
Approximate Compliance Checking for Annotated
Process Models

Ingo Weber1, Guido Governatori2, and Jörg Hoffmann1

1 SAP Research, Karlsruhe, Germany
〈first〉.〈last〉@sap.com

2 School of ITEE, The University of Queensland, Brisbane, QLD 4072, Queensland, Australia
guido@itee.uq.edu.au

Abstract. We describe a method for validating whether the states reached by
a process are compliant with a set of constraints. This serves to (i) check the
compliance of a new or altered process against the constraints base, and (ii) check
the whole process repository against a changed constraints base, e.g., when new
regulations come into being. For these purposes we formalize a particular class of
compliance rules as well as annotated process models, the latter by combining a
notion from the workflow literature with a notion from the AI actions and change
literature. The compliance rules in turn pose restrictions on the desirable states.
Each rule takes the form of a clausal constraint, i.e., a disjunction of literals. If
for a given state there is a grounded clause none of whose literals are true, then
the constraint is violated and indicates non-compliance.
Checking whether a process is compliant with the rules involves enumerating all
reachable states and is in general a hard search problem. Since long waiting times
undesirable, it is important to explore restricted classes and approximate methods.
We present a polynomial-time algorithm that, for a particular class of processes,
computes the sets of literals that are necessarily true at particular points during
process execution. Based on this information, we devise two approximate compli-
ance checking methods. One of these is sound but not complete (it guarantees to
find only non-compliances, but not to find all non-compliances); the other method
is complete but not sound. We sketch how one can trace the state evolution back
to the process activities which caused the (potential) non-compliance, and hence
provide the user with some error diagnosis.3

1 Introduction

Compliance management is an area of increasing importance in several industry sectors
where there is a high incidence of regulatory control e.g., financial services, gaming,
and healthcare. Ensuring that business practices reflected in business process models
are compliant to required regulations (existing and new) is a highly challenging task
due to the following reasons. Firstly, the lifecycles of the two (regulatory obligations vs.
business strategy) are not aligned in terms of time, governance, or stakeholders [17] and
hence compliance requirements cannot simply be incorporated into the initial design of

3 This work has in part been funded through the European Union’s 6th Framework Programme
under the SUPER project (IST FP6-026850, http://www.ip-super.org).

http://www.ip-super.org

Proceedings of GRCIS 2008 47

process models. Secondly, conceptually faithful specifications for compliance rules and
process models respectively are fundamentally different from a representational point
of view [23], thus making it difficult to provide comparison methods. In this paper, we
propose to provide retrospective checking of process models in acknowledgement of the
disparate lifecycles as mentioned above. That is (i) to check the compliance of a new
or altered process against the compliance rules, and (ii) check the whole process repos-
itory against changed compliance rules, e.g., when new regulations come into being.
Compliance rules are represented as a constraint base.

The constraint base is a universally quantified formula in conjunctive normal form.
That is, each compliance rule is a universally quantified clause, containing an arbitrary
disjunction of literals (with variables). Each clause is a constraint on the states that are
desirable as per the rule: if a state satisfies none of the literals of some grounding of the
rule (replacing its variables with some of the concrete entities handled by the process),
then that state is non-compliant with the rule.

Clearly, the complexity of compliance rules in general necessitates a more expres-
sive language (see e.g., [11]) than this form of constraint bases. Our aim in this paper is
not to provide a fully-fledged framework for compliance, but rather to demonstrate an
efficient compliance checking method for this particular restricted form of compliance.

.

.

.

Logical state
representation

clause1

clause2

clause3

clause4

clause5

clause6

clause7

clause8

clause9

...

Constraint base

Legalese

Comparison
Pre2

T2

Post2

Pre1

T1

Post1

Pre4

T4

Post4

Pre3

T3

Post3Pre5

T5

Post5

I*(e4), U*(e4)

I*(e1), U*(e1)

I*(e2), U*(e2)

I*(e3), U*(e3)

Formalisation

Annotated
Process Model

Fig. 1. An overview of our framework.

Fig. 1 gives an overview of our framework. Processes are modelled in terms of a
typical workflow language, featuring task nodes (the activities carried out inside the
process) as well as parallel splits/joins and xor splits/joins to model the control flow.
Such a model per se specifies only which sequences of activities – which execution
paths – may occur; it cannot model more subtle or indirect dependencies between the
activities. To cater for the latter, we allow semantic annotations: tasks are annotated
with preconditions and effects, which are conjunctions of logical literals; an ontology
axiomatizes the behavior of the underlying business domain. Execution paths of the
process then traverse states from a logical state representation, as shown in Fig. 1.

48 Proceedings of GRCIS 2008

Note that the possibility to semantically annotate the process already opens up op-
portunities for certain forms of compliance checking, even without introducing a con-
straints base: e.g., if, by a compliance rule expressing an obligation, activity A must
always be performed prior to an activity B, then we can give B a (new) precondition p
and include p into A’s effect. The process is then compliant with the rule iff B’s precon-
dition is always guaranteed to be true.

We leave the detailed exploration of encoding methods as above for future work.
Herein, we focus on clausal constraints – disjunctive compliance rules – which are
more powerful. They enable the modeller to specify that one out of a number of condi-
tions must always be satisfied – by contrast, preconditions formulate only conjunctive
rules, specifying that all of a number of conditions must always be satisfied. An ex-
ample of a disjunctive compliance rule is that a cheque must be signed by any two
of the people authorised to sign it. So let us assume that we have three people autho-
rised to sign cheques, a, b, and c, thus this condition can be written in form of rule
as cheque(x)→ sign(x, a, b) ∨ sign(x, a, c) ∨ sign(x, b, c), which correspond to the
clause ¬cheque(x) ∨ sign(x, a, b) ∨ sign(x, a, c) ∨ sign(x, b, c).

