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Abstract. We consider the logical difference problem for terminologies
that are formulated in the lightweight description logic EL with role in-
clusions for role hierarchies, transitivity, and right-identity. The main
result is that deciding whether two terminologies are logically different
wrt. a signature can be done in ExpTime, thus it is more difficult than
the subsumption problem for this logic but not more difficult than de-
ciding logical difference without role inclusions. This paper extends the
result for EL by Lutz and Wolter [11].

1 Introduction

While computing the syntactic difference of text files is indispensable, computing
the syntactic difference between ontologies consisting of axioms is hardly useful
as observed in [12]. When comparing distinct ontologies logically, one should take
into account their signatures, as the interesting differences between ontologies
are formulated in their shared signature. The notion of logical difference is based
on logical entailment wrt. a signature [9]: an ontology T Σ-entails an ontology
T ′ for a signature Σ if, for all concept implications C v D formulated in Σ, we
have that T ′ |= C v D implies T |= C v D. In case both ontologies, T and
T ′, Σ-entail each other, we call them Σ-inseparable. When taking Σ to contain
all shared symbols of two ontologies, the ontologies being Σ-inseparable means
that they are not logically different.

We illustrate Σ-entailment with a simple example formulated in the descrip-
tion logic EL. The first ontology T consists of the following two axioms:

Toe v ∃isPartOf.Foot
Foot v ∃isPartOf.Leg

The second ontology T ′ contains the axioms:

ToeNail v ∃isPartOf.Toe
Toe v ∃isPartOf.Foot

The shared signature Σ of T and T ′ is Σ = {Toe, Foot, isPartOf}. We have that
T Σ-entails T ′, but not vice versa. If we extend T ′ to include the axiom:

∃isPartOf.Foot v ∃isPartOf.Leg



then the shared signature Σ would additionally include the symbol Leg. In this
case, T does not Σ-entail T ′ anymore.

Logical difference is a variation of the notion of (deductive) conservative
extensions [5]. More precisely, for two ontologies T ⊆ T ′ and a signature Σ,
we have that T Σ-entails T ′ if, and only if, T ′ is a conservative extension of
T wrt. Σ. Conservative extensions are an important notion in ontology design
and integration. In particular, conservative extensions can be used to formalize
independent modules inside an ontology [6, 10].

There are several important life science ontologies formulated in lightweight
description logics such as EL or mild extension thereof, e.g., EL with role in-
clusion axioms. In particular, role inclusion axioms expressing role hierarchies,
transitive roles, and right-identity are of practical importance, e.g. in medical
terminologies [8, 16]. For instance, right-identity axioms have been proven useful
for expressing “propagation” of one property along another one. An example of a
large ontology deploying role inclusion axioms is the Systematized Nomenclature
of Medicine, Clinical Terms (Snomed ct), which contains ∼0.4 million axioms
and underlies the systematized medical terminology used in health systems of
the US, the UK, and other countries [16]. This ontology consists of an acyclic
EL-terminology with role hierarchy, right-identity but no transitive roles. Other
ontologies which have large parts formulated in EL with role inclusions are the
National Cancer Institute (NCI) Ontology [15], the Gene Ontology (GO) [17],
which uses a single transitive role ‘part of’, and the Galen Common Reference
Model [14], which can be expressed in an extension of EL with functional and in-
verse roles [7]. One of the reasons why EL and its extensions are quite appealing
as ontology languages is that reasoning is tractable [1, 2].

The following example illustrates how propagation can be expressed using
role inclusions. Take T ′′ to be the extension of the ontology T above with the
two role inclusion axioms expressing right-identity of the role hasLocation wrt.
the role isPartOf and transitivity of isPartOf:

hasLocation ◦ isPartOf v hasLocation
isPartOf ◦ isPartOf v isPartOf

The fact that a toe is injured can be expressed as Injury u ∃hasLocation.Toe. In
a medical context, it might be desirable to propagate a property such as being
located at a toe along partonomic properties of the toe. For instance, being
located at the toe also means being located at the leg. In the presence of T ′′,
we can derive that a toe is a part of a leg using the transitivity of isPartOf:
Toe v ∃isPartOf.Leg. Using the role inclusion axiom for right-identity, we can
then derive from a toe injury that also the leg is injured: Injuryu∃hasLocation.Leg.

