
SOMET: Algorithm and Tool for SPARQL
Based Ontology Module Extraction

Paul Doran, Ignazio Palmisano, Valentina Tamma
pdoran, i.palmisano, valli@liverpool.ac.uk

Department of Computer Science, University of Liverpool

Abstract. The different ontology module extraction techniques need
drawing together under a common framework, to allow for the selection,
adaptation and combination of existing techniques. The current work
upon a common framework places a significant overhead upon the user.
The SOMET algorithm and tool uses the W3C standards, RDF and
SPARQL. This allows the selection, adaptation and combination to be a
simple manipulation of a SPARQL query. SOMET replicates the behav-
ior of some of the existing techniques and there is work in progress in
approximating approaches not fully captured. A preliminary evaluation
of the efficiency of these techniques within SOMET is also conducted. A
discussion is presented highlighting the advantages and disadvantages of
SOMET.

1 Introduction

There are a plethora of techniques for carrying out ontology module extraction
[1–5]. All of these techniques are designed for different applications and contain
different assumptions about the problem as whole. Thus, there is a need to draw
this work together within a common framework; the key advantage of a common
framework is the ability to select, adapt and combine the different approaches.
Also, development of new techniques is made easier, since common technical
issues, such as whether reasoning is used or not, are already tackled in the
framework and no effort is required by the developer.

The notion of a common framework is not new and has already been raised by
d’Aquin et al [6] and Borgida and Giunchiglia[7]. [6] propose that the common
framework be based upon graph transformations, whereby the ontologies are
represented as a graph. In contrast [7] propose the use of a Tell/Ask interface.

The drawback of these approaches is that there could be a substantial over-
head in adapting and combining the existing ontology module extraction ap-
proaches within their frameworks. [6]’s use of graph transformations requires
Semantic Web practitioners and Ontology Engineers to become familiar with a
new technique, which currently has no standardised syntax. Whilst the Tell/Ask
interface used by [7] may be more familiar, since there is the DIG Interface 1 for

1 http://dig.sourceforge.net/

Description Logic, there can be a significant overhead in adding functionality to
the interface.

As such this paper proposes to use SPARQL[8] and RDF[9] as the common
framework, both of which are W3C2 standards. All OWL ontologies can be
represented as an RDF graph and SPARQL is a query language for RDF. Thus,
this paper shows how it is possible to cast the traversal based ontology module
extraction approaches as a series of SPARQL queries upon an RDF graph. Note
that adapting and combining the different ontology module extraction techniques
only requires the manipulation of SPARQL queries. A more detailed explanation
of how this can be accomplished is in Section 4.

This has been implemented in SOMET, which is available as a stand-alone
tool. The tool replicates the behavior of the current traversal based extraction
methods. Mechanisms for allowing the user to add their own queries to the ex-
traction process are also available. Thus, SOMET achieves the aim of providing a
common framework in which to represent these approaches. This is done within
an environment with which most Semantic Web practitioners and Ontology En-
gineers are familiar with.

In Section 2 the related work is presented. Section 3 introduces RDF and
SPARQL. Then Sections 4 and 5 present the SOMET framework and algorithm
respectively. SOMET is evaluated in Section 6. A discussion is presented in
Section 7. Lastly, Section 8 concludes.

2 Related Work

The literature on ontology modularization can be divided into two categories:
ontology partitioning and ontology module extraction. Ontology partitioning
[10, 11] divides an input ontology into a number of partitions, not necessarily
disjoint. In contrast, ontology module extraction[1–5] takes an input ontology
and extracts an ontology module about a supplied signature. Each approach has
a bias in how to extract an ontology module based upon their assumptions and
standpoint.

Doran, Tamma and Iannone[3] focus on extracting an ontology module that
describes a single, user supplied, concept for the purpose of ontology reuse. Their
approach is agnostic with respect to the language the ontology is expressed in,
as long as the ontology can be transformed into their Abstract Graph Model
for Ontology Module Extraction. The traversal carried out for extraction is done
conditionally, with the conditions changing to suit the language that the ontology
is expressed in. For example, if the start concept is involved in a disjoint relation
then this will not be traversed.

d’Aquin, Sabou and Motta[2] present an extraction process which forms part
of a knowledge selection process. The constraints posed by this process prioritise
a reduction in the size of the module produced. To achieve this not all the super-
classes of the included classes are included in the module. Shortcuts are taken in
2 http://www.w3.org/

the class hierarchy by only including the most specific common super-classes (by
applying the LCS, Least Common Subsumer[12], restricting the possible values
for LCS to the classes already existing in the ontology).