The compliance rules are checked against the logical states that can be traversed
by the process. In general, to do this there is no way around enumerating the logical
states, in one way or another; concretely, we prove that deciding whether or not a non-
compliance exists is NP-hard even for very restricted processes, with no ontological
axiomatization and with only a single clause in the constraints base. Since long wait-
ing times during process modelling are undesirable, and checking the compliance of a
whole process repository against an altered constraint base may become completely in-
feasible if the computation takes too long, it is hence important to explore approximate
methods. We present a polynomial-time algorithm that, for a particular class of pro-
cesses, computes the sets of literals that are necessarily true at particular points during
process execution (cf. “Logical state representation” in Fig. 1). Based on this infor-
mation, we devise two approximate compliance checking methods. The first of those
essentially checks whether all literals of a clause are necessarily false. This method is
sound but not complete (it guarantees to find only non-compliances, but not to find all
non-compliances). The other method essentially checks whether none of the literals of
a clause is necessarily true. This method is complete but not sound. We sketch how one
can trace the state evolution back to the process activities which caused the (potential)
non-compliance, and hence provide the user with some non-compliance diagnosis.

Section 2 introduces our formalism for annotated processes. Section 3 presents our
algorithms for finding non-compliances. Section 4 explains how errors can be diag-
nosed. Section 5 discusses related work, and Section 6 concludes. Many technical de-
tails, including full formal proofs, are removed for the sake of readability and are avail-
able in [21]; there, we also provide several detailed examples.

2 Annotated Business Processes and Constraint Bases

In the following we introduce a formalism for business processes whose tasks are an-
notated with logical preconditions and effects. We formalize how constraints on the
process execution can be expressed.

Proceedings of GRCIS 2008 49

2.1 Annotated Business Processes

Our business processes consist of different kinds of nodes (task nodes, split nodes, . . .)
connected with edges. We will henceforth refer to this kind of graphs as process graphs.

For the sake of readability, we first introduce non-annotated process graphs. This
part of our definition is, without any modification, adopted from the workflow literature,
following closely the terminology and notation used in [20].

Definition 1. A process graph is a directed graph G = (N , E), where N is the disjoint
union of {n0, n+} (start node, stop node),NT (task nodes),NPS (parallel splits),NPJ

(parallel joins), NXS (xor splits), and NXJ (xor joins). For n ∈ N , IN(n)/OUT (n)
denotes the set of incoming/outgoing edges of n. We require that: for each split node n,
|IN(n)| = 1 and |OUT (n)| > 1; for each join node n, |IN(n)| > 1 and |OUT (n)| =
1; for each n ∈ NT , |IN(n)| = 1 and |OUT (n)| = 1; for n0, |IN(n)| = 0 and
|OUT (n)| = 1 and vice versa for n+; each node n ∈ N is on a path from the start to
the stop node. If |IN(n)| = 1 we identify IN(n) with its single element, and similarly
for OUT (n); we denote OUT (n0) = e0 and IN(n+) = e+.

The intuitive meaning of these structures should be clear: an execution of the pro-
cess starts at n0 and ends at n+; a task node is an atomic action executed by the process;
parallel splits open parallel parts of the process; xor splits open alternative parts of the
process; joins re-unite parallel/alternative branches. The stated requirements are just
basic sanity checks any violation of which is an obviously flawed process model.

Formally, the semantics of process graphs is, similarly to Petri Nets, defined as a
token game. A state of the process is represented by tokens on the graph edges. Like
the notation, the following definition closely follows [20].

Definition 2. Let G = (N , E) be a process graph. A state t of G is a function t : E 7→
N; we call t a token mapping. The start state t0 is t0(e) = 1 if e = e0, t0(e) = 0
otherwise. Let t and t′ be states. We say that there is a transition from t to t′ via n,
written t→n t′, iff one of the following holds:

1. n ∈ NT ∪ NPS ∪ NPJ and t′(e) = t(e) − 1 if e ∈ IN(n), t′(e) = t(e) + 1 if
e ∈ OUT (n), t′(e) = t(e) otherwise.

2. n ∈ NXS and there exists e′ ∈ OUT (n) such that t′(e) = t(e)− 1 if e = IN(n),
t′(e) = t(e) + 1 if e = e′, t′(e) = t(e) otherwise.

3. n ∈ NXJ and there exists e′ ∈ IN(n) such that t′(e) = t(e) − 1 if e = e′,
t′(e) = t(e) + 1 if e = OUT (n), t′(e) = t(e) otherwise.

An execution path is a transition sequence starting in t0. A state t is reachable if there
exists an execution path ending in t.

Definition 2 is straightforward: t(e), at any point in time, gives the number of tokens
currently at e. Task nodes and parallel splits/joins just take the tokens from their IN
edges, and move them to their OUT edges; xor splits select one of their OUT edges; xor
joins select one of their IN edges. For the remainder of this paper, we will assume that
the process graph is sound: from every reachable state t, a state t′ can be reached so that
t′(e+) > 0; for every reachable state t, t(e+) ≤ 1. This means that the process does

50 Proceedings of GRCIS 2008

not contain deadlocks, and that each completion of a run is a proper termination, with
no tokens remaining inside the process. These properties can be ensured using standard
workflow validation techniques, e.g., [19,20].