In this paper, we consider ontologies formulated as general TBoxes in the
description logic EL allowing for additional role inclusion axioms of the form
r v s (role hierarchy), r ◦ r v r (transitivity) and s ◦ r v s (right-identity).
The main result states that the logical difference problem for such ontologies
can be decided in ExpTime. Thus, this problem is no more complex than for
plain EL, for which it was shown to be ExpTime-complete [11]. For comparison,



the computational complexity of Σ-entailment is 2ExpTime-complete for more
expressive description logics such as ALC, ALCQ, and ALCQI [5, 10], but even
in such simple formalisms as acyclic propositional Horn Logic deciding logical
difference is co-NP-complete [4]. In contrast, the satisfiability problem for EL
with the role inclusions mentioned above was shown to be decidable in poly-
nomial time [1], and ALCQI satisfiability relative to TBoxes is decidable in
ExpTime [18]. Thus, for these logics, deciding logical difference is by at least
one exponential harder than satisfiability.

The presented decision procedure decides non-Σ-entailment by searching for
the existence of a concept inclusion witnessing the logical difference between the
input ontologies. We show that it is sufficient to only search for a succinct repre-
sentation of a concept that occurs at the left-hand side of such concept inclusions.
Then, the ontologies are logically different if, and only if, such a representation
of a concept was found. Computing a list of logical differences between ontolo-
gies, however, is a harder problem. As it was observed in [11], concept inclusions
witnessing logical differences can be of at least doubly exponential size even for
EL ontologies without role inclusion axioms. When placing some restrictions on
the considered EL ontologies, the computational complexity of computing logical
differences can be reduced to tractable as it is shown in [9].

The paper is organized as follows. We start with defining EL with role inclu-
sions in the next section. In Section 3, we state the definitions for the notions of
logical difference and Σ-entailment and present some illustrating examples. In
Section 4, we describe canonical models for EL with role inclusions and simula-
tion relations between them. Then these notions will be used to give a character-
ization of Σ-entailment for constraint boxes in Section 5. The algorithm deciding
non-Σ-entailment in exponential time is presented in Section 6 together with an
example. The final section concludes this paper.

The algorithm described in this paper is based on and described along the
lines of the algorithm deciding conservative extensions in EL [11]. Due to space
restrictions most proofs are omitted; full proofs can be found in [13].

2 Preliminaries

We begin with introducing the description logic EL. Let NC and NR be two
countably infinite and disjoint sets of concept names and role names, respectively.
EL-concepts are build according to this syntax rule:

C ::= > | A | C uD | ∃r.C,

where A ranges over the concept names in NC, r over role names in NR, and C,D
over EL-concepts. The semantics of EL is defined by means of interpretations
I = (∆I , ·I), where the interpretation domain ∆I is a non-empty set, and ·I
is a function mapping each concept name A to a subset AI of ∆I , and each
role name rI to a binary relation rI ⊆ ∆I ×∆I . The function ·I is inductively
extended to arbitrary concepts by setting >I := ∆I , (C uD)I := CI ∩DI , and
(∃r.C)I := {d ∈ ∆I | there is an e ∈ ∆I such that (d, e) ∈ rI and e ∈ CI}.



A terminology (TBox) is a finite set of concept inclusions (CIs) C v D,
where C and D are concepts. An interpretation I satisfies a CI C v D, written
I |= C v D, if, and only if, CI ⊆ DI . I is a model of a TBox T if, and only if,
it satisfies all CIs in T . We write T |= C v D if, and only if, every model of T
satisfies C v D.

