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Abstract

Skill management systems serve as technical
platforms for mostly, though not exclusively,
corporate-internal market places for skills and
know-how. The systems are typically built on
top of a database that contains profiles of em-
ployees and applicants. Thus, the skills may
be retrieved through database queries. How-
ever, these approaches incur two major prob-
lems, viz. the finding of approximate matches
and the maintenance of skill data. In this
paper we describe two systems that lever-
age corporate skill knowledge by offering ad-
vanced means for both. We present ProPer
that uses means from decision theory to allow
for compensate skill matching. Then, we de-
scribe OntoProPer that combines these meth-
ods with intelligent means for inferencing of
skill data. For the latter an ontology provides
background knowledge, i.e. conceptual struc-
tures and rules, which supplement the skill
database with ground and inferred facts from
secondary information, such as project docu-
ments. These supplement facts reduce main-
tenance efforts since much secondary informa-
tion is gathered in the organizational memory
through common working tasks.
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1 Introduction

Human Resource Management (HRM) is a key factor
for success in knowledge-intensive companies. The ba-
sic and typically foremost problem is to find the right
person for the job. Then, the HR management should
recognize expertise gaps in the company and plan fur-
ther HRM development in order to get the most lever-
age out of the company’s human capital.

To support the HRM with keeping track of the com-
pany’s intellectual assets, to help managers with find-
ing people for their projects, and to facilitate that all
employees find experts for particular problems, many
knowledge-intensive companies have started to employ
skill management systems. These systems are typi-
cally database applications that allow to search for
people with particular skills or expertise using some
form interface to database entries. Notwithstanding
their benefits, this IT support for skill management is
often plagued by two non-trivial problems.

First, while there are many uses for finding per-
sons whose skills match exactly a particular database
search, more often the problem that a HR manager or
a project manager must face is to find someone who
roughly matches some given requirements. Second,
even when a process is established that ensures that
the skills of all employees are found in the database,
the maintenance of the database remains difficult.
People work in new projects, they acquire new exper-
tise, but they tend not to update the skill management
database!

Both of these problems also occurred in a practi-
cal setting at a large IT consulting company (approxi-
mately 500 employees) that we had to deal with. The
task of the first author was to develop and implement
a skill management system that allowed the HR man-
ager and the project managers, who have requirements
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for particular (project) positions, to retrieve “good”
matches from a database of people’s profiles. The pro-
files were about current employees, but they also came
from people outside the company who filed their ap-
plications via the company’s extranet.

We have developed a scheme that allowed to match
between requirements and skill profiles using various
methods from decision support systems, thus solving
the first problem of approximate matching. This ap-
plication, called ProPer, is in everyday use in the
company right now and has proved very successful, es-
pecially with regard to the selection of applicants from
outside the company.

Still, there has remained the problem of maintain-
ing skill profiles. Hence, we have conceived comple-
mentary methods for provisioning up-to-date informa-
tion to the skill database. The principal idea here
was that employees produce a lot of implicit knowl-
edge about themselves in their daily work and that
this output may be an interesting source for deriving
knowledge about the people’s expertise. For instance,
employees write project reports or they document on-
going projects in order to meet their customers’ re-
quirements, thus referring to the positions they had,
the tools and technology they used and the compa-
nies they worked for. Exploiting metadata from these
documents and using an ontology in order to struc-
ture document metadata, our prototype system, On-
toProPer, draws inferences in order to derive or up-
date the knowledge about individual’s skills and inte-
grates it with the skill matching capabilities of ProPer.

In the rest of this paper, we will first introduce
the architectures of ProPer and OntoProPer (c¢f. Sec-
tion 2). Then (Section 3), we describe the techniques
used for skill matching in ProPer and provide a de-
tailed example of how matching between profiles is
performed. Section 4 shows the foundations of On-
toProPer. We here explain the relationship between
skills, ontology and metadata and show an example of
how background knowledge is used to bring inferences
on metadata to the skill matching component. After
giving an overview of related work we conclude.
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2 Architecture of our case study

In this Section we present the architectures of our ap-
plication ProPer which corporates matching capabil-
ities and our prototype OntoProPer, which aims at
the integration of matching capabilities with means
for easier and more comprehensive maintenance of skill
data.

