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Abstract. We propose an automatic procedure for the correct segmen-
tation of grey and white matter in MR data sets of the human brain. Our
method exploits general anatomical knowledge for the initial segmenta-
tion and for the subsequent refinement of the estimation of the cortical
grey matter. Our results are comparable to manual segmentations.

1 Introduction

The analysis of the functional organisation of the cortical areas, as assessed by
anatomical and functional MRI, requires a precise segmentation of the grey and
white matter in the anatomical data. The automatic segmentation of the cortex
is a complex task for two main reasons. First, the inter–subject variability of the
human brain anatomy restricts the use of general anatomical knowledge. Second,
image artifacts, such as partial volume effects and inhomogeneities of the scans,
complicate the separation between grey and white matter regions. Several meth-
ods have been applied in recent years to estimate gray and white matter volumes
(semi)automatically on MRI [1]. The most popular methods separate intensity
histograms which are assumed to be composed of a grey matter distribution and
a white matter distribution [2]. The data is then classified directly, or the param-
eters of the two distributions determine the intensity range for region growing
approaches [3]. Other methods include active contours and surfaces [4, 6, 5].

Our algorithm consists of a number of basic methods which resolve the com-
plex task utilising general anatomical knowledge. The algorithm allows for a fully
automatic and fast segmentation of the grey and white matter regions.

2 Method

We use an algorithm that allows for a segmentation of the grey and white matter
in Talairach transformed MR data sets of the human brain.

The 3d–anatomical T1–weighted MRI were scanned on a 1.5 Tesla head scan-
ner (GE Medical Systems). Using the commercial software BrainVoyager [7] the



438

16 bit data sets have been converted to 8 bit and transformed to match the
standard brain of the Talairach atlas [8] (Fig. 1(a) and 1(e)).

The result of our algorithm is a segmentation in 3D where each voxel x of
the data set is assigned one of four labels. These labels are lW for white matter,
lG for grey matter, lB for background and lV for ventricles.

A histogram analysis gives an estimate for the mean value of the white matter
intensity EW , a lower intensity limit for the white matter tW and an upper
threshold for the cerebrospinal fluid (CSF) tCSF .

In order to get a histogram that is suitable for computing the parameters
for the regions of interest, we only use voxels within an ellipsoid Ω1 (Fig. 1(b)),
whose parameters are derived from the Talairach proportional grid (Fig. 1(a))
to give an approximation of the cerebrum.

Then, all voxels x with x < tCSF are set to lB . The CSF in the ventricles
gets another label lV , because the meaning of the background label does not
apply here. Given the Talairach proportional grid, the ventricles can easily be
located and labeled using a region–growing (Fig. 1(f)). We use two ellipsoids Ω2

to approximate the eye regions (Fig. 1(e)). The brightest 15% of these areas are
set lB , i.e. background, to avoid problems in the following step of our algorithm.

From our approximation of the cerebrum, Ω1, in combination with the calcu-
lated mean EW , a small area within the white matter is automatically assigned
as seed voxels for a second region growing process. White matter voxels are now
segmented based on intensity and minimum distance to background (Fig. 1(c)).
More specifically, x = lW if x > tW ∧min{d(x, y = lB)} ≥ 3mm. The second
criterion is based on anatomical knowledge about the brain, that grey matter
has a thickness of 3 − 5mm, even if the data suggest otherwise. This criterion

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Figures 1(a) and 1(e) present two sagittal slices from one of the data sets. For
a detailed description of the intermediate segmentation results (Section 2)
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does not apply to the region around the ventricles, where white matter directly
borders CSF. Since voxels of this region are assigned the label lV instead of lB ,
this poses no problem to our algorithm. The masking of the eyes was necessary
because these high intensity regions touch the brain.

Now we apply a flooding algorithm initialised on the bottom-most voxel
x = lW of the data set, which is in our case always situated in the spinal cord.
The algorithm counts in every axial slice i voxels xi = lW connected to the
spinal cord and sets every voxel xi = lB if #xi+1

#xi
< θ. Once the flooding reaches

the cerebrum, the number of connected white matter voxels in a slice increases
significantly and the algorithm stops. Because of this increase, any threshold
100 < θ < 10000 gives the same result. Note, that this still allows for white
matter voxels below the final flood level in other parts of the brain. Using this
simple rule we remove all voxels within the spinal cord and the cerebellum and
retain a clean segmentation of the white matter (compare Figs. 1(c) and 1(d)).

