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Abstract. A correct system design is systematically obtained from the SA/RT 
requirements specification model (RSM) of a real-time system. The aim of the 
systematic procedure is obtaining a complete model in the 
Matlab/Simulink/Stateflow framework for solving a realistic industrial problem, 
namely, an AC motor controller which must be able to maintain a constant air 
flow through a filter. The article also discusses a practical application of the 
method for implementing a closed loop control system to show how the 
proposed procedure can be applied to derive complete hybrid system designs.  
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1   Introduction 

Structured Analysis methods for specification of Real-Time systems (SA/RT), applied 
to the specification of non-functional user requirements, such as timing constraints 
between system actions, do not address -or excessively postpone- non-functional 
specification to a final phase of the system development life-cycle, thereby causing 
economic loses if there are mistakes in the requirement specification phase. Although 
SA/RT methods help us to find a consistent specification of system requirements, 
however they must be complemented with other, formal, description methods, which 
facilitate non-functional specification (i.e., scheduling analysis, resource allocation, 
timing constraints, etc.) [1, 7-9] on early stages of any target system development.  
Firstly, the present contribution is aimed at integrating Stateflow to represent 
processes of reactive behaviour and Simulink blocks to represent continuous 
components in the final stages of a real-time system specification that is 
systematically derived by the application of a set of rules [1]. By using a hierarchy of 
Stateflow charts as a semiformal graphical description language, we can give an 
operational semantics to reactive data transformation and control processes that 
appear in any SA/RT model. In addition, the simulation tools provided by 
Simulink/Stateflow provide a common framework to carry out a complete system 
specification of discrete events dynamic systems as well as continuous dynamic 
systems, see Fig.1.  
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Different real-time system types require different designs of formal description 
languages, programming languages and software tools. A series of tools are aimed at 
modelling real-time systems that integrate continuous components. Among currently 
implemented approaches, we can distinguish [15] three major classes: (1) block-
based, (2) physical oriented and (3) hybrid state machines. (1) Block based tools give 
a graphical language based on a library of primitive blocks with discrete, continuous 
or hybrid behaviour. The most used among these tools are: Simulink/Stateflow, Easy5 
and VisSim, the latter one being used in iLogix Statemate Magnum. These tools are 
usually easy to use for building small and medium-size models of target systems, but 
for complex ones the model becomes a multilevel diagram that is difficult to 
understand and modify. (2) Physical oriented tools use a system of differential 
equations to describe the continuous behaviour of an hybrid system; these kinds of 
tools are mainly academic projects, such as 20-Sim from Controllab Products, 
Dynasim Dimola and Modelica, Smile from Berlin Technical University, which use a 
system of differential equations to describe the continuous behaviour of the system; 
discrete components are difficult to model and to change; this approach works better 
for modeling pure continuous physical systems. The approach works better for 
modelling physical systems, but if discrete components are intertwined with 
continuous ones these tools produce inflexible models, with parameters that are 
difficult to change at run time in simulations. (3) In hybrid state machines [12] the 
continuous behaviour described by a system of differential equations associated with 
the discrete state of a state-transition machine; when the discrete state changes as a 
result of an event, the continuous behaviour may also change; this approach gives 
very compact and flexible specifications of complex hybrid systems, but there are 
very few tools that support this class of tools at the moment, among which are, Path 
from Berkeley University and Model Vision from Object Technologies. 
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Fig. 1. Software architecture of the proposed model of a real-time system. 

CSP+T formal notation is capable of unambiguously describing the different 
modeling entities of SA/RT notation, which can afterwards be converted into a 
hierarchy of Stateflow diagrams. A semantic equivalence between CSP+T process 
terms and a subset of Stateflow modeling entities can be shown, according to our 
method. The validation of the final system model is carried out by simulation, since 
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Simulink blocks are very accurate and can be tested in a realistic environment by 
downloading the target software in an embedded controller, with which the 
environment can directly communicate through different A/D, D/A interfaces. The 
imprecision regarding time specification that SA/RT notation presents has been 
overcome by deploying CSP+T as a meta-notation to label transitions in state-
transition diagrams. This way opens up the possibility of having automatic code 
derivation of the annotated RSM, which can be automatically translated into a Java 
controller with the support of JCSP [11]. The constructive nature of the method 
makes it a good candidate to be integrated with off-the-shelf simulation tools for 
dynamic continuous systems design. This research aims at the implementation of 
formal tools for performing probably correct automatic generation of code for real-
time controllers. 

