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Abstract. In the field of dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI) of breast cancer, current research efforts in
computer-aided diagnosis (CADx) are mainly focused on the temporal
series of T1-weighted images acquired during uptake of a contrast agent,
processing morphological and kinetic information. Although static T2-
weighted images are usually part of DCE-MRI protocols, they are sel-
dom used in CADx systems. The aim of this work was to evaluate to
what extent T2-weighted images provide complementary information to
a CADx system, improving its performance for the task of discriminating
benign breast masses from life-threatening carcinomas. In a preliminary
study considering 64 masses, inclusion of lesion features derived from T2-
weighted images increased the classification performance from Az=0.94
to Az=0.99.

1 Introduction

In recent years, dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) has evolved to a powerful tool for detection, diagnosis and management
of breast cancer [1]. A temporal series of 3D T1-weighted MR images is acquired
during the uptake of a contrast agent based on gadolinium chelates. This enables
radiologists to localize suspicious tissue areas and to further assess their likeli-
hood of malignancy by means of their morphologic and kinetic characteristics.
Static T2-weighted images provide complementary information for discriminating
benign fibroadenoma from malignant cancers, as both expose similar enhance-
ment patterns in the DCE T1-weighted images. Furthermore, several secondary
signs such as edemas, which frequently accompany pathological tissue growth,
are accentuated in T2-weighted images [2].

The role of T2-weighted images for the general discrimination of benign and
malignant findings was investigated in several studies, e.g. [3, 4]. In the majority
of studies, suspicious masses were initially located by means of the DCE T1-
weighted images. Subsequently, the brightness of the corresponding region in
the T2-weighted image was visually rated as hypo-, iso- or hyperintense to a
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reference region, e.g. the tissue surrounding the mass or air. In summary, the
different studies reached different conclusions allowing no clear statement about
the added value of T2-weighted images for the discrimination of benign and
malignant breast masses.

Computer-aided diagnosis (CADx) systems supporting radiologists in de-
tecting and assessing suspicious tissue regions in DCE-MRI data are expected
to improve the reliability of clinical decisions and, therewith, to potentially de-
crease the number of unnecessary biopsies. (Semi-)automatic discrimination of
benign and malignant masses in breast MRI was investigated by several authors
[5, 6, 7]. The proposed approaches have in common that they solely concen-
trate on processing of kinetic and morphologic features as depicted in the DCE
T1-weighted images, which are, without doubt, the most important source of
information in breast MRI. However, the inclusion of the frequently acquired
T2-weighted images might be beneficial in the context of CADx.

This work investigates for the first time whether adjunct features derived
from static T2-weighted images improve the performance of computer-aided clas-
sification of benign and malignant breast masses based on supervised pattern
recognition techniques.

2 Methods

In bilateral DCE-MRI studies1 of 50 patients, N = 64 breast masses (28 be-
nign and 36 malignant) were segmented in the T1-weighted images with a semi-
automatic segmentation algorithm [8]. Additionally, binary masks separating
breasts from thoraces were computed by applying a sequence of smoothing,
thresholding and morphological operators. To adjust for the different voxel size
in the T1- and T2-weighted images, the latter were resampled by tri-linear in-
terpolation. Sufficient spatial alignment between the dynamic T1-weighted series
and between T1- and T2-weighted images was verified by visual inspection.

2.1 T1- and T2-weighted Lesion Features

A total of 22 morphological and kinetic T1-weighted features described in [5, 6, 7]
were evaluated for all binary lesion segmentations. Due to the limited space we
have to refer the reader to the corresponding articles for more information about
these features. In addition to the T1-weighted features, the following T2-weighted
lesion features were computed: Let ΓLi

be the set of grey values in the T2-
weighted image corresponding to the voxels as marked by a binary segmentation
of lesion i, ΓBi

the set of grey values in the left or right breast (depending on the
location of the lesion i) excluding the lesion and ΓSt

i
the set of grey values in a t

1 Dynamic T1-weighted images: TR=4.4-6.9ms, TE=2.1-3.4ms, FA=10◦, ∆t=60-90s,
6-7 dynamics, fat-suppressed, transversal orientation. Static T2-weighted image:
TR=6.7-16.9s, TE=120ms, FA=90◦, transversal orientation.
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mm thick shell enclosing the segmentation of lesion i. The normalized intensity
mean and variance features are defined as

fT2
µ (ΓLi

, ΓRi
) =

µΓLi

µΓRi

and fT2

σ2 (Li, Ri) =
σ2

ΓLi

[µΓRi
]2
,

with µ and σ2 being the intensity mean and variance of the lesion set ΓLi
or one

of the reference regions ΓRi
∈ {ΓBi

, ΓSt
i
}. By normalizing with respect to the

mean intensity of a reference region, we take into account the qualitative nature
of MR images and resemble the clinical practice of rating lesions as hypo-, iso-
or hyperintense with respect to some reference region.