For the annotations, we use standard notions from logics, involving logical predi-
cates and constants (the latter correspond to the entities of interest at process execution
time).4 We denote predicates with G,H, I and constants with c, d, e. Facts are predi-
cates grounded with constants, Literals are possibly negated facts. If l is a literal, then
¬l denotes l’s opposite (¬p if l = p and p if l = ¬p); if L is a set of literals then ¬L
denotes {¬l | l ∈ L}. We identify sets L of literals with their conjunction

∧
l∈L l. Given

a set P of predicates and a set C of constants, P[C] denotes the set of all literals based
on P and C; if arbitrary constants are allowed, we write P[].

A clause is a universally quantified disjunction of atoms, e.g., ∀x.¬G(x)∨¬H(x).
A theory T is a conjunction of clauses.5 Our efficient algorithms will be designed for
binary theories: a clause is binary if it contains at most two literals; a theory is binary
if it is a conjunction of binary clauses. Note that binary clauses can be used to specify
many common ontology properties such as subsumption relations ∀x.G(x) ⇒ H(x)
(φ ⇒ ψ abbreviates ¬φ ∨ ψ), attribute image type restrictions ∀x, y.G(x, y) ⇒ H(y),
and role symmetry ∀x, y.G(x, y)⇒ G(y, x).

An ontology O is a pair (P, T) where P is a set of predicates (O’s formal termi-
nology) and T is a theory over P (constraining the behaviour of the application domain
encoded by O). Annotated process graphs are defined as follows.

Definition 3. An annotated process graph is a tuple G = (N , E ,O,A). (N , E) is a
process graph,O = (P, T) is an ontology, andA, the annotation, is a function mapping
n ∈ NT∪{n0, n+} to (pre(n), eff(n)) where pre(n), eff(n) ⊆ P[]. We require that there
does not exist an n so that T ∧ eff(n) is unsatisfiable, or T ∧ pre(n) is unsatisfiable.

We refer to cycles in (N , E) as loops. We refer to pre(n) as n’s precondition, and to
eff(n) as n’s effect (sometimes called postcondition in the literature). The annotation of
tasks – atomic actions that on the IT level can e.g., correspond to Web service executions
– in terms of logical preconditions and effects closely follows Semantic Web service
approaches such as OWL-S (e.g., [1,6]) and WSMO (e.g., [7]). All the involved sets of
literals (pre(n), eff(n)) are interpreted as conjunctions. Similarly to Definition 1, the
requirements stated in Definition 3 are just basic sanity checks.

Example 1. Consider the annotated process graph depicted in Figure 2 (using the
slightly extended BPNM notation from [4]). In short, data objects depict the entities
of interest, and associations link them to activities. Preconditions and effects are dis-
played as text on the associations, where the preconditions are denoted subsequent to
“<” and the effects after “>” .

In terms of the formal notations from Definition 3, this process graph is defined as
follows (by the number of “.” symbols in the definition of logical predicates we indicate
their arity):

4 Hence our constants correspond to BPEL “data variables” [15]; note that the term “variables”
in our context is reserved for variables as used in logics, quantifying over constants.

5 As indicated, our compliance rules are also clauses; however, their formal interpretation is
different. This will be explained further below, when we formally introduce constraint bases.

Proceedings of GRCIS 2008 51

< PurchaseOrder (PO)
> isSent(PO)

< PurchaseOrder (PO), isSent(PO)
> isCancelled(PO)

Send PO

PO

Send
cancellation

Fig. 2. Basic example of a semantic process model (extended BPMN diagram).

P := { PurchaseOrder(.), isCancelled(.), isSent(.)}; C := {PO}; T := ∅;
NT := {n1, n3}; NXS := {n2}; NXJ := {n4};
E := {(n0, n1), (n1, n2), (n2, n3), (n2, n4), (n4, n+)}.
The annotation function is given by the following:

n1 (“Send PO”): pre(n1) := {PurchaseOrder(PO)}
eff(n1) := {isSent(PO)}

n3 (“Send cancellation”): pre(n3) := {PurchaseOrder(PO), isSent(PO)}
eff(n3) := {isCancelled(PO)}

This simplistic process sends out a purchase order, followed by an optional cancellation.
This kind of process model combines a formalized view on both the process structure
and the semantics of the individual activities. The semantics of individual activities
is specified by capturing under which circumstances the execution of an activity in a
process instance will change “the world” in which way – where “the world” is the
relevant business domain as formalized by the underlying ontology.

The formal execution semantics is defined as follows.

Definition 4. Let G = (N , E ,O,A) be an annotated process graph. Let C be the set of
all constants appearing in any of the annotated pre(n), eff(n). A state s of G is a pair
(ts, is) where t is a token mapping and i is an interpretation i : P[C] 7→ {0, 1}. A start
state s0 is (t0, i0) where t0 is as in Definition 2, and i0 |= T [C] ∧ eff(n0). Let s and s′

be states. We say that there is a transition from s to s′ via n, written s→n s′, iff one of
the following holds:

1. n ∈ NPS ∪NPJ ∪NXS ∪NXJ , is = is′ , and ts →n ts′ according to Definition 2.
2. n ∈ NT ∪ {n+}, ts →n ts′ according to Definition 2, is |= pre(n) and is′ ∈
min(is, T [C]∧ eff(n)) where min(is, T [C]∧ eff(n)) is defined to be the set of all
i that satisfy T [C] ∧ eff(n) and that are minimal with respect to the partial order
defined by i1 ≤ i2 :iff {p ∈ P[C] | i1(p) = is(p)} ⊇ {p ∈ P[C] | i2(p) = is(p)}.

An execution path is a transition sequence starting in a start state s0. A state s is
reachable if there exists an execution path ending in s.

