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Abstract. In this paper we present a new method for fully automatic
liver segmentation in computed tomography images. First, an initial set
of seed points for the random walker algorithm is created. In this context,
voxels belonging to air, fat tissue and ribcage are labeled as background.
Furthermore, depending on the shape of the ribcage and voxel inten-
sities, several seed points inside the liver are automatically selected as
foreground. This seed mask is then used to initialize the segmentation
algorithm. Our method was successfully tested on data of 22 patients.

1 Introduction

Liver segmentation is an important prerequisite for a variety of applications.
Surgery planning, image guided liver surgery and computed tomography (CT)
perfusion examinations benefit from an accurate segmentation.

Fully automatic and at the same time accurate liver segmentation is an un-
solved problem by now, despite several diverse attempts exist. Soler et al. [1]
presented an algorithm for a segmentation of the liver using a reference 3-d
model. After estimation of the liver contour, the model is improved by means
of topological and geometrical analysis. With this approach, however, the seg-
mentation is constrained by the reference model, which can be adapted to the
real image information only in a restricted way. Lamecker et al. [2] presented an
approach for liver segmentation using a 3-d statistical shape model built from a
training set of semi-automatically segmented livers. This technique also suffers
from restricted flexibility in shape adaptation. Lim et al. [3] use their deformable
contour model for segmentation.

A drawback common to most approaches is a lack of interactive controlla-
bility if the automatic segmentation has failed. Grady et al. [4, 5] introduced
the random walker (RW) algorithm, which is a general segmentation technique
based on graph theory. It allows image segmentation given fore- and background
seed points. A big advantage of the algorithm is that the calculated results can
be easily corrected in a semi-automatic way.
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2 Materials and Methods

A new fully automatic algorithm for liver segmentation is introduced. The pre-
sented algorithm extends and adapts the general graph theoretic image segmen-
tation [4] to the liver segmentation problem. Within our approach, several seed
points inside and outside of the liver are automatically detected. These seeds are
then supplied as input to the RW algorithm.

2.1 Generation of seed points

In the first step, seed points within different abdominal structures are automat-
ically detected. All seed points lying within structures outside the liver are then
labeled as background and seed points within the liver are labeled as foreground.
Seed point detection is performed for each slice separately. A polar coordinate
system is associated with each axial slice. The center of the polar coordinate
system is set to the barycenter of the body. The advantage of such a polar co-
ordinate system is that the angle coordinate can be easily correlated with the
anatomy to make restrictions which part of the body can comprise the liver (e.g.,
left, right, anterior, posterior, see Fig. 1(a)).

Several different structures are considered for automatic seed detection. The
details are provided below.

Generation of ribcage seed points To prevent oversegmentation of the liver
into the adjacent muscle tissue between the ribs, the shape of the ribcage is
estimated. For this purpose, anatomical knowledge is used. First assumption is
that the liver is located on the right side of the body near the bottom of the
ribcage. It is also assumed that some liver tissue touches or is very close to the
ribcage. The rib detection algorithm works as follows.

(a) (b) (c)

Fig. 1. Segmentation: (a) Polar coordinate system and angle depended sector sizes.
Anterior: small sectors (1, 2, 10, 11), posterior: large sector (6). (b) Liver seed point
creation. Spline (1), contour of liver (2), liver seed search paths (3). (c) Histogram
analysis area (1). The area for histogram analysis is defined by the interior of the
ribcage spline in the posterior and anterior right part of the abdomen
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First, intensity differences on each radius for all angles are checked to detect
the body surface and the boundary between fat and muscle tissue (Fig. 2(a)).
Median filters with angle dependent kernel sizes are applied to all determined
radii in order to eliminate outliers. Based on the detected boundary and an
angle dependent maximum rib depth, a search area is defined (Fig. 2(b)). Voxels
therein with high intensities (e.g., > 300 HU) are classified as bone (Fig. 2(c)).
Positions of ribs are stored in a separate list (Fig. 2(d)). Then, all detected
rib positions are clustered with hierarchical clustering depending on radius and
angle of the voxel positions belonging to the ribs. The final cluster centers are
stored as the outer rib positions, one for each rib (Fig. 2(e)).

Starting with the outer rib positions, the corresponding inner rib positions
are estimated by analysis of the intensity profile into the direction of the body
barycenter (Fig. 2(f)). The inner rib positions shifted away from the body center
by some small safety distance are used as support points for a cubic spline
(Fig. 1(b)). If there are not enough support points in a given sector (Fig. 1(a)),
positions from neighboring slices are used. In this case, a new rib point is placed
into the current slice by interpolating the corresponding lower and upper rib
positions. If there are no rib points that can be used, points from the fat/muscle
boundary are taken as substitute. This prevents the spline from passing through
the liver. The ribcage points lying on the generated spline curve are taken as
background seeds for each slice. This information prevents the RW algorithm
from oversegmentation of the liver into the surrounding muscle or fat regions.