The remainder of the paper is structured as follows. We first give some background 
on SA/RT modelling methods and CSP+T process algebra. The top-down derivation 
procedure proposed in this paper is discussed in detail in the next section specifying 
the steps to be performed. Then, the method proposed is applied to solve an industrial 
problem of a real-time feedback closed loop used to maintain constant rotor speed of 
an induction motor driven by a TriaC device such that a constant air flow through a 
filter in HVAC systems is achieved. The case study shows how the proposed method 
can be applied to derive a hybrid system that also contains discrete components. The 
next section describes how the system can be validated by simulation and adds some 
components to the model. Finally, the conclusions and the ongoing lines of work are 
presented. 

2   Modeling methods 

In the proposed top-down derivation method to design a real-time hybrid system with 
continuous and discrete components, we use a derivation procedure that allows us to 
obtain a compact specification (CSP+T process terms) of the functional and dynamic 
aspects (Simulink/Stateflow blocks) of the system. 

2.1   Requirements Specification Model (RMS)  

A RSM can be obtained by applying a set of SA/RT methods using an informal 
graphical notation also provided by SA/RT. This model consists of a hierarchy of 
transformation schemes rooted on the System Context Diagram (SCD). Each scheme 
“explodes” into a State Transition Diagram (STD) or into a Data Flow Diagram 
(DFD). The scheme denoted as SCD defines the border between the system, which 
should be understood as a double model describing the data flow and the control flow 
relationships in the “solution domain”, and the environment, comprising the external 
entities (or terminators) to the system and representing the “problem domain”. 

The SA/RT notations include other elements of representation, called analysis 
entities, Data Transformation Processes (DTPs), Control Transformation Processes 
(CTPs), Data Stores (DS), Control Stores (CS), Data Flows and Control Flows. 
Control Flows represent the transportation of transient signals or events towards 
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CTPs. A transformation scheme is represented by an SCD or by a DFD. DFDs are 
composed of several copies of the above analysis entities and must include at least 
one DTP. The bubbles that represent DFDs may “explode” into new, more detailed 
DFDs. A fundamental strategy of SA/RT is to separate the control and the data 
process descriptions within the system. A CTP is formally specified by means of a 
state transition diagram (STD). STDs should be deterministic Moore or Mealy 
automata, and they describe a sequence of state transitions of the system that cause 
the execution of DTPs to be triggered. The SCD of the constant air flow through a 
filter control system can be seen in Fig.4. 

2.2   Flaws of SA/RT as a Specification Notation for Real-time Systems   

The following ambiguities appear in both the WM [2] and HP [3] notations, causing 
imprecisions in the specification, and therefore non predictability may be present [9] 
in final real-time systems at a later development stage: 

a) Lack of any rule for defining primitive process specifications (PSPECs). The 
only indication given is that these specifications should define the functional 
transformation performed by primitive DTPs. However, in real-world applications, 
DTPs not only describe a purely functional behaviour of processes, but they often also 
include control and timing information. 

b) The enabling conditions of processes are not fixed. The SA rationale is that 
processes are enabled whenever “sufficient data” appear in any of their input flows. 
However, the enabling conditions rules do not clearly indicate the expected behaviour 
of a process when more than one of its input flows are carrying values. In that case, a 
non-deterministic selection appears in a process execution sequence and there is no 
SA entity foreseen to represent it.  

c) Execution time requirements for processes are excluded. These requirements, 
when applied to practical cases, are used to specify either a maximum or minimum 
time to be associated with the execution of a process. 

d) The number and type of the input flows entering a process are vaguely 
described. When there are multiple input flows entering a process, it is necessary to 
define whether all the inputs must carry a value simultaneously to enable the process 
(synchronous case) or only a subset of the input flows (asynchronous). 

e) Simultaneous events awakening more than one transition. This possibility is 
excluded in SA/RT notations since transitions exiting the same state are associated 
with different events, since STDs are Mealy machines. However, there should be no 
objection to allowing nondeterministic selection of transitions in notations for soft 
real-time systems. Many proposals have been made in the last years to overcome the 
problem of SA imprecision by complementing a system specification with formal 
methods. The use of extensions of algebraic process description languages [7], such 
as CSP[17], CSP+T [4], or the standard specification language LOTOS, can give a 
precise and flexible interpretation to SA entities. In this respect, it has been shown [1] 
that CSP+T process algebra formalizes the semantics of a SA/RT specification model 
and also allows for the specification of timing constraints between the occurrences of 
actions during any execution of the system by using a defined set of rules. 
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2.3   Real-time systems specification with CSP+T   