Seidenberg and Rector[5] developed a technique specifically for the Galen3

ontology, but it is possible to take the generic core and apply it to any ontology.
It takes one or more classes of the ontology as an input, and anything that
participates (even indirectly) to the description (and so the definition) of an
included class has to be included. To reduce module size without losing relevant
information, the authors filter Galen properties on the base of the property
hierarchy.

Noy and Musen’s[4] approach is based upon the notion of traversal view
extraction. It is made available via the PROMPT[13] plugin for Protégé. Starting
from one class of the considered ontology, this approach traverses the relations of
this class recursively to include related entities. It can be distinguished from the
other approaches in that it is intended as an interactive tool. This allows the user
to incrementally build ontology modules by extending the currently extracted
one. The user is allowed to select the relations to be traversed and associates to
each of them a depth at which they should stop being traversed.

To some extent it is possible to cast [2, 3, 5] as instantiations of [4]. However,
[2, 3] cannot be completely captured by the functionalities of [4]. [4] do not allow
for the collapsing of the hierarchy, as used by [2]; or for the non-traversal of
certain relations at specific points, as required by [3]. However, despite this all
of these approaches can be seen as traversal approaches.

The orthogonal approach to the traversal approaches is the logical approach.
Cuenca-Grau et al [1] define a module as a minimal, conservative extension

[14] of the original ontology with respect to the considered sub-vocabulary. For
Cuenca-Grau et al [1] a module is that if the new axioms that are added to the
original ontology are a conservative extension[14] of the original signature, then
the original ontology (not the extension) is said to be a module of all the axioms
together. Being a conservative extension means that the meaning of the terms
in the input sub-vocabulary is completely captured by the module, as it is in the
source ontology. In [1], Cuenca-Grau et al also show that computing a minimal
module considering the definition they provide is undecidable, and describe two
different approximations based on the notion of locality. The first method makes
use of a reasoner to check the semantic locality of the axioms to be included.
This procedure is decidable. The second one syntactically tests the locality of
axioms and can be realised in polynomial time. This approach is not currently
included in SOMET, but doing so is a focus of the future developments.

There has been some preliminary work on providing a common framework
for ontology module extraction. d’Aquin et al [6] propose to use graph transfor-
mations as a common framework. An abstract model for representing ontologies
as attributed graphs is described, along with the reformulation of existing mod-
ule extraction techniques as graph transformation rules. The aim being to pro-
duce a parametric modularization tool. The approach presented by Borgida and

3 http://www.opengalen.org/

Giunchiglia[7] can also be viewed as a step towards a common framework. They
provide a Tell/Ask interface for the functional importing of knowledge bases.

3 RDF Graph and SPARQL

The Resource Description Framework (RDF) is a W3C standard which provides
a common syntax and semantics for metamodelling of data. The semantics of
RDF can be represented as a graph. An RDF graph (a labelled, directed graph)
is a set of RDF triples. In RDF triples represent <subject, predicate, object>
relations. For example, consider the following set of triples.

< C, referees, : x >
< A, playsIn, : x >
< B, playsIn, : x >

These triples are also a valid RDF graph and can be represented by the graph
shown in Figure 1. (: x in the above is a blank node4)

C

_:x

BA

playsInplaysIn

referees

Fig. 1. RDF graph representation

As every valid OWL ontology is also a valid RDF graph5 it is possible to use
this graph as a common basis to build upon. This also brings the added benefit
of being able to use SPARQL.

SPARQL is a W3C standard for querying RDF. SPARQL allows graph pat-
terns to be queried along with their conjunctions and disjunctions. SPARQL
query results can either be result sets or RDF graphs. For example, consider the
following SPARQL query6 based upon the triples presented before.

SELECT ?x WHERE { ?z referees ?x }
This query will return all ?x where the given pattern is matched. Following

from the example the result for this query will be C. It should be noted that it
is possible that ?z could be satisfied by multiple resources.
4 http://www.w3.org/TR/rdf-concepts/#dfn-blank-node
5 http://www.w3.org/TR/owl-semantics/mapping
6 The PREFIX part of the query has not been included to improve readability.

However, for SOMET we need to be able to return an RDF graph. The query
shown below will return an RDF graph of the results.

CONSTRUCT { ?z referees ?x } WHERE { ?z referees ?x }

The ability to return an RDF graph as a result of a query is important for
SOMET as it allows for the iterative construction of an ontology module.

4 SOMET Framework

The SOMET framework is shown in Figure 2. The different approaches can be
assimilated to a set of SPARQL queries. This is extensible as it allows the user
to add/remove SPARQL queries from the set of queries that will be passed to
the Traversal Extraction Engine. This flexibility is important because it allows
the user to tailor the extraction process to their specific needs. This benefit is
further enhanced due to the fact that the queries are represented in SPARQL,
which is a standard that Semantic Web practitioners and Ontology Engineers
are familiar with.