Given an annotated process graph (N , E ,O,A), we will use the term execution path
of (N , E) to refer to an execution over tokens that acts as if no annotations were present.

52 Proceedings of GRCIS 2008

The part of Definition 4 dealing with n ∈ NPS ∪ NPJ ∪ NXS ∪ NXJ parallels
Definition 2: the tokens pass as usual, and the interpretation remains unchanged.

Consider now the start states, of which there may be many, namely all those that
comply with T , as well as eff(n0) (if annotated). This models the fact that, at design
time, we do not know the precise situation in which the process will be executed. All
we know is that, certainly, this situation will comply with the domain behavior given in
the ontology and with the properties guaranteed as per the annotation of the start node.

The semantics of task node executions is the most intricate bit. First, for the obvious
reasons, pre(n) is required to hold. The tricky bit lies in the definition of the possible
outcome states i′. Our semantics defines this to be the set of all i′ that comply with
T and eff(n), and that differ minimally from i. Here we draw on the AI actions and
change literature for a solution to the frame and ramification problems. The latter prob-
lem refers to the need to make additional inferences from eff(n), as implied by T ; this
is reflected in the requirement that i′ complies with both. The frame problem refers to
the need to not change the previous state arbitrarily – e.g., if an activity changes an ac-
count A, then any account B should not be affected; this is reflected in the requirement
that i′ differs minimally from i. More precisely, i′ is allowed to change i only where
necessary, such that there is no i′′ that makes do with fewer changes. This semantics
follows the possible models approach (PMA) [22]; while this approach is not entirely
uncontroversial, it underlies all recent work on formal semantics for execution of Se-
mantic Web services (e.g., [14,3,10]). Other semantics from the AI literature (see [13]
for an excellent overview) could be used in principle; this is a topic for future research.

In the rest of the paper, we assume that all task node are executable – whenever
a task is activated, its preconditions are made true: for all reachable states s with
ts(IN(n)) > 0, s |= pre(n); and that there are no effect conflicts: for any two parallel
task nodes n1 and n2, T ∧ eff(n1)∧ eff(n2) is satisfiable. Both are desirable properties
of any process; the properties can be validated using techniques currently under explo-
ration by the authors, in other work; we assume that such a technique has completed
successfully.

2.2 Constraint Bases

It remains to define what constraints and non-compliances are:

Definition 5. Let G = (N , E ,O,A) be an annotated process graph, where O =
(P, T). A constraints base B is a set of clauses.

Let C be the set of all constants appearing in any of the annotated pre(n), eff(n),
and let s be a reachable state. Then s is a non-compliance, or non-compliant state, iff
there exists φ ∈ B such that s 6|= φ[C].

This definition is straightforward and should be self-explanatory. It should, however,
be noted that the vocabulary for B and T is assumed to be the same here. I.e., with
respect to using B to express compliance constraints, this means that the annotation
of the process is assumed to refer to statements of interest to compliance checking. In
practice, this may require additional modeling.

The subtle point here is the distinction between B and T . Both are formalized sim-
ilarly; the difference lies in how they are interpreted. T models the conditions that any

Proceedings of GRCIS 2008 53

state must satisfy, due to the “physical” behavior of the underlying business domain
(such as, any purchase order of a particular product is, in particular, a purchase order).
In contrast, B models the conditions that any state should satisfy, in order to comply
with the rules of the business (such as, for example, that the auditor for any activity is
different from the actor who performed or authorised the activity – separation of duties).
At a formal level, this difference is accounted for by using T as part of the definition
how states evolve, while using B “only” to check whether the states are desirable or not.

3 Non-compliance Detection

We now specify two polynomial-time approximate methods to find non-compliances.
Both methods rely on the information computed by a certain propagation algorithm,
which is defined for a particular class of processes. We specify the propagation algo-
rithm, then its use for compliance checking.

3.1 Propagation Algorithm

The algorithm finds, for every edge in the process, the set of literals that are always true
when the edge is activated. The algorithm is defined for “basic” processes:

Definition 6. Let G = (N , E ,O,A), O = (P, T), be an annotated process graph. G
is basic if it contains no loops, and T is binary.

It should be noted that the absence of loops is a strong requirement. We are currently
working on extending our algorithms to be able to deal with loops.

For complexity considerations, we assume fixed arity in the following, i.e., a fixed
upper bound on the arity of predicates P . This is a realistic assumption because predi-
cate arities are typically very small in practice (e.g., in Description Logics the maximum
arity is 2). Given a process graph whose annotations mention the constants C, and a set
L of literals (such as a task node effect), in the following we denote L := {l ∈ P[C] |
T ∧ L |= l}, i.e., L is the closure of L under implications in the theory T . Since T is
binary, L can be computed in polynomial time given fixed arity [2].

The algorithm performs three steps: (1) Determine a numbering # of the edges E
so that, whenever task node n1 is ordered before task node n2 in every process execu-
tion, then #(IN(n1)) < #(IN(n2)). (2) Using #, determine all pairs of parallel task
nodes. (3) Using that information, determine, for each edge e, the set of literals that is
always true when e is active. In what follows, we explain in detail steps (2) and (3), in
that order. Step (1) is relatively straightforward, and can be looked up in [21].

Step (2) propagates matrix functions M along the edges of the process graph. M
contains one entry for every pair of edges in E ; # is used for indexing into M . The
propagation steps are defined below. We use the following helper notations: #−1 is the
inverse function of #, i.e., #−1(i) = e iff #(e) = i; given a node n, #INmax(n) :=
max{#(e) | e ∈ IN(n)} is the maximum number of any incoming edge, and similarly
for #OUTmin(n) and #OUTmax(n).