The group of CSP derivatives to describe time intervals includes Timed CSP [17] and 
CSP+T, the latter being a simpler approach. Providing less descriptive power, 
although still powerful enough to formally describe a set of primitive processes with 
time constrained behavior, CSP+T is an adequate formal specification language for 
the majority of real-time systems. 

The syntax of CSP+T, adapted to our method, which is detailed in [1] is next 
described, 

−Every process P defines its own set of communication symbols, i.e. its finite 
communication alphabet α(P). These communications represent the events that the 
process P receives from its environment or internally occur (e.g. the null action τ). 
Any type of event causes a change of state of the process. Internal events, such as τ , 
are not externally visible.  

−The communication interface comm_act(P) of a given process P contains all the 
CSP-like communications ({?, !}) in which P can engage and the alphabet α(P). 

−An instance of a process term must be created before it can execute. Thus, an 
operator,  (star) denotes process instantiation. This event is unique in the system 
since it represents the origin of a single global time line in the system to which the 
execution time of each process refers. Let us consider a process P that initially can 
only engage in the event a. Given P’, the timed version of P, which is instantiated at 
time 1, and that s is a time stamp associated to a, the specification of P’ becomes 

P’= 1. →s.a→STOP, where s∈[1,∞) (1) 

−An event operator >< is introduced to be used jointly with a variable to record the 
time instant at which the event occurs, so that ev >< v means that the time at which 
ev is observed in a process execution is recorded in the variable v. As several 
successive events can instantiate the same variable at different times, if we specify the 
process, 

P= 1. →a>< var→STOP (2) 

For each process execution, var will record the corresponding value of the time at 
which the event a occurred, and it will always satisfy var≥  1. The variables 
associated to the operator >< are called marker variables and their scope is strictly 
limited to one sequential process. 

−Each event is associated with a time interval, which is called the event-enabling 
interval. This interval represents the period of time during which the event considered 
is available to the process and its environment, and is relative to some preceding event 
of the current process execution. A process is considered to be the STOP process if it 
cannot engage in an alternative within the enabling interval of the event. The event-
enabling intervals are continuous. Let us suppose, for instance, that a process P can 
only engage in event a, which can only occur between 1 and 2 units of time from the 
instantiation time, recording itself in the marker variable v as the time at which this 
event has occurred: 
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P= 0. →[1,2] a >< v→ STOP. (3) 

• The value of the marker variable v will satisfy the inequality 1≤ v ≤ 2. The 
enabling intervals are defined in terms of functions, as rel(ti, vi) = [vi, ti+vi], over 
a set of marker variables {vi}. When there are no marker variables referenced, the 
enabling interval is defined relative to the immediately preceding event. 

P = ... E.P’ .    E = {s  | s = rel(x, v)} (4) 
 
−If the preceding event occurs at time t0, then rel(x, v)= [v-t0, x+v-t0 ], since the 

times for events are absolute and the times for intervals are relative to the preceding 
event. The semantics of the parallel composition of two processes with enabling 
intervals depends on whether the values of these intervals are identical, partially 
overlapping or disjoint. In the case of disjoint intervals, the parallel composition 
behaves identically to the STOP process.  