The different ontology module extraction techniques are represented as a
set of SPARQL queries. These sets are not disjoint and so their intersections
highlight the areas in common between the techniques.

Traversal
Extraction

Engine

Ontology
Module

Ontology

SPARQL Queries

PROMPT Galen DoranD'Aquin

Signature

Fig. 2. SOMET Framework

The Traversal Extraction Engine (TEE) is implemented in Java and makes
use of Jena7, a programmatic environment for RDF, OWL and SPARQL; and
Pellet [15], a OWL-DL reasoner. The user supplies the extraction engine with an
ontology to extract an ontology module from and a signature that the ontology
module should be about. From this the Traversal Extraction Engine is able to
produce an ontology module by applying the algorithm presented in the following
section.

Since the description of a strategy is broken down in a set of SPARQL queries,
building a hybrid technique is simple. Each SPARQL query is represented by
a ExtractionQuery object, which contains the query template, the number of
arguments the query accepts and whether or not the arguments are allowed to
be blank nodes. The set of queries is then the input to the TEE, along with
the ontology. In order to add the characteristics of different approaches to an
existing one, new ExtractionQuery objects must be created and added to the set
used to invoke the TEE.

The TEE also has an optional filtering step, where the resulting module is
reduced in size by running another set of SPARQL queries (in this phase limited
to SELECT queries). Any resource matched by the queries is then removed from
the resulting module.

5 SOMET Algorithm

The algorithm used by SOMET is a paramaterised graph traversal algorithm,
see Algorithm 1. The parameters to the algorithm are the ontology you wish to
extract a module from, a signature to describe the module and a set of SPARQL
queries. The algorithm iteratively applies the queries to the elements of the
signature to construct a module; any element returned by a query that is not
in the signature also has the queries applied to it. By doing this the ontology
module is iteratively constructed.

5.1 Breakdown of SPARQL queries used.

This section will present the queries used by the techniques currently imple-
mented in the SOMET framework. A brief description will be provided for each
query; %1$s present in these descriptions represents the current resource of fo-
cus8. This section does not list all the queries used, due to space limitations, but a
full list can be found at http://www.csc.liv.ac.uk/˜pdoran/SOMET/queries.html.

Doran, Tamma and Iannone [3] present an approach focused on extracting
an ontology module about a single concept, with the aim that this ontology
module can be reused. The queries used are:

7 http://jena.sourceforge.net
8 this syntax is the Java way of representing an argument which must be replaced with

a string. http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html#format

Algorithm 1 SOMET Graph Traversal Algorithm for Ontology Module Ex-
traction

INPUT

– O - An RDF Graph (O=(V ,E))
– S - a signature ; where S ⊆ V ∩ E
– Q - a set of SPARQL queries.

OUTPUT

– M - An RDF Graph

procedure graphTraversalExtraction(O, S, Q)
Visited - a container of V that have been visited
ToVisit - a container of V to be visited.
insert S into ToVisit
while ToVisit is not empty do

x = first element of ToVisit
remove x from ToVisit
if x /∈ Visited then

for all q ∈ Q do
r = apply q to O
subjects in r are added to ToVisit
M = M + r

end for
end if

end while

DESCRIBE %1$s
Describes the current resource. The DESCRIBE keyword definition in the

SPARQL Recommendation is labeled as “informative”, which means the spe-
cific SPARQL implementation answering the query has some degree of freedom
about what to consider part of the description of a resource. We use ARQ9, which
implements the DESCRIBE as a list of the statements in which the resource ap-
pears as subject, plus the closure computed from any blank nodes involved.

CONSTRUCT {?y rdfs:domain %1$s.} WHERE {?y rdfs:domain %1$s.}
Returns all the ?y where the resource of interest is the domain.

DESCRIBE ?y WHERE {?y rdfs:subClassOf %1$s.}
Returns the subclasses of the current resource.

CONSTRUCT {?y owl:equivalentClass %1$s.} WHERE {?y owl:equivalentClass
%1$s.}

Returns all the ?y that the current resource that are owl:equivalentClass

9 http://jena.sourceforge.net/ARQ/

d’Aquin et al [2] present an approach requiring the extraction of a module for
the dynamic scenario of knowledge selection. Our implementation includes the
implementation of a LCS operator as a ARQ extension10. In a similar way, MSC
and most specific property ancestor are implemented, as property functions.

