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Abstract. The present paper derives two new equations for the nonlin-
ear registration of images based on Euler-Lagrange equations. It offers
a systematic way to construct fluid extensions to registration equations
based on variational principles.

1 Introduction

Nonlinear image registration has various applications in image processing ranging
from three-dimensional reconstruction of serial sections over segmentation with
help of image atlases to the measurement of changes during the development of
a disease.

The goal of image registration is to find a vector transformation u(x) so
that the sample image S(x) under the transformation S(x − u(x)) matches
the template image T (x). Additionally, such transformation u(x) is required to
satisfy some smoothness condition. One way to obtain such a transformation
is to use physically motivated equations, e.g. the Navier-Lamé equation for the
deformation u [1] or solving the Navier-Lamé equation for the velocity field u̇

and to use the time integral of the velocity as the displacement field [2]. The
variant that uses the two fields u̇(x) and u(x) is called fluid registration.

Another possibility to derive a differential equation for the displacement field
is to apply a variational approach [3, 4, 5, 6] that combines various conditions for
the displacement field. This approach typically yields a static, time and velocity
independent equation for the displacement field u(x). To obtain a smooth con-
vergence of the nonlinear equation one introduces an artificial time and solves
a diffusion-like equation [7, 8]. Since the displacement field is modified by a dif-
fusion like process, the convergence of the variational equations is rather slow
comparing to the fluid registration. The present paper offers a way to construct
dynamic equations for the velocity field on the basis of variational equations
without the help of fluid dynamics.

2 Materials and Methods

2.1 Undamped Equation of Motion

For the registration of the sample image S(x) onto the template image T (x) with
x ∈ R

2, a displacement field u(x, t) = (u1(x, t), u2(x, t))
> with

{
u : R

2 7→ R
2
}
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must be found so that

V[u] =
1

2

∫

Ω

(T (x) − S(x − u(x), t))
2

d2x (1)

should be minimal. The displacement field should obey some smoothness condi-
tion. We will use the function T [u̇] for the smoothness of the Lagrangian. For
the case of optical flow-based image registration the smoothness constraint is
defined as

TF[u̇] =
µ

2

∫

Ω

2∑

i=1

(∆u̇i(x, t))
2

d2x (2)

and for the diffusion registration

TD[u̇] = −µ
2

∫

Ω

2∑

i=1

(∇u̇i(x, t))
2

d2x (3)

The Euler-Lagrange equation for

L(u̇,u) = T [u̇] − V[u] (4)

yields

µ
d2

dt2
(
∆2u

)
+ [T (x) − S(x − u(x, t))] ∇S(x − u(x, t) = 0 (5)

for the optical flow-based image registration and

µ
d2

dt2
(−∆u) + [T (x) − S(x − u(x, t))] ∇S(x − u(x, t) = 0 (6)

for the diffusion registration. Both equations are free from dissipation of the
energy H = T +V and the solution will start to oscillate. Since we are interested
in the minimum of V one has to add friction forces.

2.2 Dissipative Forces

Friction forces are not an integral part of the Euler-Lagrange equations but
they can be included as additional summand in the force Eqns. (5) and (6),
respectively. We will add two kinds of friction forces, one that act independently
of the position in space, and a second force that includes the spatial dependence
by space derivatives of the velocity field. As position-independent friction force
the function f l = −µγu̇ will be used. The second dissipative force will depend
on the partial derivatives of the velocity field. The Navier-Stokes equation would
suggest a term proportional to fv = −µν∆u̇ (the viscosity term), and for the
optical flow-based case a term fv = −µν∆2u̇ will be used.

Adding the two friction forces to the left hand side of the Eqns. (5) and (6),
the fluid extension for the optical flow-based registration is given by the solution
of the equation

µ
d2

dt2
(
∆2u

)
+ [T (x) − S(x − u(x, t))] ∇S(x − u(x, t)) =

−µγ u̇(x, t) − µν∆2u̇(x, t) (7)
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and for the diffusion-based version one gets

µ
d2

dt2
(−∆u) + [T (x) − S(x − u(x, t))] ∇S(x − u(x, t)) =

−µγ u̇(x, t) − µν∆u̇(x, t). (8)

The only force free solution of the equations is obtained for the case that the
displacement field limt→∞ u(x, t) transforms the sample image on the template
image. In this case, the force [T (x) − S(x − u(x, t))] ∇S(x − u(x, t)) is zero,
and the friction will cause the velocity field also going to zero. The differential
constraint to the velocity field may hinder a perfect match in this case, the vector
fields will oscillate, but the friction term fv hinders the creation of waves thus
keeping oscillations local. A sufficiently strong damping should restrict the local
oscillation amplitude to values smaller than the pixel distance.

With the two Green functions

GF[∆2g(x)] = g(x) (9)

GD[(−∆)g(x)] = g(x) (10)

one gets the explicit system of second order equations that can be solved by a
standard method for initial value problems. With either G = GF or G = GD the
explicit version of the equations (7) and (8) can be written as

ü(x, t) = − 1

µ
G [(T (x) − S(x − u(x, t))) ∇S(x − u(x, t))]

−γ G [u̇(x, t)] − ν u̇(x, t). (11)

3 Results

Three examples of the fluid extension of diffusion and optical flow-based reg-
istration will be shown. The integration of the equations of motion is stopped
when the registered image S(x−u(x)) does not change more than 1× 10−5 per
pixel. The intensities of sample and template image are all normalized to the
interval [0, 1]. The step size control typically takes hundred times larger time
steps for the diffusion-based registration than for the optical flow-based variant,
but also requires longer absolute time intervals to achieve convergence.

The first example maps a circle on a 128 × 128 grid onto the letter “C”
(Fig. 1a). The parameters for the optical flow-based registration are (µ, ν, γ) =
(0.5, 0.00045, 8) and for the diffusion-based equation (µ, ν, γ)=(0.125, 0.00045, 8).

As a second example we show the transformation of an angry face onto a
smiling one (Fig. 1b). This example in particular is challenging for the registra-
tion because the vector field must develop several singularities to transform the
eyebrows and the mouth. To make the difference between the two displacement
fields more illustrative, the distortion of a regular grid as caused by the displace-
ment field is shown as overlay on the registration results. The parameters for the
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Fig. 1. Overview on three different registration tasks (top row: the image pairs; middle row: results for the fluid extension of the
optical flow-based method using Eqn. (7); bottom row: results for the fluid extension of the diffusion-based method using Eqn. (8)). A:
Registration of a circle onto the letter “C”. B: Registration of an angry “face” onto a smiling one. C: Registration of two radiographs of
different hands. The respective displacement vector fields are To underline the structure of the singularities in the respective displacement
vector fields u(x), a line integral convolution [9] is used to visualize them (a: with flow fishes, b/c: with dot patterns, underlying color
codes displacement magnitude)
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optical flow-based version are (µ, ν, γ) = (0.5, 0.00015, 6) and for the diffusion
registration (µ, ν, γ) = (0.5, 0.0003, 6).

The last example maps two radiographs of hands (Fig. 1c). The overlayed
displacement of the regular mesh shows the lower smoothness of the diffusion
registration compared with the optical flow-based variant.

4 Discussion

We have presented two new equations for nonlinear image registration based
on the optical flow and the diffusion registration. Instead of the introduction of
an artificial time, the new equations require a smooth velocity field and solve
a system of second order differential equations for the displacement field. Both
registration methods can be treated in a unified way. Based on the underlying
variational approach, the design of special fluid like registration equations is
possible by addition of future constrains for the displacement or the velocity
field.
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