2.4   Generation of a System Specification from the RSM   

In order to obtain a model of the system, it is necessary to represent every analysis 
entity of the RSM by a class of CSP+T processes. Following this approach, we write 
a CSP+T process prototype for every DTP, CTP, DS, CS, etc. A series of 
transformation rules [1] allow us to create a process term of the algebra for every 
transformation scheme that appears in any diagram of the RSM. A representation of 
the complete derivation procedure is shown in Fig 2. The modelling elements of 
Stateflow diagrams can be represented by CSP+T terms, as reactive processes at the 
lowest level of a system specification. As Simulink blocks are the basic bricks needed 
to represent primitive functions, as well as continuous components in many hybrid 
real-time systems simulations, we replace the primitive processes in a RSM model by 
Simulink blocks in order to get an integrated model of a hybrid real-time system that 
can afterwards be validated by simulation. 
To carry out a simulation in the Simulink/Stateflow framework, additional blocks 
must be added to the final model. These blocks represent the external entities of RSM 
and must be modeled according to the specific physical devices (actuator or sensor) 
that supply signals (data or event) to/from the system. 
In general, we will adopt a bottom-up process that consists of the following steps: 
1) Prepare the analysis schemes for carrying out the transformation. It may be 
necessary to rename some analysis entities to avoid conflicts, i.e., unwanted 
synchronizations between processes. 
2) Transform the control transformation schemes (CTP) and data transformation 
schemes (DTP) that present reactive behaviour of the lower level, i.e. those that do 
not explode into other schemes, into Stateflow diagrams. 
3) Add Simulink-blocks to represent external devices or continuous components, i.e., 
when they are needed to represent DTPs with transformational behaviour . 



98          Proceedings of EOMAS’08 
 

 

4) Select the other schemes, i.e., Data Storage (DS), Control Storage (CS), DTP, CTP, 
or Continuous Flow of Data, that appear in the scheme, in ascending order; and build 
a CSP+T process for each entity in the scheme. 
5) Once the CSP+T model has been obtained for all the entities in an SA/RT scheme, 
one CSP+T process will be defined to model the complete scheme. If this scheme is 
already included in a CTP or a DTP of a higher level, repeat step (4), thus 
progressively integrating the CSP+T model of the system in an ascending way. 
The iterative process finishes when a unique process with the communication 
interface of the system is obtained, i.e., when the CSP+T model of the System 
Context Diagram is obtained. 
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Fig. 2. The complete derivation procedure of a real-time system 

3   Regulation of Rotor Speed With An Induction Motor 

3.1    Description of the Induction Motor Control 

An informal description of the user´s requirements specification of a closed loop 
control system is presented for controlling an AC motor (or induction motor), Fig.3. 
The open loop control of the engine is obtained by feeding it with a controlled voltage 
of 220 volts and 50 Hz. This control is carried out by cutting the sinus wave, which 
represents the input voltage using an electronic device named TriaC, which operates 
as a very fast switch. 
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The control line of the TriaC is driven by a synchronization signal (synch), which 
informs when the input voltage passes through a zero value, at this moment the TriaC 
automatically stops to conduct electricity. If after switching the TriaC off, it is fired a 
number of milliseconds later, it will be driven to saturation by the signal texct and 
will start to conduct until the input voltage passes through a zero value again. The 
closed loop of control is obtained in this case by calculating the precise time at which 
the TriaC must be fired, so the excitation time must be calculated in real-time and in 
every cycle of the input voltage.  The system should address its own safety if 
synchronization signal fails or TriaC overheats. If synch is missed after passing a 
complete cycle of the input voltage, then syncf is raised. Other possible failure could 
happen if the TriaC overheated, in this case the electronic device might short-circuit 
and lead the engine to start working at the maximum number of revolutions, which 
would cause the loss of the engine after 1 second approximately. 
  

220 v
50 Hz

Triac
Excitation

AC output
time controlable

220 v
50 Hz

Triac
Excitation

AC output
time controlable

 
Fig. 3. Description of the operation of TriaC device that controls the AC induction motor. 

The combination of induction motor with TriaC device can be used to control or 
maintain constant the velocity of a centrifuge of washing machine, the air flow 
through a filter, the speed of a vehicle, etc. From now on we suppose that AC 
induction motor directed by the TriaC device controls the air flow through a filter. 

3.2    Top-down derivation of the System Model 

A set of hierarchical diagrams is obtained using top-down strategy  within the SA/RT 
methodology. The high-level diagram is the System Context Diagram (SCD). The 
SCD (fig 4) includes 5 control flows: the synchronization signal (synch), which 
informs when the input voltage passes trough zero value; the TriaC overheating 
warning; two signals, the first one signals the missing of synch and the second one 
signals TriaC overheating; the excitation (texct) signals to make the TriaC return to 
allow current to pass again. It also includes 2 data flow: the first one gives the present 
air flow trough the filter (flow) and the second one, the air flow reference value (ref). 
Note that the automatic system modeled interacts with external devices that supply 
data flows to the system like sensors, or interacts with external devices sending 
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control events which change the state of system environment like actuators. Then the 
AC motor is not controlled directly by the system, consequently it is not considered as 
an external entity of the system. The latter one computes a timeval value that activates 
the excitation signal of TriaC texct. This device causes an immediate effect to the 
induction motor by changing the actual speed of motor which can only be made 
available to the system by sensors as tachometers. 
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Fig. 4. System Context Diagram. 

