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Abstract. Fluorescence time-lapse microscopy is a powerful technique
for observing the spatial-temporal behavior of viruses. To quantitatively
analyze the exhibited dynamical relationships, tracking of viruses over
time is required. We developed probabilistic approaches based on parti-
cle filters for tracking multiple virus particles in time-lapse fluorescence
microscopy images. We employed a mixture of particle filters as well as
independent particle filters. For the latter, we have developed a penal-
ization strategy to maintain the identity of the tracked objects in cases
where objects are in close proximity. We have applied the approaches to
synthetic images and quantified their performance. We have also success-
fully applied the approaches to real microscopy images of HIV-1 particles
and have compared the tracking results with ground truth from manual
tracking.

1 Introduction

The aim of our work is to study the dynamic behavior of the human immuno-
deficiency virus (HIV) based on live cell microscopy using fluorescently labelled
virus particles. Tracking single virus particles yields quantitative information
that contributes to the understanding of viral processes (e.g., cell entry). To
obtain statistically sound conclusions, many individual particles must be auto-
matically tracked. However, tracking virus particles is challenging. Problems are
due to the small size of viruses as well as their complex motion behavior. Also,
one has to cope with the large number of virus particles, the relatively high level
of cell autofluorescence, as well as a relatively low signal-to-noise ratio.

In previous work on virus tracking, a deterministic two-step paradigm en-
compassing virus localization and motion correspondence has been typically em-
ployed. For localization, most approaches employ a maximum intensity search
strategy, where intensity maxima are associated with virus particles (e.g., [1]).
For motion correspondence, approaches that consider the motion of all viruses
via graph-theoretical algorithms have been used (e.g., [2]). In contrast to the
deterministic schemes, probabilistic approaches additionally include a spatial-
temporal filter. An approach using a pool of Kalman filters has been presented
in [3]. However, the steps of object localization and spatial-temporal filtering are
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uncoupled. This entails that temporal information is not used for localization,
and analogously image information is not directly used by the filter to estimate
the position of an object. In contrast to the Kalman filter, the particle filter,
which has been introduced to the field of computer vision in [4], exploits more
efficiently the image and temporal information encoded in an image sequence.
An approach using a mixture of particle filters for virus tracking has been pre-
sented in [5]. There, however, only a fixed number of objects could be tracked.
Generally, the number of objects changes over time (e.g., objects enter the field
of view).

In this contribution, we introduce probabilistic approaches for tracking mul-
tiple viruses in fluorescence microscopy time-lapse images. We have developed
two approaches based on particle filters, namely an approach using a mixture of
particle filters and an approach using independent particle filters. In contrast to
the former scheme, the latter approach can track a variable number of objects.
We address the problem of filter merging that arises when using independent
particle filters via a penalization mechanism based on a deterministic motion
correspondence algorithm. The developed approaches are fully automatic and
have been successfully applied to synthetic image sequences as well as to real
microscopy image sequences displaying HIV-1 particles.

2 Materials and Methods

In our approaches, tracking is formulated as a Bayesian sequential estimation
problem. At time step t, the aim is to estimate the state xt of a virus given
a sequence of measurements y1:t. By modeling the temporal behavior using a
dynamical model p(xt|xt−1) and incorporating image information via a mea-
surement model p(yt|xt), a Bayesian filter estimates the posterior distribution
p(xt|y1:t) via stochastic propagation and Bayes’ theorem:

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

An estimate of xt can be obtained from the posterior p(xt|y1:t), which, in our
case, is estimated using a particle filter. This algorithm approximates the pos-
terior with a set {xi

t;w
i
t}Ns

i=1 of Ns random samples xi
t (the ‘particles’) that are

associated with importance weights wi
t. In the case of tracking multiple objects

that have a similar appearance, multiple modes arise in the posterior distribu-
tion. Although a particle filter can in principle handle such a distribution, in
practice the filter cannot maintain the multimodality over several time steps
[4, 6]. To address this problem, one may model the posterior p(xt|y1:t) as a
non-parametric M -component mixture model :

p(xt|y1:t) =

M∑

m=1

πm,tpm(xt|y1:t)

where πm,t denotes the weight of the m-th component [6]. Each pm(xt|y1:t) is
approximated using a set of particles {xi

t;w
i
t}i∈τm

, where τm is the set of indices
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indicating which particles belong to component m, and particles are allocated
using a clustering mechanism. Note that

∑M
m=1 |τm| = Ns, where | · | denotes

the set size operator. The estimation performance deteriorates as the number of
objects increases, since Ns remains constant, i.e., fewer particles are allocated to
each component.