2.1 ProPer: Matching obvious skills

The architecture of ProPer is shown in Figure 1. It’s
general purpose was to introduce skill management
to a particular IT company. Four different use cases
exhibit requirements for the architecture of ProPer.
They show different types of users involved in the skill
management setting and problems to be solved by our
system: two of the use cases show different require-
ments for providing skill profiles (1, 2) and the other
two requirements for accessing stored skills (3, 4):

1. An applicant sends his application containing his
personal skill profile through the internet (i.e. via
an electronic job market).

2. An employee provides his skill profile through the
intranet (i.e. via web forms).

3. An employee seeks an expert within the company
who has certain skills.

4. A Human Resource Manager wants to fill vacant
positions (i.e. empty or new jobs).

On the infrastructure level these requirements were
fulfilled by storing skill profiles from applicants, em-
ployees and jobs in a profile database and by enabling
matching between skill profiles on top of the database.

The general components of ProPer are widely
known, hence we restrict our further explanation of
ProPer to the matching component, which is described
in detail in Section 3.
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2.2 OntoProPer: Reveal hidden skills

Our prototype OntoProPer extends the architecture of
ProPer (¢f. Figure 2). Maintaining profiles from em-
ployees manually is a time consuming task, therefore
we use metadata that is structured according to an on-
tology and contained in documents (like e.g. project
homepages and reports) to reveal additional informa-
tion about skills from employees. The crawled meta-
data from various documents add value by constituting
the foundation for inferences. Inferences are drawn ex-
ploiting metadata as well as conceptual structures (in-
heritance, associations) and rules from the ontology.
Thus additional, automatically derived skill data sup-
plements the skill data that is given explicitly in the
database.

Metadata about documents is mainly generated
from two sources: First, people work with templates.
E.g. new project homepages are generated through
templates that automatically annotate all given infor-
mation (like employees working for the project, skills
needed for that project etc.) while creating the home-
page. Second, one may require that people annotate
important documents. F.g. project reports document-
ing the ongoing project progress may contain valuable
information about tools and technology used within
that project.

The four principal use cases as well as the user inter-
face from ProPer remain nearly unchanged: addition-
ally an employee may here provide annotated entries
such as project homepages and reports.

In Section 4 we explain more detailed how to re-
veal skills from annotated documents by crawling and
inferencing.

3 A model for profiles

The model for profiles shown in this Section was im-
plemented in the matching component on top of the
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profile database (¢f. Section 2). First, we introduce
the definition of profiles stored in our profile database
(¢f. Subsection 3.1). The following Subsection 3.2 ex-
plains the differences between non-compensatory and
compensatory methods for matching. Then we give a
definition for calculating match results and show how
skills contained in profiles may be weighted according
to their importance (¢f. Subsection 3.3). Finally, we
will provide an example how a compensatory match-
ing between profiles is actually calculated (¢f. Subsec-
tion 3.4).

3.1 Vector representation of profiles

Profiles consist of numerous values for different skills
and may be represented as vectors. QOur profile
database Ppp (cf. Section 2) contains profiles from
applicants (A) and employees (E) as well as require-
ment profiles (R) for jobs or project tasks:

Ppp :AUEUR:{p,M:lm}
ANE=0 AN ANR=0ANENR=0
pzT = (p’i,lapi,Qa ---;pz’,n)

In our case study (especially in our example in Sec-
tion 3.4) we used the integers “0” (no knowledge), “1”
(beginner), “2” (intermediate) and “3” (expert) as skill
values. If there is a need for more detailed measure-
ment one may use an analogous, but more fine-grained
scale.

3.2 Non-compensatory vs. compensatory
methods

While looking for skillful employees or applicants you
may have different requirements: you may look for a
person that matches ezactly or you may look for a
person that matches approzimately the given require-
ments. In the area of Multiple Attribute Decision
Making (MADM) this is known as non-compensatory
and compensatory methods [HK81].
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Non-compensatory methods use cut-off vectors to
make a binary decision. All skills from a persons pro-
file have to equal or exceed their required skill — if
only one skill is below the required ones, the profile is
considered inadequate for the job. This method is par-
ticularly helpful for finding employees having exactly
those skills that are required. This is mostly impor-
tant for tasks requiring highly specialized skills such
as maybe for biochemical gene analysis.