The SCD “explodes” into two main DTP processes on the 1st level DFD: 
Proportional-Integral-Derivative control (PID) and the open loop control (OLC). The 
OLC process triggers signals to actuators depending of the input data flows; i.e. textct 
from an input timeval value, oheatf  from an positive overheat value, syncf when the 
synchronization signal is missed after passing one complete cycle of the input voltage. 
However the PID control process determines the correct time (timeval) at which the 
TriaC must be fired within the present voltage cycle. The integration of two DTPs 
represents in fact the Closed Loop Control (CLC) of the system. Once the PID control 
process adjusts the timeval value according to the actual speed of motor, the OLC 
process produces a new excitation signal that changes the actual speed until the actual 
speed reaches the reference speed.  

 

Fig. 5. Simulink model of the final system. 

A static analysis of the system reveals that the shorter the timeval is the higher the 
speed reached by the rotor will be; but the relationship between these variables is non-
linear. The corrected timeval has been obtained as follow. First, the PID control 
computes a positive or negative timeval increment which is added to the previous 
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value of timeval depending on whether the actual speed is over or under the speed 
reference value, respectively. If the timeval is outside the interval [0,1/freq*2], its 
value is saturated by the maximum or minimum value. Then one Simulink subsystem 
block is designed as the PID controller with its interface made up of two ports: the 
error signal (speed error signal) as the input port and the corrected timeval as the 
output one. 

4 Simulation of The Hybrid System 

In order to carry out a simulation of the hybrid system proposed in this paper, more 
components must be added to the model. We need to construct one model of a TriaC 
device, one AC Motor , the flow sensor (or a sensor to measure the speed of the rotor 
like a tachometer), the temperature sensor and one sync generator. This model can be 
implemented in Simulink/Stateflow framework as Fig. 5 shows.   

4.1    Physical Modeling of an Induction Motor 

The most difficult component to model is the AC Motor, since the rest of them can be 
modeled by means of simple switches or a combination of them. The following 
sections discuss the model of AC motor developed for the system. 

The functioning of an induction motor is based on the Physical principle of mutual 
induction between electrical circuits traversed by a variable magnetic flux Φ. 

According to the Faraday law, which is given by the following equation, 
)( BN

dt
d

Φ⋅−=ε
, 

the magnetic flux traversing a motor winding only depends on the current conducted 
by the circuit. It does not depend, for instance, on the number of poles of the motor. 
We can assign a self-induction constant L to any circuit being affected by magnetic 
induction, according to the equation reelB iLN ⋅=Φ⋅  

Nowadays the winding of induction motors is made of three windings, carrying 

each one of them a voltage phase separated 32π  rad. from the next phase, which 
yields a rotating magnetic field in the stator, Fig.12. The velocity of rotation is called 
the synchronous speed, which is given as a parameter of induction motors. If we 
short-circuit the rotor winding –using a squirrel cage winding, for instance-, then the 
motor will start rotating because the change in the magnetic field direction yielded by 
the synchronous speed of the stator ωe induces a current that produces an 
electromagnetic force in the rotor. The difference between the rotation velocity of the 
stator ωe and this one of the rotor ωr is named slip, which is also given as a parameter 
of induction motors. 
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4.2    The two-phase synchronous rotating frame 

We can assume a reference system that rotates at the synchronous speed ωe of the 
stator to ease the representation of the rotating 

→

B  and inductance linkages by a 
system of coupled differential equations that describe the physical induction and 
motor dynamics, as Fig. 6 shows. The induction motor is therefore modeled by two 
reels, the first one is aimed at conducting the current in the stator and it also generates 
the rotating magnetic field. The second one generates the induced magnetic field in 
the rotor. This simple model allow us to describe the magnetic coupling between the 
stator and rotor windings of an induction motor very accurately. 

ωe θeB
ωe θeB

θe isd 

isβ 

ωe 

Φs 
Φsq 

 

 

Fig. 6. Motor winding.    Fig. 7. Rotating reference system 

The first axis, Fig. 7, is called the direct axis and the second one, the quadrature axis. 
eθ  is an additional variable representing the rotor angle and it can be considered an 

additional state of the induction motor model. An induction motor with a squirrel 
cage rotor winding (short-circuited) will have null vqr and vdr voltages. The constants 
and system variables of the above linear differential equations are given in Table 1. 