It is important to note that this approach requires that the input Jena Model
containing the ontology be backed by a reasoner, in order to get correct results;
in fact, subsumption is necessary to correctly compute the LCS.

An example of how to use the extensions is in the following query:
DESCRIBE ?msc
WHERE {GRAPH %2$s{{{?a a owl:Class}
FILTER(isURI(?a) && !sameterm(?a,%1$s))}
UNION{{?a a rdfs:Class}
FILTER(isURI(?a) && !sameterm(?a,%1$s))}}
{?msc ¡java:sparking.propertyfunctions.lcs¿ (?a %1$s).}}
It returns a graph containing the definition of the class that is the LCS that

subsumes the current class and another class, which is already included in the
module (this condition is enforced by the GRAPH instruction, which uses the
support to Named Graphs in SPARQL to restrict the solutions to a subset of
the whole ontology).

Seidenberg and Rector [5] present an approach focused on extracting a mod-
ule from Galen, but the core of the technique can be applied to any ontology. The
queries for subclasses and equivalences are similar to those used in the Doran,
Tamma and Iannone queries.

Our replication of this approach includes a filtering step, in which a set of
properties definition is discarded, as in the original approach:

SELECT ?y WHERE {{?y rdfs:subPropertyOf
¡http://www.co-ode.org/ontologies/galen#FunctionalAttribute¿}”

This query selects any subproperty of http://www.co-ode.org/ontologies/galen#FunctionalAttribute;
the TEE will then remove those definitions from the module.

Noy and Musen [13] present an approach for extracting a module based on
the notion of view and this approach is highly user configurable. The query used
is:

CONSTRUCT { ?x %2$s %1$s }
WHERE { ?x %2$s %1$s }

As PROMPT is user configurable the query is also user configurable. %$1s re-
mains the current resource, whilst we introduce a second parameter (%$2s) to
represent the predicate. The traversal depth becomes an extra parameter to the
traversal algorithm, which needs to be passed to PROMPT for processing.

In SOMET, we don’t attempt to reimplement the whole of PROMPT so far;
we plan to do so in future developments.

10 ARQ extensions are explained at http://jena.sourceforge.net/ARQ/extension.html

6 Preliminary Evaluation

There are two aspects to consider in evaluating SOMET, these are:

1. What can be said about these techniques in terms of efficiency?
2. Does SOMET replicate the existing ontology module extraction techniques?

The first aspect of the evaluation is difficult. There is a need for the ontology
modularisation community as whole to address the issue of evaluation. Existing
evaluation criteria used to measure the ‘quality’ of the modules produced are
insufficient; however, this point is beyond the scope of this paper. Considering
this we evaluated how well the different techniques performed on the SOMET
framework. These results are shown in Table 1. In this table we report running
time average (in milliseconds) and triple size average for the three approaches.
For the three ontologies presented here, we ran a different number of tests: 50 on
the Galen fragment, 48 for Mind.owl and 285 for Portal.owl; in the last two cases,
these are the number of classes in the ontologies, while for Galen we limited the
test to only 50 of the 4500 classes in there (choosing a random set of concepts),
due to the average time requested to run on this larger ontology.

Seidenberg
time avg

Doran
time avg

d’Aquin
time avg

Seidenberg
triple avg

Doran
triple
avg

d’Aquin
triple
avg

Galen
fragment

14502.4 46938.42 880.28 36719.88 43834.44 676.88

Mind.owl 152.4 247.94 165.67 285.88 621.33 170.35

Portal.owl 2560.94 5563.13 2055.17 6128.49 4668.31 4881.48

Table 1. Table showing performance of the different techniques on the SOMET frame-
work.

In Figure 3, the performance of SOMET on the Galen fragment is depicted
graphically; in Figure 4, we report the triple size of the extracted modules (here,
Terms refers to the starting points for each extracted modules). The data in
Table 1 shows that the d’Aquin et al approach on average is quicker and produces
smaller modules; this is highlighted further by Figures 3 and 4. However, this
does not say anything about the quality of the modules produced by the different
approaches. Looking across the data as a whole it is possible to see that there
are certain ’zones’, this would suggest that these ’zones’ conform to a coherent
module. This aspect requires further investigation.

The second aspect of the evaluation requires an in-depth set of experiments
to prove that the SOMET framework fully captures all the functionalities of
the different ontology module extraction techniques. This has been completed
for Seidenberg and Doran approach, over Galen (Seidenberg implementation is
targeted at this ontology, therefore validating using different ontologies is hard).
Further experiments on d’Aquin approach are ongoing at the time of writing;

Fig. 3. Time performances on Galen fragment

Fig. 4. Triple size of the extracted modules

we do not report them here since including a partial set of possibly inconclusive
results would not be appropriate.