Alternatively, one may track multiple objects by instantiating one indepen-
dent particle filter per object. In this case, for each filter, an independent set of
particles of size Ns is used. Failures arise when objects are in close proximity,
since the filters converge towards the object with the best likelihood p(yt|xt).
To address this problem, we propose a novel penalization strategy comprising
three steps: first, the approach determines objects that are in close proximity.
This reduces to finding cliques in an undirected graph, where the vertices are
given by the filtered position estimates of the objects, and an edge is said to
join two vertices if the distance between the positions of two objects is below
a certain value. The second step determines the most plausible position x̂t for
each object in each clique by seeking modes in the probability density function
that is induced by merging all particles of all filters of a clique. The plausible
positions are assigned to each object via a global nearest neighbor approach [1].
In some cases (e.g., when objects merge), a plausible position might not be found
for an object. In this case, this object is not further considered in the penaliza-
tion scheme; the filter may merge temporarily with another filter. In the third
step, the weights of particles that are relatively distant to the most plausible
position x̂t of an object are assigned lower values via a Gaussian function; given
the lower weights, the resampling step of the particle filter might discard the
penalized particles.

3 Results

We have applied our approaches to synthetic as well as real microscopy image
sequences. To automatically detect virus particles, we employ either the spot-
enhancing filter (SEF) [7] or 2D Gaussian fitting (GaussFit) and combine them
with the particle filter approaches. The approaches using a mixture of particle
filters (MPF) can only track objects that enter the field of view at time step
t = 0, while those using independent particle filters (IPF) can track objects
that enter the field of view at any time step. To measure the performance, we
used the tracking accuracy defined as Ptrack =

ntrack,correct

ntrack,total
, which reflects the

ratio between the number of correctly computed trajectories ntrack,correct and the
number of true trajectories ntrack,total. The value for ntrack,correct is computed
as the weighted sum of the percentage of tracked time steps rtracked,i for each
i-th true trajectory: ntrack,correct =

∑ntrack,total

i=1 wirtracked,i, where the weight wi

is given by a Gaussian function, which takes as its argument the number of
correctly computed trajectories ntrack,i. The weighting scheme is introduced to
penalize computed trajectories that are broken. Note that Ptrack ∈ [0, 1].

We validated the approaches based on several synthetic image sequences.
Here, we describe the experimental results obtained for one image sequence. This
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Table 1. Description of real microscopy image sequences

Dimensions No. of time steps No. of objects

Seq. 1 256 × 256 250 23
Seq. 2 512 × 512 200 15
Seq. 3 512 × 512 400 43

Table 2. Tracking performance Ptrack for real microscopy image sequences

SEF&MPF GaussFit&MPF SEF&IPF GaussFit&IPF

Seq. 1 84.82% 81.95% 86.73% 82.61%
Seq. 2 84.64% 85.64% 93.54% 93.54%
Seq. 3 50.62% 49.04% 74.64% 67.76%

sequence consists of 100 images (256×256 pixels, 16-bit) displaying 20 synthetic
particles. The SNR level is 4.55 and the noise model was assumed to be Poisson
distributed. The quantitative experimental results are as follows: SEF&MPF
achieves 79.28%, GaussFit&MPF attains 80.00%, SEF&IPF yields 85.65%, and
GaussFit&IPF achieves 90.13%.

We also validated the algorithms using real microscopy image sequences. In
these sequences, fluorescently labeled HIV-1 particles were imaged using a fluo-
rescence wide-field microscope. Fluorophores were excited with their respective
excitation wavelengths and movies were recorded with a frequency of 10Hz [8].
Ground truth for the virus positions was obtained by manual tracking using
the commercial software MetaMorph. The quantitative experimental results for
three sequences are presented in Table 2. Each sequence consists of 200 up to 400
frames (Table 1). Sample images of tracking results for the real sequence“Seq. 3”
are shown in Fig. 1. Analogously to the experiments using synthetic data, it turns
out that the approaches using IPF yield a higher tracking accuracy than those
using MPF.

4 Discussion

Our experimental results suggest that the approaches based on independent
particle filters (IPF) outperform those using a mixture of particle filters (MPF).
The reason for this is twofold. First, since the MPF allocates a different number
of particles to each object via a clustering mechanism, poor estimation results are
obtained for those objects with few allocated particles. The clustering mechanism
may generate non-compact clusters, which lead to inaccurate position estimates,
in particular, for objects that lie in close proximity. In contrast, the IPF not only
uses a constant number of particles for each object, but also copes with problems
induced by the proximity of objects via our penalization scheme. Second, since
the MPF cannot track a variable number of objects, its performance is reduced.
In contrast, the IPF is able to handle a variable number of objects.

In summary, we have developed probabilistic approaches based on particle
filters for tracking multiple viruses in microscopy image sequences. Our quantita-
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Fig. 1. Tracking results for two approaches for the real microscopy image sequence
“Seq. 3” (time step t = 140). For both approaches, an enlarged section delineated with
a black rectangle is shown next to the original image

SEF&MPF: Original image and section SEF&IPF: Original image and section

tive experimental results based on synthetic and real microscopy image sequences
show that the approaches yield a good tracking performance. The superior per-
formance of our approach using IPF in combination with the novel penalization
scheme suggests that this approach is well-suited for solving the problem of mul-
tiple object tracking.
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