Table 1.  Constants and variables of the physical variables of an induction motor. 

Variables of Physical Model 
d: direct axis of the rotating 
reference system 

χ*
lm= 1/(1/χls+1/χlr+1/χm): total reactance 

with the loses for magnetizing (χm) 
q: quadrature axis of the 
rotating reference system  

iqs, ids: currents of the q and d stator axis 

s: subindex for the stator 
variable 

iqr, idr: currents of the q and d rotor axis 

r: subindex for the rotor 
variable 

p: number of poles of the motor 

Fij=Φij, where i=q or d and 
j=s or r, magnetic linkage 

J: inertia momentum 

vqs, vds: stator voltages Me: motor electrical torque (output variable) 
vqr, vdr: rotor voltages Ml: load torque (input variable) 
Rr, Rs: rotor and stator 
resistors 

ωe: stator synchronous speed (input variable) 

χls: stator reactance (ωeLls) ωb=2⋅π⋅fb: angular speed corresponding to the 
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electric frequence of the motor feeding 
voltage. 

 

4.3    Calculation of the electromagnetic torque generated by the motor 

We can derive a mathematical expression for calculating the electromagnetic torque 
generated by the motor. Since we know that the mechanical power given by the motor 

is obtained from the electromagnetic equation 
( )sqsdbsdsqbmech iΦωiΦω

2
3P ⋅⋅−⋅⋅=

, 

and the magnetic linkage sdsq,Φ
 only depends on the synchronous angular speed and 

the magnetic flux Fij = ωe⋅Φij. The mechanical power can be made equivalent to the 
electrical torque Te generated by the motor, then we can obtain 

( )dsqsqsds
b

e iFiF
ω
1

2
p

2
3T −⎟

⎠
⎞

⎜
⎝
⎛=

 from the magnetic linkages Fds, Fqs, and currents, which are 
obtained by solving a system of differential linear equations with concrete values of p 
(the number of poles) and ωe as the input data to the induction motor model. The 
angular velocity ωr of the rotor can also be calculated, since the load torque Tl and 
moment of inertia J are also parameters of the induction motor model. As the above 
equations show, the electrical torque and the angular rotor velocity depend on the 
number of poles of the rotor winding, on the contrary of what happens with the 
magnetic couplings. 

5 Matlab/Simulink model of an induction motor drive 

The model of an induction motor http://lsi.ugr.es/~mcapel/miscelanea/motor has been 
structured in 3 main blocks: (1) transforms the three stator voltages va, vb, vc , with a 
phase of 2π/3 between each two, into the rotating reference system dq; (2) the block 
representing the induction motor  itself  (which inputs the three phase voltages, the 
synchronous angular speed ωe and the load torque); (3) this block returns the 
expression of the model variables in the dq system back to the three phases abc 
reference system, since the latter one give us the standard graphical representation of 
currents in the stator. 
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Fig. 8. Response of the rotor to changes in the stator speed 

Two specific blocks have been designed to calculate the electrical torque Me given by 
the motor and another to calculate the rotor axis angular speed ωr. 
Finally, all the physical model constants given in table I have been defined using IS 
physical units in a m-file of Simulink, which has to be executed in Matlab before 
opening the Simulink model of the system.  

6   Obtained Results 

The results obtained with the two models (OLP and CLP) were quite different. In the 
first case, it was only considered an open control loop model; thus, only after a 
constant time the TriaC is fired in every cycle. In this case the disturbances in the 
system response (ωr) are remarkable. Rotor speed follows the changes produced in the 
synchronous angular speed in the stator (ωe), but any change in the value of ωe 
provokes fast oscillations around the new value in the rotor velocity, see Fig. 9. If we 
carry out a simulation with the rotor velocity controlled by a PID, then we will obtain 
better results. 