The normalized α-percentile is defined as

fT2
percα

(ΓLi
, ΓBi

, α) =
Hα

ΓLi

µΓBi

,

with Hα
ΓLi

being the intensity threshold in the cumulative relative frequency

histogram H of lesion ΓL for which the cumulative relative frequency exceeds α
percent. A second normalized α-percentile is computed for the enclosing shell,
reflecting potential bright regions (caused e.g. edema) in the tissue surrounding
the lesion:

fT2
percα

(ΓSt
i
, ΓBi

, α) =
Hα

ΓLi

µΓBi

.

Both α-percentiles were normalized with respect to the mean breast intensity.
The aforementioned features were evaluated for the sets ΓLi

containing voxels
as marked by the binary segmentation of lesion i and for the subsets Γ ∗

Li
⊂ ΓLi

of lesion voxels as marked after applying a morphological erosion operator to the
binary lesion mask. The free parameters t and α were varied in reasonable ranges
(t ∈ {2, 4, . . . , 20} in mm, α ∈ {0, 2, . . . , 20, 80, 82, . . . , 100} in %), considering
each setting as a new feature.

The sharpness of the lesion margin in the T2-weighted image is quantified
by evaluating the mean and variance of the margin gradient as described for
DCE T1-weighted images in [5] in the static T2-weighted images. These features
reflect the mean and variance of gradient magnitudes computed with Gaussian
derivatives of reasonable scale for all voxels in a three voxels thick shell centered
on the lesion segmentation’s surface.

2.2 Feature Selection and Classification

Due to the limited number of lesions, feature selection is a mandatory step to
avoid overfitting of the data. For the final classification of lesions we selected
two sets of features, each containing five features in total. A linear classification
function was estimated by Fisher linear discriminant analysis (FDA) [9].

To determine the baseline performance of a CADx system based on T1-
weighted information only, a set of three T1-weighted features was selected by
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exhaustive search and subsequently extended to a size of five features by forward-
backward feature selection. At each iteration, the performance of the FDA af-
ter including a new candidate feature was evaluated in a leave-one-lesion-out
scheme. For all permutations of the N lesions, the FDA was trained with data of
N − 1 lesions and subsequently applied to the omitted unseen lesion. The final
performance was quantified by estimating the area-under-the-ROC-curve (Az)
computed for the FDA output [10].

The same feature selection process was repeated a second time, this time
selecting candidate features from the pooled set of T1- and T2-weighted features.

3 Results

Figure 1 shows the ROC curves for the FDA evaluating the selected set of five
DCE T1-weighted features (dashed line) and the mixed set of DCE T1- and
static T2-weighted features (solid lines). The non-parametric estimates of the
area-under-the-ROC curve are Az = 0.94 and Az = 0.99, respectively. Though
inclusion of the T2-weighted features leads to a considerable improvement of
∆Az = 0.05, a statistical test for the significance of the difference between the
Az values of the two correlated ROC curves [11] failed with p = 0.064 (CI=95%).

4 Discussion

After feature selection from the pooled set, the final set consists of two DCE
T1-weighted and three T2-weighted features. The DCE T1-weighted features are
circularity and variance of the radial gradient histogram as described in [5],
reflecting the lesion shape and the sharpness of its margin, respectively. The
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Fig. 1. Results
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three T2-weighted features are the normalized α-percentile for the eroded lesion
segmentation (α = 20%) and the normalized α-percentile for the lesion shell
with (α = 92%, t = 2mm) and (α = 98%, t = 20mm). The latter features
resemble clinical practice of rating the intensities within the lesion and within
the enclosing shell of non-lesion tissue.

For the considered set of lesions, inclusion of T2-weighted features improved
the performance of the classification of breast masses by ∆Az = 0.05 to Az =
0.99, yet a statistical test for significance failed. In consideration of the low power
of the test, we nevertheless belief that inclusion of information derived from the
T2-weighted images, which are usually part of today’s breast MRI protocols,
provides valuable complementary information to CADx systems and we will
reinvestigate this issue in a future larger study.
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