54 Proceedings of GRCIS 2008

Definition 7. Let G = (N , E ,O,A) be an annotated process graph. A matrix M is a
function M : {0, . . . , |E| − 1} × {0, . . . , |E| − 1} 7→ {0, 1,⊥}. We define the matrix
M0 as (M0)i

j = 0 if i = j, (M0)i
j = ⊥ otherwise. Let M and M ′ be matrices, n ∈ N .

We say that M ′ is the propagation of M at n iff we have:

1. For all j ∈ {0, . . . ,#INmax}, we have M j
#(e) 6= ⊥.

2. For all e ∈ OUT (n) and j ∈ {0, ..., |E| − 1} \ {#(e)}, we have M j
#(e) = ⊥.

As well as one of the following:

3. n ∈ NT and M ′ is given by M ′ij = M i
#(IN(n)) if #(OUT (n)) = j and i < j,

M ′ij = M i
j otherwise.

4. n ∈ NPS and

M ′ij =


M i

#(IN(n)) #−1(j) ∈ OUT (n) and i < #OUTmin(n)

1 #−1(j) ∈ OUT (n) and i 6= j
and #OUTmin(n) ≤ i ≤ #OUTmax(n)

M i
j otherwise.

5. n ∈ NXS and

M ′ij =


M i

#(IN(n)) #−1(j) ∈ OUT (n) and i < #OUTmin(n)

0 #−1(j) ∈ OUT (n) and i 6= j
and #OUTmin(n) ≤ i ≤ #OUTmax(n)

M i
j otherwise.

6. n ∈ NPJ and

M ′ij =


1 #(OUT (n)) = j and i < j and for all e ∈ IN(n) : M i

#(e) = 1

0 #(OUT (n)) = j and i < j and ex. e ∈ IN(n) : M i
#(e) = 0

M i
j otherwise.

7. n ∈ NXJ , and for all e, e′ ∈ IN(n) we have M#(e) = M#(e′), and M ′ is given
by M ′ij = M i

#(e) if #(OUT (n)) = j and i < j and e ∈ IN(n), M ′ij = M i
j

otherwise.

If M∗ results from starting in M0, and stepping on to propagations until no more prop-
agations exist, then we call M∗ an M -propagation result.

Definition 7 is hard to read; however, the underlying key ideas are simple. The
matrix M annotated at edge e, at any point in time, provides complete information
about all edges preceding e according to #; precedence according to # is meaningful
because # respects task node orderings. The definition of M0 is obvious, likewise case
3 which handles task nodes. In a parallel split n (case 4), n’s OUT edges copy the
information from n’s IN edge, except that the OUT edges are marked to be parallel
with respect to each other. For xor splits (case 5), the OUT edges are marked to be not
parallel with respect to each other. In a parallel join (case 6), an OUT edge is parallel to
a preceding edge iff all IN edges are. Finally, xor joins (case 7) are only executed if all
IN edges agree on parallelism: if they don’t, then the underlying workflow is unsound;
if they do, then the OUT edge simply copies the information from the IN edges.

Proceedings of GRCIS 2008 55

Lemma 1. Let G = (N , E ,O,A) be an annotated process graph. There exists ex-
actly one M -propagation result M∗, and for all n1, n2 ∈ NT we have n1 ‖ n2 iff
M∗

#(IN(n2))
#(IN(n1))

= 1. The time required to compute M∗ is polynomial in the size of G.

Proof Sketch: Uniqueness of M∗ follows because 1 (2) requires all IN (OUT) edges to
be determined (not determined), and any propagation affects only OUT edges.

Parallelism between two nodes is determined by the routing constructs between the
start node and these two nodes. Namely, we have n1 ‖ n2 iff n1 and n2 have a common
ancestor n ∈ NPS with no corresponding join node in between, and n1 and n2 do not
lie on different sides of an xor-split. By construction of cases 4–7, which propagate
exactly this information, these conditions hold true iff M∗#(IN(n2))

#(IN(n1))
= 1. Obviously,

the propagation takes polynomial time.

Having completed the computation of M∗, we can proceed to step (3) of the al-
gorithm, determining, for each edge e, the set of literals that is always true when e is
active. Again, this computation is based on propagation steps; this time, the propaga-
tions update sets of literals that are assigned to the edges. In the fixpoint, these literal
sets are exactly the desired ones. The information from M∗ is used to determine the
“side effects” that any task node may have, on edges other than its own OUT edge.

Definition 8. Let G = (N , E ,O,A) be a basic annotated process graph without effect
conflicts, and with constants C; let M∗ be the M -propagation result. We define the
function I0 : E 7→ 2P[C] ∪ {⊥} as I0(e) = eff(n0) if e = OUT (n0), I0(e) = ⊥
otherwise. Let I, I ′ : E 7→ 2P[C] ∪ {⊥}, n ∈ N . We say that I ′ is the propagation of I
at n iff one of the following holds:

1. n ∈ NPS∪NXS , and I(IN(n)) 6= ⊥, and for all e ∈ OUT (n) we have I(e) = ⊥,
and I ′ is given by I ′(e) = I(IN(n)) if e ∈ OUT (n), I ′(e) = I(e) otherwise.