Moreover, if we take a plot of the electrical torque output by the induction motor 
w.r.t. a constant load torque, which is given as an input variable to the system, we will 
take only important oscillations at the beginning, while the system is trying to get a 
stabilisation point. The oscillations shown in Fig.8 represent about the 20% of the 
target value for the torque Me, (300 Nm),; these oscillations are caused by dynamic 
conditions during motor functioning, as the rotor axis friction. 
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Fig. 9. Closed loop control model response to changes in the stator speed 

7   Conclusions 

We have presented a derivation procedure to obtain a correct system specification 
from a semi-formal SA/RT system requirements specification of a given real-time 
system. The imprecision and ambiguities intrinsic to SA/RT notations have been 
overcome in our method by using a formal description language based on CSP+T 
process algebra. Simulink/Stateflow and its library of blocks, which are of use for 
modeling continuous and discrete dynamic systems, have been used to integrate 
continuous components in a hybrid real/time system design. However, unlike other 
proposals that attempted to overcome the same problem by complementing SA with 
formal methods, our methodological scheme is mainly a set of guidelines, which have 
proved to be of use for deriving a verifiable specification model of complex systems, 
as in the case of the application case discussed in the article: the induction motor 
drive, and controlling an AC motor to maintain a constant air flow through a filter. 
The method has been defined for its easy integration in ASE environments and/or 
formal tools based on SA notations. We are currently working on the development of 
a formal software tool based on JCSP [11] and Java, and which is capable of 
automated specification, verification and code generation of real-time and embedded 
system software for several computing platforms. 

References 

1. Capel, M.I., Holgado, J.A., Balsas, J.R.:  A Transformational Approach to the Systematic 
Design of Real-time Systems. Manufacturing Eng., 3, 2, 5--13, (2004). 

2. Ward, P.T., Mellor, S.: Structured Development of Real-Time Systems. Prentice-Hall, 
Englewood Cliffs (N.J.), (1985).  

3. Hatley, D.J., Pirbhai, I.A.: Strategies for Real-Time Systems Specification, Dorset House, 
New York, (1988).  

4. Žic, J.J.: Time-Constrained Buffer Specifications in CSP+T and Timed CSP. ACM 
Transactions on Programming Languages and Systems, 16, 6, 1661—1674, (1994). 

5. Demarco, T: System Analysis and Specification, Yourdon Press, (1971).  



106          Proceedings of EOMAS’08 
 

 

6. Semmens, L.T., Allen, P.M.: Using Yourdon and Z: An Approach to Formal Specification. 
In: Z User Workshop, Oxford, UK, 228—253, (1990). 

7. Fencott, P.C., Galloway, A.J., Lockyer, M.A., O’brien, S.J., Pearson, S.: Formalising the 
Semantics of Ward-Mellor SA/RT Essential Models Using Process Algebra. In: FME’94: 
Industrial Benefit of Formal Methods. LNCS 873, Springer-Verlag, 681—702, (1994). 

8. Elmstrom, R., Lintualampi, R., Pezze, M.: Giving Semantics to SA/RT by Means of High-
Level Timed Petri Nets. J. Real Time Systems, 5, 2/3, 249—271 (1993).  

9. Baresi, L., Pezzè, M.:Towards Formalising Structural Analisis. ACM Transactions on 
Software Engineering and Methodology, 7, 80-107 (1998). 

10. Structured Technology Group: AxiomSys/AxiomDsn: Design CASE Tool. Structured 
Technology Group. Saugus, California, USA, (1995). 

11. Welch, P: Process Oriented Design for Java: Concurrency for All. In: Parallel and 
Distributed Processing Techniques and Applications,  PDPTA 2001, USA, (2001).   

12. Maler, O., Manna, Z., Pnueli,A.: From timed to hybrid systems. Proceedings of REX 
workshop ”Real-time: theory in practice”, Springer-Verlag, (1992). 

13. Harel, D., Gery, E: Executable object modeling with Statecharts. Computer, 30, 7 (1997). 
14. Alur, R. Et Al. : Modular specification of hybrid systems in Charon. Proceedings HSCC 

2000. LNCS 1790, 6—19 (2000). 
15. Borschev, A., Koleshov, Y., Senichenkov, Y.: Java Engine for UML based hybrid state 

machines. Proceedings of the 2000 Winter Simulation Conference, 1888—1894 (2000). 
16. Elmqvist, H., Mattson, E., Otter, M.:Modelica-the new object oriented language. 

Proceedings 12th European Simulation Multiconference, 127-131 (1998). 
17. Hoare, C.Ar.: Communicating Sequential Processes, Prentice-Hall, (1985).  
18. Rational Rose Real Time, http://www.rational.com. 


