
METK – The Medical Exploration Toolkit

Christian Tietjen1, Konrad Mühler1, Felix Ritter2, Olaf Konrad2,
Milo Hindennach2, Bernhard Preim1

1Institut für Simulation und Graphik, Otto-von-Guericke-Universität Magdeburg
2MeVis Research, Center for Medical Image Computing, Bremen

tietjen@isg.cs.uni-magdeburg.de

Abstract. In the following we will describe concept and realization of
the Medical Exploration Toolkit – the METK. The METK is designed
for loading, visualizing and exploring segmented medical data sets. It
is a framework of several modules based on the free MeVisLab, a de-
velopment environment for medical image processing and visualization.
The framework is platform-independent and freely available. We will also
present several different applications, developed with the METK.

1 Introduction

For many tasks in computer-aided medical visualization, it is not sufficient to
display just one anatomical structure or to perform a simple volume render-
ing. Building applications for complex case analysis with advanced visualization
techniques is still an extensive job. Low level libraries like VTK [1] are very flex-
ible, but the application development for supporting a special task is very time
consuming. Julius [2] and VolV [3] are based on VTK and Qt and provide a
faster application development. However, the programming environment is still
C++, thus, substantial programming knowledge is still required.

MeVisLab [4] provides an easy to learn, script based framework for medi-
cal image processing and visualization, based on modular visual programming.
Among other libraries, VTK and Qt are also integrated. Thus, a full image
processing and visualization pipeline can be used for application development
without deep programming knowledge.

Currently, there is no general communication or data standard available in
public with MeVisLab. Hence, newly designed visualization or exploration tech-
niques need to be adapted for each application. Also simple tasks such as loading
specific patient image data or the visualization of segmented structures require a
deep knowledge of the used techniques. The Application Frame (AppFrame)
facilitates the integration and testing of new algorithms and the development
of application prototypes with MeVisLab that can be used in clinical envi-
ronments [5]. While AppFrame indeed addresses generic issues such as DICOM
image import and export, user-management, reporting, and documentation func-
tionality, it does not provide advanced visualization and exploration techniques.
In addition, the AppFrame is not available in public.



408

Hence, we developed the Medical Exploration Toolkit (METK) as a compre-
hensive collection of basic and advanced visualization and exploration techniques
with a common communication protocol. These underlying structures are invisi-
ble for application developers. Thus, they can focus on application requirements
and come up with complex applications using just a few METK modules. The
METK is platform-independent and will be freely available at the end of 2007.

2 Materials and Methods

The METK is composed of five different layers: communication layer, database
layer, visual processing layer, visualization layer and exploration layer (Fig. 2).
For each layer, several METK modules are available that can be combined to
networks, building up an application.

Animations

Communication Layer

Database Layer

Visual Processing Layer

Visualization Layer

Exploration Layer

Volume Rendering

3D Isosurfaces

LiftChart 3D Hatching

3D Stippling

Winged Edge

Isosurfaces

CT/MRI Images Coded Segmentation

Object Selection

Collections

Viewpoint Selection Measurement

METK GUI Widgets

2D Overlays
M

E
T

K
 A

p
p

li
ca

ti
o

n
 L

a
y

e
rs

2D Viewer 3D Viewer

Fig. 1. Layer schema of the METK



409

The communication layer enables all modules to share events with other
modules and to be notified about global events, like loading or closing a case.
A case consists of original CT or MRI datasets with additional segmentation
masks, descriptions about their anatomical affiliation and patient information.
Also, visualization parameters may be stored. All METK modules can access and
manipulate these data. So, if one module changes the color of a structure, all
other METK modules may react on this event and may adjust their own settings.
The main visualization properties are always shared to provide a synchronized
visualization in all modes and viewers.

The database layer contains all necessary data: image data and segmenta-
tions masks, as well as isosurfaces and their winged edge data. The isosurfaces
are generated by default, because they are needed at most. All other data may
be made available optionally, if one visualization module needs it. Since the com-
putation of an isosurface may be computationally expensive for some structures,
it is possible to compute those surface only if necessary, e.g., if they are treated
as visible. For setting up a new case or expanding an existing one, there are still
several modules available in MeVisLab. The METK does not provide particular
segmentation algorithms, like LiveWire or Watershed, that are already present
in MeVisLab. It just provides functions for storing the retrieved segmentation
information in a METK readable manner. The entire case must be provided in
form of an XML file. The case data contains information about the segmented
structures (e.g., type and color). The image data itself may be provided in one
of many standard formats like DICOM, Analyze or RAW.

The visual processing layer interprets the data. Several visualization tech-
niques are implemented, which are not part of the MeVisLab library. Isosur-
faces may be displayed by shaded surfaces, silhouettes, stippling or hatching.
Image data may be displayed as orthogonal 2D slices or as volume rendering. In
both modes, the segmentation masks may be displayed by colored overlays or by
tagged volume rendering. More advanced techniques like displaying LiftCharts
[6] or distances to other structures are also available in 2D and 3D [7]. Every visu-
alization technique may be turned on or off for every single structure. Thus, it is
possible to render the whole scene with isosurfaces, but the pathologic structures
with an additional silhouette.

The visualization layer displays and combines the visualization of each struc-
ture provided by the visual processing layer. It is possible to combine different
visualization techniques in separated 2D and 3D viewers as well as in combined
2D/3D viewers. Simple screen shot facilities are also provided.

