
Evaluating the Performance
of Processing Medical Volume Data

on Graphics Hardware

Matthias Raspe, Guido Lorenz, Stefan Müller

Institute for Computational Visualistics,
University of Koblenz-Landau (Campus Koblenz)

mraspe@uni-koblenz.de

Abstract. With the broad availability and increasing performance of
commodity graphics processors (GPU), non-graphical applications have
become an active field of research. However, leveraging the performance
for advanced applications combining hardware and software implemen-
tations is more than just efficient shader programming: the data transfer
is often the main limiting factor. Therefore, we will investigate in the
applicability of commodity graphics hardware for medical data process-
ing, and propose a GPU-based framework for representing computations
on volume data. Also, we will show the clear performance gain of differ-
ent operations compared to CPU algorithms and discuss their context.
Not only the much higher performance of hardware implementations is
attractive, but also the fact that the computation results can be visual-
ized directly, i.e., without introducing an overhead and thus allowing for
literally interactive applications.

1 Introduction

With the advances in computer graphics hardware during the last few years,
the computational performance of such commodity hardware is able to clearly
outperform modern multi-core processors. As shown recently in [1], many areas
are able to benefit from the computing performance of programmable graphics
processors (GPU). In medical application, however, visualization tasks are still
the primary use for graphics hardware.

While many general purpose applications have been successfully addressed,
image processing remains a particularly interesting field due to the architecture
of graphics hardware. Being optimized especially for two-dimensional textures,
processing such image data is obvious and achieves optimal performance. How-
ever, lots of image data, especially the medical field is acquired and processed
volumetrically, i.e., as three-dimensional data.

This imposes several issues for applications targeting at graphics hardware.
First, the available on-board memory becomes critical for large volume data
produced by modern imaging systems. Also, 3D textures are not very flexible
as they usually do not allow for direct write access, thus preventing their use



428

as render targets. However, the main problem is still the data transfer to and
especially from the graphics memory, with volume data intensifying the issue
due to the additional dimension. For certain applications, however, this is not as
problematic as it might seem. As Langs et al. [2] have shown by using the graph-
ics hardware for filtering large volumes representing video frames and thereby
achieving a performance several orders of magnitudes faster than commercial
CPU implementations. Köhn et al. [3] have implemented image registration al-
gorithms on the GPU and also report a clear performance gain being only flawed
by some graphics driver limitation.

In order to evaluate the discussion for processing (medical) volume data, we
will compare different types of operations with respect to their runtime perfor-
mance as CPU and GPU implementations, respectively. Therefore, our GPU-
based framework ”Cascada” that is already used in the context of medical seg-
mentation (see [4]) regards computation processes at a more abstract level and
handles processing and visualization tasks uniformly. The cross-platform sys-
tem also provides basic functionality for handling (medical) volume data and
integrates different visualization techniques and input devices.

2 Material and Methods

2.1 Overview of the GPU-based Framework

The system for (general purpose) GPU programming focuses on processing vol-
ume data, mainly from tomographic imaging systems such as CT or MRI. The
algorithms are represented in a hierarchical structure, consisting of:

– Sequences encapsulate procedures ranging from simple thresholding opera-
tions to iterative algorithms or visualization components

– Sequences consist of multiple passes that resemble shader programs being
executed by rendering geometry

– Shader programs combine the different types of shaders (currently: vertex
and fragment programs) with an additional infrastructure for handling pa-
rameters, concatenation, etc.

For efficient data handling, we use basically two complementing approaches.
First, the data is represented as volumes packed into RGBA-tuples, thus allowing
for direct rendering into the volume and exploiting the SIMD (Single instruction,
multiple data: processing four data items simultaneously) architecture of GPUs.
Therefore, four successive slices of the scalar volume (or four DICOM slices)
are combined into one RGBA slice. For both backward compatibility and better
performance, the system additionally uses a two-dimensional representation of
the volumetric data as introduced by Harris et al. [5]. As shown in [2], the time
for accessing the flat-3D texture by converting the 3D texture coordinates into
the 2D address is even less than direct 3D access for basic interpolation modes.
All representations of the volume data are converted and loaded to/from the
GPU only on demand, i.e., expensive operations are kept at a minimum.



429

At the level of render passes in our hierarchical representation, the system
does not distinguish between processing and visualization steps. The only dif-
ference is the target of the pass/sequence (i.e., offscreen/onscreen buffer) which
can be changed during runtime, if needed. Therefore, the system implicitly al-
lows for displaying the results of algorithms while they are computed, with a
negligible performance overhead on modern graphics hardware, as shown in [4].
Currently, our system provides several volume visualization modes, with stan-
dard MPR (multi-planar reformation) and direct volume rendering by means of
GPU raycasting.

2.2 Performance Comparison

In order to provide some measure for the efficiency of our framework, we have
compared its processing performance with MeVisLab [6], a widely used soft-
ware system for efficient medical data processing and visualization. Although
”Cascada” also provides software implementations of the algorithms, it is not
optimized in this regard. Let alone the fact that comparing a system with itself
is not meaningful and transferable at all. Most of MeVisLab’s core algorithms
are based on an image processing library that, in combination with the power-
ful frontend, allows for flexible and rapid development of applications. However,
the system does not utilize programmable graphics hardware, except for visual-
ization purposes and simple modifications of primarily visual results via shader
programs.

As mentioned before, an important factor for leveraging the performance
of GPUs is the amount of data transfer relative to the processing. Basically,
a much better performance can be achieved by loading the data once to the
graphics card’s memory and compute as much as possible there. This is also
preferable for the simultaneous visualization of the results during computation.