Compensatory methods allow to compensate “bad”
skills (wiz. skills below the requirements or skills that
are simply missing) with “good” skills (viz. skills
above the requirements). Instead of having a binary
decision you may calculate a match result showing how
well profiles match each other. This method gives you
a good overview of potential persons for a job, so it is
preferred e.g. for ranking incoming applicants. Also,
it seems to be in general a good rule of thumb that
you may compensate bad skills with good ones in the
IT business — where you are happy these days to find
any potentially skillful person at all. Therefore we pre-
ferred the compensatory method for matching in our
application ProPer, which is shown more detailed in
the following subsections.

3.3 Compensatory profile matching and
weighting

In our scenario we have skill vectors of employees (in
the following referred to as p;) and requirement vec-
tors (in the following referred to as p;). To calculate
compensatory match results M¢c between two profiles
as a percentage one multiplies both vectors (by using
the dot product) and divides by the perfect match. If
the profile of the employee is identical to the job re-
quirements profile, the result indicates the good match
by a value of 100%.

Simple skills may be of different importance for a
given job and the importance may also vary for differ-
ent jobs. Ie. the skill “Administration of Server X”
is for a System Administrator more important than
the skill “Programming in Y”, but the reverse propo-
sition may be the case for a Programmer. We take
this into account by weighting each job profile with
a corresponding weight matrix! (W) before actually
calculating the dot product with a particular employee
profile:

w1 0 0
W = 0 w2 0
0 0 Wnp

1The weight matrix W is also stored in our profile database
but kept separately from profiles.
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T

p; X (W % p;)
Mo (ps, p;) = 2 >\ *Pj)

Pi:23) = o W x py)

; pi,pj € Ppp

In our application we used the weights “1” (unim-
portant), “2” (important) and “3” (very important).
Using “0” as a weight skips the weighted skill — so
this skill is not relevant at all for the actual profile.

3.4 Example of matching process

Before we show in detail how to match profiles we give
an example of an employee profile (¢f. Figure 3) as
it occurs in ProPer?. The profile consists of skill data
which corresponds to domain-specific terms describing
areas of expertise.

Let us consider an example scenario in which the
Human Resource department tries to determine the
most suitable person for a particular job. Assume that
the employees provide data for the following array of
skills (S):

S = (Windows 2000, Java, JavaScript,
Visual Basic)

For a new project the HR department is looking for
a good programmer and creates a new job profile p;
called “Programmer for project XYZ” from the given
array of skills:

Windows 2000 (beginner) 1
Java (expert) _ 3
JavaScript (intermediate) p 2
Visual Basic  (beginner) 1

Thr HR department queries the profiles database
and retrieves — beside others — the profile p, of Pe-
ter Perfect. For calculating the match result, the HR
department now creates a weight matrix according to
importance of the required skills:

Windows 2000 (none) 0
Java (intermediate) _ 2
JavaSeript (expert) P2 = 3
Visual Basic  (none) 0
Windows 2000 (unimportant)
Java (very important) W
JavaScript (important)
Visual Basic  (very important)

1 0 00

03 00
W= 00 2 0

0 0 0 3
2The application is implemented in German.
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Figure 3: Example of a profile in ProPer

Now the match result is calculated:

Ox1%142%3%34+3%2%240x1%2

1241 +32%3 42242+ 12%2 79%

MC(p27 pl)

Peter Perfect compensates very well his missing
skills and his slightly too low skill “Java” with his
strong capabilities in “JavaScript” which results in a
match result of 79%.

4 Reveal Hidden Skills — Skill Infer-
encing

As already mentioned in the previous sections, the
maintenance and the completion of data about em-
ployees’ skills needs intelligent support. The idea of
our implementation is that a lot of implicit knowl-
edge is produced in the daily work, e.g. informa-
tion contained in project reports. Our approach of
skill inferencing is built on top of our previous work
[DEFS99, SAD"00]. The system uses an ontology as
conceptual and schematic backbone for structuring the
domain, adding metadata to documents and for draw-
ing inferences in order to derive or update the knowl-
edge about individual’s skills. The results of the skill
inference process are integrated into the skill database,
on which the skill matching functionality of ProPer
works.
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4.1 Ontology & Skills

An ontology for our skill management system has been
manually derived based on the existing resources (e.g.,
the skill database schemata, HR expert interviews) us-
ing standard knowledge acquisition techniques. The
ontology engineering process has been supported by
our Ontology Engineering Environment OntoEdit.3
The role of an Ontology is to capture domain knowl-
edge in a generic way and provide a commonly agreed
understanding of a domain, which may be reused and
shared within communities or applications.