In the next step, any unlabelled voxels x with min{d(x, y = lW )} < 6mm
are set lG, i.e. grey matter (Fig. 1(g)). This is a reasonable choice as these voxels
have not been labelled as background and are still within the expected range
for grey matter. All other still unlabelled voxels are set to lB . In a number of
postprocessing steps we now reduce the number of misclassified voxels. Via a
connected component analysis voxels that represent fat, ventricles or meninges
are identified and set to lB . By now, we can easily calculate a mean value EG

from a more reliable set of voxels x = lG and can change the label of any x = lW
with |x−EG| < |x−EW | to lG (Fig. 1(h)). Finally, all x = lV can be set lB , so
that all voxels that are not grey or white matter are now labelled as background.

3 Results

Five data sets were available for the evaluation. The quality of the data var-
ied with respect to signal–to–noise ratio and grey level inhomogeneities. A gold
standard was given in terms of manual segmentations of four transversal exam-
ple slices per data set. Additional reference segmentations were computed by
using the software BrainVoyager [7], which relies on a comparable segmentation
approach and is of widespread use in the neuroimaging community. These seg-
mentations were generated independently by one neurobiologist and one trained
expert.

3.1 Performance and Robustness in Parametrisation

The segmentation using BrainVoyager includes the isolation of the brain by ap-
plying standard Talairach masks, as well as a histogram–based grey and white
matter classification. The masking is followed by nonlinear smoothing and re-
gion growing within the segmented volume. The cortex boundary is then im-
proved using morphological operations [3]. For reasons of comparability to our
algorithm, we didn’t include the inhomogeneity correction usually performed in
BrainVoyager by an expert.
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For the segmentation with BrainVoyager user interactions were required in
one of the five cases. If parameter values, e.g. the threshold for separating grey
and white matter, were poorly specified the segmentation failed. Small varia-
tions in the parameter values led to significant alterations in the segmentations.
The whole segmentation process (without any topological corrections) took the
trained user about 300 seconds on a standard PC (3.2 GHz Pentium 4).

Our algorithm is fully automatic and requires no user interaction. In our
approach, parametrisation of the different region growing steps is more robust,
because it is less data driven but utilises anatomical information, e.g. distance–
to–surface priority. In contrast to BrainVoyager, no smoothing for reducing the
variation in the grey and white matter signal intensity is needed. Computational
time of the whole algorithm on a data set with 2563 voxels is about 65 seconds.
Note, that the postprocessing steps take about 50 seconds, while the large part
of the segmentation can be computed very fast due to the simple algorithms.

3.2 Assessment of the Segmentation Results

A visual inspection of the segmentation results by another two experts indicate
that our segmentations are of high quality even in regions of low contrast, e.g.
the occipital lobe (Fig. 2).

To evaluate the accuracy of our segmentation, we assembled a quantitative
analysis based on the slices of the five data sets for which a gold standard was
available. Our analysis showed, that the accuracy of our segmentation is compa-
rable with the accuracy of the manual segmentations (Table 1). In contrast, the

(a) Region Growing (b) BrainVoyager

(c) RG:1 (d) manual:1 (e) BV:1 (f) RG:2 (g) manual:2 (h) BV:2

Fig. 2. Comparison of our algorithm with a BrainVoyager segmentation: representa-
tive slice (a,b); particulary difficult regions from the slice (c-h); further examples at
http://isgwww.cs.uni-magdeburg.de/bv/rgapplett/
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Table 1. Quantitative assessment of the segmentations using BrainVoyager and our
Region–Growing approach based on anatomical knowledge. We computed the (mean
± standard deviation of the) Hausdorff–distance dH and the Mean Squared Distance
dM of the grey–white matter boundaries to compare the segmentation results with the
expert’s segmentations of example slices of five data sets (in mm)

Data set 1 2 3 4 5

dH BrainVoyager 17.9 ± 7.9 17.3 ± 6.2 14.0 ± 5.7 16.7 ± 4.5 17.3 ± 4.8
Region–Growing 7.4 ± 2.7 7.5 ± 2.6 9.0 ± 5.4 9.3 ± 2.0 10.2 ± 3.3

dM BrainVoyager 16.8 ± 12.2 14.5 ± 10.7 10.9 ± 6.8 21.0 ± 6.8 15.6 ± 10.2
Region–Growing 1.7 ± 0.8 1.2 ± 0.4 1.5 ± 0.5 3.3 ± 1.7 3.8 ± 0.9

BrainVoyager segmentations clearly underestimate the white matter and miss
white matter of gyri which can be easily identified (compare for example Figs.
2(c) and 2(d)).

4 Discussion

We presented a technique for the segmentation of grey and white matter in
MRI data using a modified region growing process. By incorporating general
anatomical knowledge in a sequence of simple segmentation steps we obtained
robust and fully automatic segmentation results. These results are comparable
to the manual segmentations of trained experts.
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