We have set up two different scenarios for comparing the systems. The first
one is intended to show the performance at operations with different levels of
computational complexity, ranging from simple thresholding to gradient com-
putation in a 3D neighborhood. The second performance test (figure 1) aims
at mimicking a reasonable procedure for volume processing, so the focus is on
combining different operations while limiting data transfer to the extent needed.

Input
Volume

Gauss 
3D

Difference
Binary 

Threshold
Dilation 
3D

5x

Count 
Voxels

Fig. 1. Test setup for evaluating the performance of some pipeline consisting of different
types of operations



430

Table 1. Computation times in seconds for the two data sets (CT scan/MRI scan).
The GPU version excludes data transfer from/to the video memory and is averaged
over multiple runs

Operation MeVisLab Cascada (all) Cascada (GPU)

Binary 0.73 / 0.21 1.9 / 0.55 0.038 / 0.011
Gradient 2D 10.1 / 2.9 2.6 / 0.7 0.06 / 0.017
Gradient 3D 14.9 / 3.9 2.6 / 0.72 0.059 / 0.018
Gauss 2D 1.36 / 0.37 2.48 / 0.73 0.061 / 0.017
Gauss 3D 3.65 / 1.01 2.59 / 0.78 0.09 / 0.026

Table 2. Single computation times in seconds for the two data sets (CT scan/MRI
scan). The GPU version includes the shader and all setup steps between the stages;
the initial upload is omitted as it is addressed in table 1. Total time does not include
loading the data for both platforms

Operation MeVisLab Cascada (GPU) ∅ speedup

Gauss+Difference 3.6 / 1.48 0.74 / 0.23 5.5
Binary Threshold 0.7 / 0.23 0.125 / 0.049 5.2
Dilation 3D (5x) 27.12 / 7.6 1.14 / 0.343 23
Count Voxels 1.1 / 0.7 0.33 / 0.078 6
Total 32.9 / 10.8 2.41 / 0.76 14

All the experiments have been performed on an Intel Core2Duo (2.4 GHz)
with 2 GB RAM and an Nvidia Geforce 8800 GTS with 640 MB of VRAM. For
MeVisLab we have used the latest SDK version (1.5.1) available from their web-
site with default settings. We have applied the algorithms in both applications
on the same datasets: a 512 × 512 × 223 CT scan (DICOM files), and an MRI
scan 256 × 256 × 256 (raw volume), both with 16 bit values.

3 Results

In the following tables, we have gathered all the timings from the aforemen-
tioned experiments. The first table shows some details on the single opera-
tions with increasing complexity (no neighborhood, 4/6-neighborhood, and 8/26-
neighborhood, respectively). In addition to their behaviour in the different di-
mensions, the transfer overhead is measured in detail.

The second table gives an overview of some reasonable concatenation of vary-
ing operations. No additional time for data transfer and/or conversion is mea-
sured here, as both systems work in their appropriate format for subsequent
execution. We have also integrated special caching modules in MeVisLab to de-
couple the different steps and allow for comparable measuring.

4 Discussion

As can be seen in the preceding tables, the GPU is able to clearly outperform
CPU implementations for all operations with speedups of up to 250, even for



431

non-trivial algorithms. In contrast, including the additional time for the data
transfer to and from the GPU reveals the severe impact on the performance:
depending on the type and dimensionality of the operation, and the size of the
volume the software implementation can surpass the GPU’s performance in this
case. Aside from several optimizations that are left as future work for the GPU
system to tackle this issue, reloading the whole volume in every stage is not
very likely to be needed. Therefore, the second scenario has been set up to
provide a more ”real life” workflow, with the GPU being more than one order
of magnitude ahead of CPU implementations and thus being well suited for the
computationally demanding field of medical image processing.

Of course, there is still room for improvement and investigation, aside from
just technical optimization. Software performance is not only measured in raw
computing performance, but also in programming effort where a research sys-
tem as Cascada cannot cope with established platforms. Also, graphics hardware
vendors have already started to simplify the use of their hardware by regard-
ing GPUs more as devices than purely graphics oriented hardware. However,
the key advantage of using graphics hardware also for computation, namely the
visualization ”for free” will be harder to use then. Regarding the fast develop-
ment cycles of graphics hardware, the performance advantage will most likely be
increasing as can be easily seen from speedups with past hardware generations.

References

1. Owens JD, Luebke D, Govindaraju N, et al. A survey of general-purpose computa-
tion on graphics hardware. Comput Graph Forum. 2007;26(1):80–113.

2. Langs A, Biedermann M. Filtering video volumes using the graphics hardware. Lect
Note Comp Sci. 2007;4522:878–87.

3. Köhn A, Drexl J, Ritter F, et al. GPU accelerated image registration in two and
three dimensions. Proc BVM. 2006; p. 261–5.

4. Raspe M, Wickenhöfer R, Schmitt F. Visualisierungsgestützte 3D-Segmentierung
und Quantifizierung von Bauchaortenaneurysmen. Proc CURAC. 2007; p. 197–200.

5. Harris MJ, Baxter WV, Scheuermann T, et al. Simulation of cloud dynamics on
graphics hardware. Proc ACM SIGGRAPH/EUROGRAPHICS Conf Graph Hard-
ware. 2003; p. 92–101.

6. MeVis. MeVisLab: A Development Environment for Medical Image Processing and
Visualization; 2007. http://www.mevislab.de.