7 Discussion

A common framework provides a fair basis for comparing the different ontology
module extraction techniques. The ability to compare the techniques in this
way is important because it will allow an Ontology Engineer to discriminate
objectively between the different techniques. Indeed the user can try the different
techniques in a convenient manner.

Whilst a common framework is an important step forward it further high-
lights the need for robust mechanisms for evaluation. Current attempts at an
objective evaluation based on size, or precision and recall [3] are not optimal.

The precision and recall metrics applied by [3] only consider the taxonomic
structure and, as such, Doran et al state that these need extending to capture
the more expressive elements of an ontology. This is a focus of current research.

The aim of modularization in general is to reduce the size of an ontology,
but this is not an end in itself because it introduces the obvious paradox that
the optimum module size is 0. Whilst an ontology module of size 0 would be
highly reusable and the effort required negligible, it is evident that it is also
useless, therefore size must be traded off with some other metric. Finding such
objective metric is not a straightforward task; for a comprehensive overview of
the literature on ontology evaluation see [16].

8 Conclusion and Future Work

SOMET provides a common framework, based on RDF and SPARQL, for the
selection, adaptation and combination of different ontology module extraction
techniques. It was shown that it is possible to replicate the current techniques as
SPARQL queries. Even difficult aspects of certain techniques, such as the most
specific concept, could be implemented. The preliminary evaluation conducted
allowed us to compare the efficiency of the different techniques, both in terms of
time and the size of the modules produced. However, this preliminary evaluation
highlighted the need for more robust objective criteria to compare the quality
of the modules produced.

Future work includes assimilating the logical approaches, such as [1] into
the SOMET framework. This is an important step that needs to be taken. In
addition, there is a need to investigate more robust mechanisms for evaluating
the quality of a module. This is because the current objective criteria used are
not powerful enough.

Acknowledgements This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC).

References

1. Cuenca-Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: Proc. of the 16th International World
Wide Web Conference (WWW 2007), pages 717-727, Banff, AB, Canada, May
2007. ACM Press. (2007)

2. d’Aquin, M., Sabou, M., Motta, E.: Modularization: a key for the dynamic se-
lection of relevant knowledge components. In: First International Workshop on
Modular Ontologies, ISWC 2006, First International Workshop on Modular On-
tologies, ISWC 2006, Athens, Georgia, USA. (2006)

3. Doran, P., Tamma, V.A.M., Iannone, L.: Ontology module extraction for ontology
reuse: an ontology engineering perspective. In Silva, M.J., Laender, A.H.F., Baeza-
Yates, R.A., McGuinness, D.L., Olstad, B., Olsen, Ø.H., Falcão, A.O., eds.: CIKM,
ACM (2007) 61–70

4. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: International
Semantic Web Conference. (2004) 713–725

5. Seidenberg, J., Rector, A.: Web ontology segmentation: analysis, classification and
use. In: WWW ’06: Proceedings of the 15th international conference on World
Wide Web, New York, NY, USA, ACM Press (2006) 13–22

6. d’Aquin, M., Doran, P., Motta, E., Tamma, V.: Towards a parametric ontology
modularization framework based on graph transformation. [17]

7. Borgida, A., Giunchiglia, F.: Importing from functional knowledge bases - a pre-
view. [17]

8. SPARQL: Query language for RDF. W3C Recommendation - 15th January 2008
9. RDF: Resource description framework RDF. W3C Recommendation - 10th Febru-

ary 2004
10. Cuenca-Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic partitioning

of owl ontologies using e-connections. In: Proceedings of the 2005 International
Workshop on Description Logics (DL-2005). (2005)

11. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hi-
erarchies. In: Proceedings of the 3rd International Semantic Web Conference,
Hiroshima, Japan (2004)

12. Cohen, W.W., Borgida, A., Hirsh, H.: Computing Least Common Subsumers in
Description Logics. In: AAAI. (1992) 754–760

13. Noy, N.F., Musen, M.A.: Prompt: Algorithm and tool for automated ontology
merging and alignment. In: Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence, AAAI Press / The MIT Press (2000) 450–455

14. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In Veloso, M.M., ed.: IJCAI. (2007) 453–458

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5(2) (2007)

16. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Ontology evaluation and
validation: an integrated formal model for the quality diagnostic task. Technical
report, Laboratory for Applied Ontology (2005)

17. Cuenca-Grau, B., Honavar, V., Schlicht, A., Wolter, F., eds.: Proceedings of the 2nd
International Workshop on Modular Ontologies, WOMO’07, Whistler, Canada,
October 28, 2007. (2007)