2. n ∈ NPJ , and for all e ∈ IN(n) we have I(e) 6= ⊥, and I(OUT (n)) = ⊥, and
I ′ is given by I ′(e) =

⋃
e′∈IN(n) I(e

′) if e = OUT (n), I ′(e) = I(e) otherwise.
3. n ∈ NXJ , and for all e ∈ IN(n) we have I(e) 6= ⊥, and I(OUT (n)) = ⊥, and
I ′ is given by I ′(e) =

⋂
e′∈IN(n) I(e

′) if e = OUT (n), I ′(e) = I(e) otherwise.
4. n ∈ NT , and I(IN(n)) 6= ⊥, and I(OUT (n)) = ⊥, and

I ′(e) =


eff(n) ∪ (I(IN(n)) \ ¬eff(n)) e = OUT (n)
I(e) \ ¬eff(n) M∗

#(e)
#(IN(n)) = 1 and I(e) 6= ⊥

I(e) otherwise

If A(n) is not defined then eff(n) := ∅ in the above.

If I∗ results from starting in I0, and stepping on to propagations until no more propa-
gations exist, then we call I∗ an I-propagation result.

Like Definition 7, Definition 8 is a little hard to read but relies on straightforward
key ideas. The definition of I0 is obvious. For split nodes (case 1), the OUT edges sim-
ply copy their sets from the IN edge. For parallel joins (case 2), the OUT edge assumes
the union of I(e) for all IN edges e; for xor joins (case 3), the intersection is taken

56 Proceedings of GRCIS 2008

instead. The handling of task nodes (case 4) is somewhat more subtle. First, although
there are no effect conflicts it may happen that a parallel node has inherited (though not
established itself, due to the postulated absence of effect conflicts) a literal which the
task node effect contradicts; hence line 2 of case 4.6 Second, we must determine how
the effect of n may affect any of the possible interpretations prior to executing n. This
is non-trivial due to the complex semantics of task executions, based on the PMA [22]
definition of minimal change for solving the frame problem, c.f. Section 2. Our key
observation is:

(*) With binary T , if executing a task makes literal l false in at least one possible
interpretation, then ¬l is necessarily true in all possible interpretations.

Due to this observation, it suffices to subtract ¬eff(n) in the top and middle lines of
the definition of I ′(e): l does not become false in any interpretation, unless ¬l follows
logically from eff(n). Importantly, (*) does not hold for more general T ; see [21] for
an example where T is Horn.

Lemma 2. Let G = (N , E ,O,A) be a basic annotated process graph where all n ∈
NT are executable and where there are no effect conflicts. There exists exactly one I-
propagation result I∗. For all e ∈ E , we have that l ∈ I∗(e) iff, for all reachable states s
where ts(e) > 0, s |= l. With fixed arity, the time required to compute I∗ is polynomial
in the size of G.

Proof Sketch: Uniqueness of I∗ follows similarly as for Lemma 1. The second property
is obvious for OUT (n0), as well as the outgoing edges of split nodes (case 1). If we
join parallel branches, then all their results will be true (case 2). If we join alternative
branches, then only their common results will be true (case 3). For task nodes (case 4),
the above (*) shows that, with binary T , every literal l true at IN(n) remains true at
OUT (n) unless its opposite ¬l can be derived from n’s effect. The time required to
compute I∗ is polynomial because, with fixed arity and binary T , the implications of a
literal conjunction can be computed in polynomial time.

3.2 Compliance Checking

Once the propagation finished, we can use the outcomes to actually check the compli-
ance of the process model. Based on the information provided by I∗, it is easy to devise
two approximate methods for compliance checking. We need a few more notations. Say
G = (N , E ,O,A) is a basic annotated process graph with constants C. If I∗ is the I-
propagation result, then for e ∈ E we denote U∗(e) := {l | l ∈ P[C],¬l 6∈ I∗(e)}. If
B is a constraints base, and φ = ∀X.ψ(X) is a clause in B, then any grounding ψ(C ′)
of ψ with a tuple C ′ of constants from C is a grounded constraint. We identify ψ(C ′)
with the set of literals it contains.

It follows immediately from Lemma 2 that U∗(e) is exactly the set of literals that
may be true when e is activated: l ∈ U∗(e) iff there exists a reachable state s such that
ts(e) > 0 and s |= l. Further, it is obvious that any state s is a non-compliance iff it
violates one of the grounded constraints. We hence get:

6 The interactions of parallel nodes with conflicting effects may be quite subtle, and require a
much more complicated propagation algorithm.

Proceedings of GRCIS 2008 57

Theorem 1. Let G = (N , E ,O,A) be a basic annotated process graph where all n ∈
NT are executable and where there are no effect conflicts; let I∗ be the I-propagation
result. Then, for all e ∈ E:

1. If there exists a grounded constraint ψ(C ′) such that ¬ψ(C ′) ⊆ I∗(e), then every
reachable state s with ts(e) > 0 is a non-compliance.

2. If there exists a non-compliant state s with ts(e) > 0, then there exists a grounded
constraint ψ(C ′) such that ¬ψ(C ′) ⊆ U∗(e).
Theorem 1 immediately suggests our two approximate methods: for every edge e,

check whether there exists a grounded constraint ψ(C ′) such that 1. ¬ψ(C ′) ⊆ I∗(e),
or 2. ¬ψ(C ′) ⊆ U∗(e). In the first case, we know for sure that a non-compliant state
exists (presuming that a state activating e is reachable). In the second case, we know that
a non-compliant state may exist; by contra-position, if the second test fails for all e then
we know that the process complies with the constraints base. Clearly, if all predicates
have a fixed arity and if the number of ground constraints is polynomial (i.e., if the
number of variables in any constraint is fixed), then all the tests can be performed in
polynomial time.

Importantly, approximation is the best we can do with a polynomial-time algorithm:

Theorem 2. Assume a basic annotated process graph G = (N , E ,O,A) and a con-
straints base B. Deciding whether there exists a non-compliant state is NP-hard even if
predicate arity is 0, T is empty, and B contains a single clause.