The skill management ontology for the OntoProPer
system is partially depicted in Figure 4. It consists of
(i) concepts, who are organized into a concept taxon-
omy, (i) attributes of concepts and relations between
concepts and (iii) rules allowing inferences. F-Logic*
has been chosen to represent our skill management on-

3A comprehensive description of the ontology engineering
system OntoEdit and the underlying methodology is given in
[SMO00].

4F-Logic is a frame-logic representation language conceived
by [KLW95]. In the implementation by Angele and Decker that
we use, F-Logic is a proper subset of first-order predicate logic.
Concepts and relations are reified and, hence, may be treated
as first-order objects over which quantification is possible. For
efficient processing, F-Logic is translated into a datalog-style
representation (cf. [LT84, Dec98]).
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Figure 4: Skill Management Ontology

tology. Relevant and important concepts of the human
resource domain have been identified. In our scenario
this included for instance the concepts Person, Profile,
Document, Skill, Project, such as depicted in the right
part of Figure 4. Relations have been used to describe
the modeled concepts in further detail. For example
the concept Employee (“Mitarbeiter”) has 24 relations,
where 21 are inherited from the more generic concept
person and 3 are especially defined for the concept
Employee.

This concept-relation-structure is further aug-
mented by using rules. In the lower part of Figure
4, statements about relations are depicted. For exam-
ple it is modeled, that the relation
HAS_AUTHOR(ProjectReport,Employee) is inverse to the re-
lation HAS_PROJECTREPORT(Employee,

ProjectReport). A rule in F-Logic syntax describing a
more complex example is given through
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FORALL p,s,e e:Programmer [knows ->> s] <-
e[worked_in ->> p]
and p:Project
and s:Prglanguage[used_in ->> p].

This rule extends the data about programmers’ pro-
gramming skills. If a programmer worked for a project,
in which a specific programming language has been
used, than this programmer has at least some experi-
ence with the language. For each inferenced skill, we
simply filled the profile database with the skill value
“beginner”. More fine-grained rules for determining
the skill value may be used, if needed.

4.2 Adding Metadata to Documents

As already mentioned the ontology supports the gen-
eration of document metadata. Based on our previ-
ous work described in [EMSS00], project reports have
been annotated using intranet templates and our anno-

22-6



tation tool, ontological annotations have been added
to the documents using an HTML extension, called
HTML-A.

The annotation language HTML-A enriches HTML
with primitives for tagging instances of concepts, for
relating these instances, and for setting their proper-
ties, i.e. the ontology serves as a schema for seman-
tic statements in these pages. For all these primi-
tives the HTML anchor tag <A> has been extended
with a special attribute onto. This decision implies
that the original information sources remain nearly
unchanged and still may provide semantically mean-
ingful information. The semantic tags are embedded
in the ordinary HTML text in such a way that stan-
dard browsers can process the HTML pages and, the
knowledge crawler can extract the semantic annota-
tions from them. Objects (instances of concepts) are
uniquely identified by a URI, i.e. resources in the web
are interpreted as surrogates for real objects like per-
sons, organizations, and publications.

A small example annotation of a project report is
given through:

<HTML>
<BODY>

<A onto="page:ProjectReport"/>

<H1>
Project Page

</H1>

<A onto="page[ProjectName=body]">
Project VB

</A>

<A onto="page[usedMethod=body]">
Visual Basic
</A>
</BODY>
</HTML>

In the schema <A onto="0:C"></A> of these ex-
pressions O represents the instance and C' represents
the concept. O can either be a global URI, a local
part of a URI (that is expanded by the crawler to a
global one), or one of the special keywords page or
body. These special keywords represent resources rela-
tive to the current tag and the current web page, e.g.
the keyword page represents the URI of the webpage
of this statement. The keyword body refers to the con-
tent of the anchor tag. Thus, the actual information
is rendered by a web browser and at the same time in-
terpreted formally by the crawler. Including semantics
in this way into HTML pages reduces redundancy and
enhances maintainability, since changes in the prose
part of the page are immediately reflected in the for-
mal part, as well.
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4.3 Example

