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Abstract. Scatterer detection in medical ultrasound imaging can be for-
mulated as an inverse problem concerning a linear system model based
on point scatterers. The applicability of different methods of regular-
ized inversion is examined and a novel regularization scheme specifically
adapted to ultrasound imaging is introduced. The results show that stan-
dard inversion methods fail in ultrasound imaging while the proposed
new method is a feasible way to improve axial resolution without ampli-
fying erroneous signal components. The consequences of A-line detection
by regularized inversion for B-mode imaging are examined by numerical
simulations.

1 Introduction

In medical ultrasound imaging sound waves are emitted from a transducer into
body tissue and partially scattered back at inhomogeneously distributed scatter-
ers with individual scattering coefficients. Since scattering takes place at differ-
ent depths within the tissue, the scattered waves of a single pulse-echo sequence
contain a “fingerprint” of the tissue in axial direction, the so called A-line. A
complete image is constructed by consecutive side-by-side arrangement of A-
lines from repeated pulse-echo sequences. The reconstruction of a single A-line
from the scattered data within an ultrasound image can be understood as the
spatially sensitive estimation of scattering coefficients from the scattered waves.
Conventional ultrasound imaging algorithms employ unspecific methods such
as envelope detection and matched filtering for this task. The receive signal is
however known to be the sum of blurred, scaled, and time delayed replica of
the excitation signal, where the blurring is caused by the transducer’s dynamic
behaviour, diffraction and absorption. Inclusion of an analytic model for the dy-
namic system behaviour into the estimation process has the potential to partly
reverse the blurring and thereby to improve the resolution of ultrasound images.

A common analytic model for the dynamic behaviour of an ultrasound imag-
ing system is investigated with respect to the properties of image reconstruction
by system inversion. Several standard approaches for system inversion are inves-
tigated with respect to to their robustness against erroneous receive data and
their applicability in B-mode imaging. Furthermore, a novel inversion scheme,
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that is specifically adapted to ultrasound imaging by combining envelope detec-
tion with regularized inversion, is developed and tested.

2 Materials and Methods

2.1 Model for an Ultrasound Imaging System

Ultrasound imaging uses the process chain: emit signal - electromechanical emit
transformation - wave propagation and scattering - electromechanical receive
transformation - receive signal. A discrete linear model for the calculation of
ultrasound B-mode images relates the transducer’s electric receive signal y to
the scattering behaviour of the tissue [1]:

y = Ψs (1)

Considering a single A-line, the column vector s contains the scattering coeffi-
cients of scatterers at consecutive distances, with a zero element if no scatterer
exists. The lower triangular Toeplitz matrix Ψ contains time shifted pulse-echo-
wavelets. A pulse echo wavelet is the receive signal due to a single point scatterer
of unit strengths. For brevity it is assumed here that the pulse-echo-wavelet is
invariant to the scan direction.

2.2 Model Inversion

By inversion of the model for the ultrasound imaging system (1), the scattering
vector

s̃ = Ψ#y (2)

can be estimated. Matrix Ψ# reverses the blurring effect of Ψ and thereby pro-
vides an estimate with good axial resolution. In many cases Ψ# is of the form
[2]

Ψ# =
(
ΨTΨ + λ2H

)−1
ΨT (3)

with matrix H specific to the inversion method.
Noise in y can cause large undesired oscillations of high frequency in the

estimated solution s̃. Thus Ψ# must ensure that s̃ is insensitive to noise.

Unregularized Inversion The scattering vector can be estimated by solving
(1) with the pseudoinverse of the system matrix, i.e. by choosing Ψ# = Ψ † in
(2) or H = 0 in (3).

Singular Value Truncation A matrix whose pseudoinverse provides a noise
insensitive estimation stsvd

ν can be obtained by truncating the ν smallest singular
values of Ψ . The resulting matrix Ψν is the closest rank-ν approximation to Ψ [2,
3] and thus the system characteristics is largely maintained. The corresponding
regularized inverse in (2) becomes Ψ# = Ψ †

ν .
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Small Solution Norm Condition Approximately solving the system (1) sub-
ject to a small solution norm provides a noise robust estimate [2, 4]:

s̃tik
λ = argmin

s∈Rn

{
‖Ψs − y‖2

2 + λ2‖s‖2
2

}
(4)

The regularization parameter λ adjusts the trade-off between a small residual
norm and a small solution norm. This method, known as Tikhonov regulariza-
tion, can be given in terms of a regularized inverse (3) with H being the unity
matrix.

Small First Derivative Constraint A smooth and thereby noise insensitive
estimate is obtained by minimizing

s̃sfd
λ = argmin

s∈Rn

{
‖Ψs − y‖2

2 + λ2‖Ds‖2
2

}
(5)

with matrix D being a discrete approximation of the first derivative operator
and H = DTD (3) [2, 3].