The exploration layer contains high level exploration techniques. The entire
state of the METK database may be stored along with a short comment, a
caption, a small thumbnail and a screen shot, referred to as a collection. A col-
lection is later accessible for further explorations or presentations. Furthermore,
the datasets may be explored by using automatically generated animations [8].
Those animations are described in a high-level manner and can be automati-
cally reused for many similar cases. The development of application interfaces is
supported with well designed METK widgets on the basis of Qt, e.g., for struc-



410

ture lists or panels to change visualization parameters. The navigation in 3D is
supported by advanced techniques for automatic viewpoint selection [9], by in-
telligent object selection algorithms (if multiple semi-transparent structures are
overlapping each other) and by facilities for structure measurement.

Only the communication and database layers are mandatory. All other mod-
ules are optional. However, it is possible to combine the functionalities of different
modules. For example, it is possible to smoothly switch from one collection or
the current viewing state to another collection by using animations.

We also developed a new technique for the efficient management of segmen-
tation masks. Normally, segmentation masks of structures are saved in single
files for each structure. This results in extensive memory consumption, because
for complex operations like combined 2D overlay visualization of multiple struc-
tures, all segmentation masks needs to be hold in memory. To avoid that, a
coded segmentation module was developed. The coded segmentation combines
all segmentation masks derived from the same image in only one image. Each
voxel value represents a combination of structures that the voxel belongs to. The
information of relation between voxel values and belonging structures is stored in
the case. The coded segmentation is especially useful for liver surgery, where all
segmented structures are overlapping each other (e.g., tumor, Couinaud segment
and vessels).

3 Results

As shown in Fig. 3(a), only four modules are necessary to load and display a spine
case dataset with 34 different structures. The METKManager loads the case
data and provides the obligatory isosurface data (Communication and Database
Layer). METKIsosurface renders the isosurfaces with shaded surfaces (Visual
Processing Layer) and the METKViewer3D finally displays the shaded isosur-
faces (Visualization Layer). The METKStructureGroupBrowser enables the user
to show or hide the different groups of structures or separate structures (Explo-
ration Layer).

Currently, two applications based on METK are published, while more are
in a pre-release development state. The NeckSurgeryPlanner [7] is a soft-
ware assistant for pre-operative planning and visualization of neck dissections
(Fig. 3(b)). The LiverSurgeryTrainer [10] is a training system to learn spe-
cific tasks for liver donor transplantations and tumor resections.

4 Discussion

The METK helps to develop basic applications very fast. It provides basic fa-
cilities like case management as well as advanced visualization and exploration
techniques like stippling or viewpoint selection. No programming knowledge is
necessary to set up high level applications. The resulting applications are as slim
as possible, because the basic database and visualization layers are optional. The
METK is platform-independent and will be freely available at www.metk.net.



411

Fig. 2. (a) Network of an application to explore segmented structures in 3D and to
change their visibility. (b) A screen shot of the NeckSurgeryPlanner

(a) Simple network showing a spine dataset. (b) NeckSurgeryPlanner

A great deal of work still needs to be done. A kind of METK self-management
would be helpful. Some modules need the guaranteed existence of another, for
example, the animation module needs a 3D viewer to render. When developing
complex applications, the separation between case and application data is still a
problem. For an application with multiple viewers, the viewer parameterization
should be stored in the case, like image windowing information in DICOM, or
separately, because it is undefined on loading the case in another application.

Acknowledgement. This work was supported by the BMBF in the frame-
work of the SOMIT-FUSION project (FKZ 01|BE 03B) and by the Deutsche
Forschungsgemeinschaft (DFG) (Priority Programme 1124, PR 660/3-1).

References

1. Kitware Inc . VTK Home Page; 2007. http://www.vtk.org.
2. Keeve E, Jansen T, Krol Z, et al. JULIUS: An extendable software framework for

surgical planning and image-guided navigation. Proc MICCAI. 2001; p. 1336–7.
3. Pfeifle, M et al . VolV: Eine OpenSource-Plattform für die medizinische Visual-

isierung. In: Proc. CURAC; 2007. p. 193–6.
4. MeVis Research. MeVisLab Home Page; 2007. http://www.mevislab.de.
5. Rexilius J, Kuhnigk JM, Hahn HK, et al. An application framework for rapid

prototyping of clinically applicable software assistants. In: GI Jahrestagung; 2006.
p. 522–8.

6. Tietjen C, Meyer B, Schlechtweg S, et al. Enhancing Slice-based Visualizations of
Medical Volume Data. In: EuroVis; 2006. p. 123–30.

7. Tietjen C, Preim B, Hertel I, et al. A Software-assistant for pre-operative planning
and visualization of neck dissections. In: Proc CURAC; 2006. p. 176–7.

8. Mühler K, Bade R, Preim B. Adaptive script based animations for intervention
planning. Proc MICCAI. 2006; p. 478–85.

9. Mühler K, Neugebauer M, Tietjen C, et al. Viewpoint selection for intervention
planning. In: EuroVis; 2007. p. 267–74.

10. Cordes J, Mühler K, Preim B. Die Konzeption des LiverSurgery-Trainers. In:
GI-Jahrestagung; 2006. p. 514–21.