Let us now continue our example from subsection 3.4
by applying our skill inferencing mechanisms. Peter
Perfect’s profile lacked two required skills: Windows
2000 (which is unimportant according to the given
weight matrix) and Visual Basic (which is very impor-
tant). The HTML-A crawler has retrieved information
about skills from employees contained in annotated
documents such as project reports. Peter Perfect al-
ready worked for a “Project VB” where an application
was implemented in Visual Basic. Applying one of the
above described inference rules, the crawled facts “Pe-
ter Perfect worked for Project VB”, “Visual Basic was
used in Project VB”, “Visual Basic is a programming
skill” and “Peter Perfect is a programmer” result in
“Peter Perfect knows Visual Basic”. This information
is added to his profile and a new match result is cal-
culated:

Mgew(pQ, pl) = 88%

The example shows that using our skill inference
mechanisms supports maintenance and the completion
of data about employees’ skills. Using this intelligent
support produces an added value, which is in our sce-
nario measurable with better matching results.

5 Related Work

ATAT has been working on enterprise ontologies
(cf. [UKMZ98]). Capability ontologies as part of enter-
prise ontologies describe capabilities that human be-
ings or software agents may have. [SM99] restricts
capabilities to those of human beings (also referred to
as “skills”) and presents well defined specifications for
developing software systems based on capability on-
tologies. These systems help organizations to align
skills of current and future employees with strategic
business objectives. A prototype covering some of the
given specifications has been implemented, but lacks
e.g. of recruitment profiles.

Several organizations have developed systems who
support the finding of hidden skill knowledge by us-
ing Artificial Intelligence (AI). A survey of existing
Al-based systems is given in [BF00]: CONNEX is
a people-finder developed by Hewlett-Packard. The
company wanted to keep track of the business and
technical skills of their employees. The goal was to
build a guide to human knowledge by connecting a
network of experts. They created profiles containing
knowledge and skills as well as affiliations, who are
updated by the employees themselves. Another sys-
tem is SPUD, which was implemented by Microsoft.
They have developed a structure of competency lev-
els, defined competencies required for a particular job,
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included supervisors’ rating of an employee’s perfor-
mance, implemented the competencies in an online
system and linked this model to an automated pro-
viding of teaching courses. In difference to our ap-
proach, both systems do not rely on semi-structured
documents nor do they make use of the inferencing ca-
pabilities of an inference engine to seek hidden struc-
tures. Furthermore, no matching between job profiles
and people profiles is supported by CONNEX. The
SAGE system is a knowledge management system for
searching experts in Florida funded by NASA. In con-
trast to the above mentioned systems, SAGE relies on
a keyword-based search engine instead of self-assessed
profiles. Abstracts from researchers are searched for
keywords — relying on the fact that this researcher
has knowledge about a topic if he publishes about it.
The system is designed to be as people-independent
as possible and integrates numerous databases. Com-
pared to our approach, the SAGE system does not
provide intelligent inferencing of skills, nor does it in-
tegrate self-assessed profiles. Our strength is the inte-
gration of both methods to find knowledge combining
skill matching and skill inferencing.

The Ontobroker system has been used for other ap-
proaches like e.g. a proactive inferencing agent for
desk support [SS00] exploiting metadata and ontolo-
gies in a project planning scenario or knowledge man-
agement through ontologies [BFG98] making knowl-
edge assets intelligently accessible to people in organi-
zations. However, only OntoProPer combines the soft
matching with the inferencing capabilities.

6 Conclusion

We have presented two systems for IT support of
skill management. The first, ProPer employs a “soft
matching component” in order to match people to po-
sition. The second, OntoProPer extends the first in
order to provide more comprehensive knowledge about
individuals’ skills using background knowledge from
an ontology and secondary information, such as from
project documents. While ProPer is currently on duty
and has proved very successful in a large IT consult-
ing company, OntoProPer still has to be applied to the
real world and evaluated.

Though we have mostly worked towards finding the
right people for a particular job in this paper, we want
to mention that a comprehensive, well-maintained skill
database with intelligent techniques may give a lever-
age far beyond what we have explored in ProPer and
OntoProPer.

For instance, given a comprehensive skill database
HRM may analyze (e.g. with OLAP or with data min-
ing techniques) whether the company suffers from a
shortage of knowledge in a particular area or whether
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the company’s expertise in a particular area is all built
on one or two key persons and, hence, is lost when
these persons leave the company. For the future, we
plan to integrate data mining techniques that harvests
new knowledge from skill databases.
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