Proof. By a reduction from SAT. Say ψ =
∨n

i=1 ψi is a propsitional CNF formula,
over a set P of propositions. We take the set of predicates to be P ∪ {p1, . . . pn} where
p1, . . . , pn are new. We take effn0 to be {¬p1, . . .¬pn}, so that the start states have
all pi false and otherwise correspond to the set of interpretations of P . Our process is
a sequence of n xor splits/joins, with several branches each. In the ith split/join, one
“negative” branch consists of a task node with precondition {l | ¬l is contained in ψi}
and no effect; there is one “positive” branch for every l contained in ψi, consisting of
a task node with precondition l and effect {pi}. The single constraint is taken to be
¬p1 ∨ · · · ∨ ¬pn. The only chance to violate this constraint is to reach a state where a
positive branch has been taken for every clause ψi. Obviously, this can be done if and
only if ψ is satisfiable.

Note that the hard bit in Theorem 2 lies in checking whether a set of literals can
be true all at the same time. We have a single grounded constraint, ψ, and we have
¬ψ = {p1, . . . , pn}. If e is, say, the outgoing edge of the nth xor join, then quite
obviously we have I∗(e) = ∅ (unless one of the clauses is empty, or contains both
a literal and its opposite, which cases we can exclude without loss of generality) and
we have U∗(e) = {¬p1, . . .¬pn, p1, . . . , pn}. So U∗(e) tells us that a non-compliance
may exist – because each pi may be true – but it tells us nothing about whether we can
actually make all the pi true at the same time.

4 Error Diagnosis

In order to efficiently support the user in compliance checking, it is of high value to be
able to point out the sources of an error. Since we check the compliance rules against

58 Proceedings of GRCIS 2008

summaries of the logical states that may occur, we can try to find out how the logical
states leading to non-compliance came into being. When a particular state summary
does not satisfy one of the compliance rules in the constraint base (and, thus, the related
states are (potentially) non-compliant), then there is a set of literals which account for
this behavior. We now need to trace back which activities in the process model caused
these ground literals.

This can be achieved by maintaining a support function for each ground literal, i.e.,
a (potentially empty or unary) list of process tasks whose effects lead to this ground
literal, explicitly or implicitly. Formally, fs : L → {NT }; fs(l) := {n ∈ NT | l ∈
eff(n)}. It is easy to see that this support function can be created with little overhead
during the I-propagation.

Say, a constraint clause ψ does not hold for the I∗(e) or U∗(e) of some e. Then, we
want to point out which tasks are responsible for this non-compliance. First, consider
the case where ψ does not hold for I∗(e), formally: ¬ψ(C) ⊆ I∗(e). That means
that we are guaranteed to have non-compliance, and we want to mark all tasks which
contributed to this state. Any such task node n′ has the characteristics that it is executed
before e, i.e., there is a path in the graph from n′ to n, with n being the node from
which e originates: e ∈ OUT (n). Further, n′ contributes to the non-compliance, i.e.,
eff(n) ∩ ¬ψ(C) 6= ∅.

Now consider the case where ψ does not hold for U∗(e), ¬ψ(C) ⊆ U∗(e), which
means that non-compliance may occur. In this case there are two types of literals in
¬ψ(C):

– Those literals which are contained in I∗(e), and hence will definitely occur. We
refer to this set as A := ¬ψ(C ′) ∩ I∗(e). Their treatment is as in the first case,
where we mark all actions which contribute to this circumstance.

– Those literals which may occur, i.e., they are in U∗(e) but not in I∗(e). This set
is called B := ¬ψ(C) \ I∗(e).7 For the literals in B it is rather interesting why
it cannot be assumed that their involvement in the non-compliance has not been
prevented. This may be the case because a task node n′ which is necessary for the
prevention may not exist; or n′ may be only optional, and we can thus not assume
it has been executed when e is activated; or n′ may be executed in parallel to n,
where it should be executed before n; or n′ is positioned after n in the process. We
thus mark all task nodes n′ with eff(n′) ∩ ¬(¬ψ(C) \ I∗(e)) 6= ∅, regardless of
their position relative to n in the process graph.

How the sets of nodes can be computed should be obvious, given the support func-
tion fs and the process graph. Once this is done, the marked tasks can be presented by
the respective front-end in one way or another, e.g., by giving a list of non-compliance
sources, or by graphically high-lighting the involved tasks.

5 Related Work

While the issue of compliance business process models with normative specification
started receiving attention in the past few years, the study of how to formally represent

7 Note that A ∩B = ∅ and A ∪B = ¬ψ(C).

Proceedings of GRCIS 2008 59

normative specifications has a long history and a full detailed comparison with the vast
literature is out of the scope of the paper. In the context of this paper is worth remem-
bering that the use of logical clauses for normative specifications goes back to Kowalski
and Sergot [18], who proposed to encode regulations and normative systems as logic
programs. More recently [8] proposed to use Event Calculus and logic programming
as executable specifications for contracts, though the main focus is on monitoring the
performance of a contract.

[9] considers a similar approach where the tasks of a business process model, written
in BPMN, are annotated with the effects of the tasks, and a technique to propagate
and cumulate the effects from a task to a successive contiguous one is proposed. The
technique is designed to take into account possible conflicts between the effects of tasks
and to determine the degree of compliance a BPMN specification. Contrary to what
we do this approach does not determine at design time whether a business process is
both executable and compliant. [5] on the other hand investigates compliance in the
context of agents and multi-agent systems based on a classification of paths of tasks.
[16] proposed Concurrent Transaction Logic to model the states of a workflow and
presented some algorithms to determine whether the workflow is compliant.