Envelope as Solution Norm Weighting Envelope detection is commonly
performed for A-line computation. It is computationally simple and relatively
insensitive to noise but provides only moderate resolution. To increase the res-
olution of the A-lines, envelope detection and regularized inverse filtering can
be combined, by regarding the envelope of the receive signal s̃env = env(y)
as a rough pre-estimate, which is refined by a system inversion process. Thereto
Tikhonov regularization is generalized such that the estimated solution is weight-
ed before its norm is calculated

x̃tew
β,λ = argmin

x∈Rn

{
‖Ψs − y‖2

2 + λ2‖Ls‖2
2

}
(6)

The weighting matrix

L = diag(l) = diag

(
1 − (1 − β)s̃env

max(s̃env)

)
(7)

causes samples s̃env = 0 to contribute completely to the norm ‖Ls‖2
2, while sam-

ples belonging to large pre-estimated scattering strengths s̃env ≈ max(s̃env) are
suppressed by the weighting. Thereby it is ensured that oscillations at positions
without scatterers are suppressed without affecting the system inversion in the
vicinity of scatterers. The influence of the pre-estimate is controlled by β ∈ [0, 1].
Expression as a regularized inverse in terms of (3) yields H = LTL.

2.3 Simulation Settings

The inversion methods are tested with a synthetic example consisting of two
point scatterers at z = 1.2 mm and z = 2.3 mm of different scattering strengths.
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The pulse-echo-wavelet has been determined experimentally. Gaussian noise is
added to the simulated receive signal. The optimal regularization parameters are
determined empirically.

A-line detection by regularized inversion with envelope solution norm weight-
ing is included into a linear-array ultrasound imaging system, that has been em-
ulated in the simulation software Field II [5]. A virtual phantom consisting of
seven axially aligned point scatterers in 5mm distance to each other is used to
evaluate the feasibility of the reconstruction algorithm for B-mode image recon-
struction. As a comparison the same simulation has also been performed with a
conventional envelope detection algorithm.

3 Results

Unregularized inversion and regularization by first derivative constraint were not
able to produce meaningful results. The estimated scattering strengths obtained
by the other three methods are shown in Fig. 1. The achieved axial resolutions,
signal to noise ratios (SNR), and peak to sidelobe ratios (PSR) are summarised
in Tab. 1.

The simulated B-mode image obtained by inversion with envelope solution
norm weighting is displayed in Fig. 2(a). As a comparison the ultrasound im-
age of the same phantom obtained by conventional envelope detection is shown
in Fig. 2(b). Note that the grey scale in both images is applied after log-
compression. Regarding the central axial image axis reveals that the axial res-
olution is significantly improved by regularized inversion compared to envelope
detection. This however comes at the cost of strong artefacts in vertical direction
that appear as white “wings” in image Fig. 2(a).

0 1 2 3
z / mm

s

Fig. 1. A-lines estimated from noisy re-
ceive signals. Obtained by singular value
truncation (light grey), Tikhonov Regu-
larization (dark grey) and by regularized
inversion with envelope weighting (black)

(a) (b)

Fig. 2. Simulated ultrasound images of
seven point scatterers. Obtained by regu-
larized inversion with envelope weighting
(a) and by conventional envelope detec-
tion (b)
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Table 1. Characteristic values of estimated A-lines

Resolution SNR PSR
[mm] [dB] [dB]

Unregularized 0.008 < 0 ∞
Truncation 0.054 20.4 22.9
Tikhonov 0.054 21.0 24.8
Derivative 0.054 2.0 17.6
Weighting 0.054 34.4 26.4

4 Discussion

Unregularized inversion and regularization relying on a small first derivative of
the solution are not applicable for ultrasound imaging; the first owing to the
noise susceptibility of the system matrix’s pseudoinverse, the second since the
scattering vector consists of sharp peaks, which contradict the specification of a
smooth solution. Expectedly singular value truncation and Tikhonov regulariza-
tion gave similar results due to the close connection between filtering of singular
components and solution norm reduction [3, 5]. Both do not provide SNR and
PSR sufficient for ultrasound imaging. Regularized inverse filtering with enve-
lope weighting is able to enhance the axial resolution compared to envelope or
matched filter detection without degrading SNR and PSR to much and is thus
the suitable candidate for an application in medical ultrasound imaging.

The applicability of the envelope weighting algorithm for B-mode imaging is
currently limited due to strong artefacts. These artefacts are owed to the fact
that the system model is one-dimensional along the individual A-lines, i.e. do not
account for diffraction of the wave during its propagation through the tissue. It is
expected that inclusion of diffraction into the system model reduces the vertical
artefacts significantly.
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