition, Springer, Heidelberg, pp. 81–103.

15. Halpin, T. 2007, ‘Fact-Oriented Modeling: Past, Present and Future’, Conceptual Model-
ling in Inf. Sys. Eng., eds. J. Krogstie, A. Opdahl & S. Brinkkemper, Springer, pp. 19–38.

16. Object Management Group 2008, Semantics of Business Vocabulary and Business Rules
(SBVR), v1.0. Online at http://www.omg.org/spec/SBVR/1.0/PDF.

17. O’Neil, P. & O’Neil, E. 2001, Database Principles, Programming, and Performance, 2nd
ed., Morgan Kaufmann Publishers, San Francisco.

18. Ritson, P. and Halpin, T. 1993, ‘Mapping Integrity Constraints to a Relational Schema’,
Proc. 4th ACIS, Brisbane (Sep.), pp. 381−400.

19. Simsion, G. & Witt, G. 2005, Data Modeling Essentials, 3rd ed., Morgan Kaufmann Pub-
lishers.

20. Teorey, T. 1999, Database Modeling and Design, 3rd ed., Morgan Kaufmann Publishers.
21. ter Hofstede, A., Proper, H. and van der Weide T. 1993, ‘Formal Definition of a Concep-

tual Language for the Description and Manipulation of Information Models’, Information
Systems, vol. 18, no. 7, pp. 489−523.

22. van Griethuysen, J. (ed.) 1982, Concepts and Terminology for the Conceptual Schema and
the Information Base, ISO TC97/SC5/WG3, Eindhoven.

23. Verheijen, G. and van Bekkum, J. 1982, ‘NIAM: An Information Analysis Method’, In-
formation systems Design Methodologies: a comparative review, Proc. IFIP WG8.1 Work-
ing Conf., Noordwijkerhout, The Netherlands, North Holland Publishing, pp. 537−90.