The major limitation of most of the approaches to compliance is that they ignore
the normative aspects of compliance. A notable exception is [12] that proposes to use
FCL, a simple rule base logic enriched with deontic operators, to specify the obliga-
tions a process has to fulfil. They argue that compliance is the relationship between the
potential execution states of a process and the normative specifications (resulting in the
so called ideal-semantics). We plan to extend our work to incorporate FCL, for express-
ing the normative specifications and the current framework for the representation of the
semantics of a business process for a more accurate analysis of the business process
compliance phenomena.

6 Conclusion

We have presented a formalism for annotated process models, and we have devised ap-
proximate methods, with either a soundness or a completeness guarantee, for validating
a process against a set of compliance rules in the form of disjunctive constraints that
model which states are desirable.

Of course, this is but a first step in exploring this form of compliance checking.
First, there is a myriad of open questions within our current formalism: e.g., how to
properly support loops? and how should we design compliance checking for compu-
tationally hard cases? Apart from this kind of issues, the formalism as such is lacking
expressiveness in comparison to rich notions for compliance such as those in special-
ized formalisms as FCL. To cater for such compliance notions, beside the extension we
discussed in the previous section, our formalism must be extended with, e.g., ways of
expressing resource allocations and temporal aspects. While resource allocations may
to some extent be expressible in terms of semantic annotations, temporal constructs
add a whole new level of complexity to our framework; a possibly fruitful direction to
handle the latter is to extend our propagation algorithm with time windows expressing
when the literals will be necessarily true.

60 Proceedings of GRCIS 2008

References
1. A. Ankolekar et al. DAML-S: Web service description for the semantic web. In ISWC, 2002.
2. B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of certain

quantified boolean formulas. Information Processing Letters, 8:121–123, 1979.
3. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description logics and

action formalisms: First results. In AAAI, 2005.
4. Matthias Born, Florian Dörr, and Ingo Weber. User-friendly Semantic Annotation in Busi-

ness Process Modeling. In Hf-SDDM Workshop at WISE, 2007.
5. A. K. Chopra and M. P. Sing. Producing compliant interactions: Conformance, coverage

and interoperability. In Declarative Agent Languages and Technologies IV, volume 4327 of
LNAI, pages 1–15. Springer, 2007.

6. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services, 2003.
7. D. Fensel et al. Enabling Semantic Web Services: The Web Service Modeling Ontology.

Springer-Verlag, 2006.
8. A.D.H. Farrell, M.J. Sergot, M. Sallé, and C. Bartolini. Using the event calculus for tracking

the normative state of contracts. International Journal of Cooperative Information Systems,
14(2-3):99–129, 2005.

9. A. Ghose and G. Koliadis. Auditing business process compliance. In Service Oriented
Computing, ISOC 2007, LNCS, pages 169–180. Springer, 2007.

10. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the update of description logic
ontologies at the instance level. In AAAI, 2006.

11. G. Governatori and Z. Milosevic. A formal analysis of a business contract language. Inter-
national Journal of Cooperative Information Systems, 15(4):659–685, 2006.

12. G. Governatori, Z. Milosevic, and S. Sadiq. Compliance checking between business pro-
cesses and business contracts. In Patrick C. K. Hung, editor, 10th International Enterprise
Distributed Object Computing Conference (EDOC 2006), pages 221–232. IEEE Computing
Society, 16–20 October 2006.

13. A. Herzig and O. Rifi. Propositional belief base update and minimal change. Artificial
Intelligence, 115(1):107–138, 1999.

14. C. Lutz and U. Sattler. A proposal for describing services with DLs. In DL, 2002.
15. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.
16. D. Roman and M. Kifer. Reasoning about the behaviour of semantic web services with

concurrent transaction logic. In VLDB, pages 627–638, 2007.
17. S. Sadiq, G. Governatori, and K. Namiri. Modelling control objectives for business pro-

cess compliance. In Proc. 5th International Conference on Business Process Management,
Brisbane, Australia, 24-28 September 2007.

18. M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H.T. Cory. The
british nationality act as a logic program. Commun. ACM, 29(5):370–386, 1986.

19. W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and Systems.
The MIT Press, 2002.

20. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused control-flow analysis for
business process models though sese decomposition. In ICSOC, 2007.

21. I. Weber, G. Governatori, and J. Hoffmann. Approximate compliance checking for an-
notated process models. Technical report, School of ITEE, University of Queensland,
2008. Available at http://espace.library.uq.edu.au/eserv/UQ:135106/
tr-grcis08.pdf.

22. M. Winslett. Reasoning about actions using a possible models approach. In AAAI, 1988.
23. M. zur Muehlen, M. Indulska, and G. Kemp. Business process and business rule modeling

languages for compliance management: A representational analysis. In Intl. Conf. Concep-
tual Modelling (ER) - Tutorials, Posters, Panels and Industrial Contributions, 2007.

http://espace.library.uq.edu.au/eserv/UQ:135106/tr-grcis08.pdf
http://espace.library.uq.edu.au/eserv/UQ:135106/tr-grcis08.pdf

	Approximate Compliance Checking for Annotated Process Models
	Ingo Weber, Guido Governatori, and Jörg Hoffmann
	Introduction
	Annotated Business Processes and Constraint Bases
	Annotated Business Processes
	Constraint Bases

	Non-compliance Detection
	Propagation Algorithm
	Compliance Checking

	Error Diagnosis
	Related Work
	Conclusion