Generation of liver seed points An intensity histogram is built from voxels
in the anterior and right posterior part of the abdomen that are enclosed by
the cubic spline (Fig. 1(c)). Known background voxels like air, fat or bone are
thereby excluded. HU value distributions of the liver and stomach are assumed
to be Gaussians. Hence, mean and variance of these Gaussians are estimated by
a bimodal distribution analysis. Mean and variance of the Gaussian of the liver
are used to define the intensity range of liver pixels. On the right side of the body

(a) (b) (c) (d) (e) (f)

Fig. 2. Rib detection: Right part of the body including fat tissue (dark gray) and
rib (white). (a) Fat/muscle boundary (line 1). (b) Maximum search depth ds (line 2)
from fat/muscle boundary. (c) Search for bone failed on bright paths (3). Search was
successful on dark paths (4). (d) Marked points: detected outer bone positions. (e)
Marked point: Center of bone position cluster, outer rib position. (f) Marked point:
Inner rib position, corresponding to outer position of (e) detected on search path
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the right turning point of the spline is used to start foreground seed generation
(Fig. 1(b)). The radius is reduced in given steps and the corresponding pixels are
checked if they lie within the range calculated from the histogram. If they fulfill
this criterion, they are labeled as foreground seeds. The angle is then changed
iteratively in the clockwise and counter-clockwise direction. The progression of
each line will stop if a group of pixels is outside the intensity interval or a stop
position is reached. Stop positions are defined by the last visible rib.

Generation of air, bone and fat seeds Air and any other gases are clearly
delineated in CT data and are used to generate background seeds. All voxels
with a lower intensity than a predefined threshold (e.g., −460 HU) are marked
as air. All voxels with a higher intensity than a given threshold (e.g., 325 HU)
are classified as bone. Fat tissue inside the body is also labeled as background.
For this purpose, the image is first filtered with a median filter (e.g., 9 × 9
pixel), which reduces noise. After filtering, an interval threshold (e.g., −117 HU
to −53 HU) is applied and the result is classified as fat tissue.

3 Results

In order to prove the stability of the method with respect to varying liver shapes
and contrast enhancements, the algorithm has been evaluated with 22 CT liver
perfusion datasets comprising native, arterial and venous enhancement phases.
Since perfusion scans require a high temporal resolution, they are acquired with-
out CT table movement. The maximum number of slices is consequently limited
by detector width and reconstruction settings and was less or equal 12 in our
experiments. Slice distance and slice thickness were equal in all datasets and
varied between 2.4 and 6 mm. The axial resolution of all slices was 512 × 512
voxels of size varying between 0.64 × 0.64 mm2 and 0.72 × 0.72 mm2.

The automatic results have been quantitatively compared to manual segmen-
tations performed by medical experts using the dice similarity coefficient (DSC),
the average contour distance (d) and the Hausdorff distance (H). Mean values
and standard deviations over all 22 patients are µDSC = 91.9%, σDSC = 7.2%,
µd = 4.6 mm, σd = 3.7 mm, µH = 34.3 mm and σH = 14.53 mm. Table 1
shows more detailed numerical results for seven randomly selected patients. Ad-
ditionally, visual analysis of the segmentation results has been conducted, which
confirmed the overall good quality of the results. The resulting liver contours
and probabilities for each voxel to be part of the liver are presented in Fig. 3.

Execution of the RW algorithm on downsampled (256 × 256) 3-d images
required between 1.63 s (1 slice) up to 19.56 s (12 slices) on an Intel Pentium
4 CPU (3.4 GHz, 1 GB RAM). The seed point creation algorithm needed 7.7 s
per slice. The software has been developed with MeVisLab 1.4 (VC++ 6).
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Table 1. Results: dataset (D), vol. of dataset (V), vol. of RW segmentation (RWV),
vol. of manual segmentation (MV), vol. of overlap (OLV), vol. of oversegmentation
(OSV), vol. of undersegmentation (USV), all volumes in ml, d, and H in mm

D V RWV MV OLV OSV USV DSC d H

1 1075,8 155,1 147,9 145,6 9,5 2,3 96,1% 2,1 14,2
2 3232,1 439,6 441,4 394,1 45,5 47,3 89,5% 5,9 36,9
3 3465,6 778,6 771,7 760,3 18,3 11,3 98,1% 1,7 56,0
4 3270,8 606,2 662,8 585,0 21,1 77,8 92,2% 5,4 49,4
5 3232,1 769,9 757,1 731,8 38,1 25,3 95,9% 1,7 13,5
6 3290,2 279,8 256,4 238,1 41,7 18,3 88,8% 4,4 28,8
7 3270,8 675,2 695,8 637,5 37,8 58,4 93,0% 5,3 47,5

4 Discussion

In this paper, a fully automatic liver segmentation algorithm, based on the gen-
eral RW approach and customized automatic seed point creation, has been pro-
posed. Using the presented approach, it is possible to generate robust liver seg-
mentations. There are only few assumptions about the shape and size of the
liver. Therefore, it is possible to reach high segmentation quality on abnormal
livers, in contrast to model based approaches. Small intensity differences, caused
e.g. by liver tumors, do not corrupt the segmentation results.

The segmentation algorithm reaches an average DSC value of 91.9%, which
shows the high concordance between automatic and manual segmentation. The
large mean value of H is caused by oversegmentation of small areas between the
lobes of the liver. Oversegmentation of these small gaps causes high peaks in the
surface distance between manual and automatic segmentation. The significantly
lower value of d shows that most of the distances between the surfaces are smaller
than the peaks. In difficult cases, the new algorithm allows intuitive interactive
correction of its results. Users that are capable to use a simple paint application
will be able to quickly edit the results in a semi-automatic way.

Improvements of our approach can be attained by integrating additional
background seed points using existing organ segmentations (e.g., heart). Fur-
thermore, a more efficient implementation of the seed point creation algorithms
would bring improvement in execution times.

Fig. 3. CT image slices with determined liver contours (black) and corresponding prob-
abilities (white=100%, black=0%)
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