In this paper, we consider an extension of EL with role inclusions (RIs) of the
form r v s, r◦r v r or r◦s v r, where r, s are roles. A role box (RBox) is a finite
set of RIs. An interpretation I satisfies an RI r v s (r ◦ r v r, r ◦ s v r), written
I |= r v s (I |= r ◦ r v r, I |= r ◦ s v r), if, and only if, rI ⊆ sI (rI ◦ rI ⊆ rI ,
rI ◦ sI ⊆ rI). We interpret the role operator ‘◦’ as the composition of binary
relations, i.e., R ◦S = {(d, d′′) | there exists a d′ such that dRd′ and d′Sd′′}, for
binary relations R and S. I is a model of an RBox R if, and only if, it satisfies
all RIs in R. We write R |= r v s (R |= C v D) if, and only if, every model of
R satisfies the RI r v s (the CI C v D). A constraint box (CBox) C = (T ,R)
consists of a TBox T and an RBox R. An interpretation I is a model of a CBox
C = (T ,R) if, and only if, I is a model of both T and R. We write C |= C v D
if, and only if, every model of C satisfies C v D.

A signature Σ is a finite subset of NC ∪ NR. The signature sig(X) is the set
of concept and role names which occur in X, where X ranges over concepts C,
CIs C v D, RIs r v s, TBoxes T , RBoxes R, and CBoxes C. If sig(C) ⊆ Σ, we
also call C a Σ-concept.

3 Logical difference

We define the notion of Σ-entailment in terms of logical difference wrt. a signa-
ture Σ for CBoxes.

Definition 1 (Σ-difference, Σ-entailment). The Σ-difference between C and
C′ is defined as

DiffΣ(C, C′) = {C v D | C 6|= C v D, C′ |= C v D, and sig(C v D) ⊆ Σ}
∪ DiffΣ(R,R′).

C Σ-entails C′, in short C vΣ C′, if, and only if, DiffΣ(C, C′) = ∅.

The following two examples illustrate these notions and their relation to each
other.

Example 1. Let Σ = {A, r, s} be a signature, C = (T ,R) and C′ = (T ′,R′) be
two CBoxes, where T = {> v ∃r.A}, R = ∅, T ′ = {> v ∃r.B, ∃s.B v A}, and
R′ = {r v s}. It can easily be seen that T Σ-entails T ′ and R does not Σ-entail
R′. But, when combining the TBoxes with the RBoxes, this yields that C does
not Σ-entail C′. The concept inclusion > v A ∈ DiffΣ(C, C′) witnesses the logical
difference between C and C′ wrt. Σ. a

Example 2. Let Σ = {s, s′} be a signature, and C = (T ,R) and C′ = (T ′,R′) be
two CBoxes, where T = ∅, R = {s v s′}, T ′ = {> v ∃r.>}, and R′ = {r v s}.



Then we have that T Σ-entails T ′, and R Σ-entails R′. However, observe that C
does not Σ-entail C′. The logical difference wrt. Σ between C and C′ is witnessed
by the concept inclusion > v ∃s.> ∈ DiffΣ(C, C′). a

As already mentioned in the introduction, the CIs witnessing the logical
difference between CBoxes even without role inclusion axioms can be very large.
More precisely, DiffΣ(C, C′), where the RBoxes in C, C′ are empty, can contain
CIs of at least doubly exponential size; see [11] for an example.

In the remainder of this paper, we investigate the complexity of deciding the
problem: Given two CBoxes C, C′ and a signature Σ, does C Σ-entail C′? We
restrict ourselves to Σ ⊆ sig(C′).

4 Canonical models and simulation relations

In this section, we construct canonical models for EL with role inclusions and
describe relations between canonical models using a simulation relation.

Definition 2 (Σ-Simulation). Let I1 and I2 be interpretations and Σ a sig-
nature. A relation S ⊆ ∆I1×∆I2 is a Σ-simulation from I1 to I2 if the following
holds:

– for all concept names A ∈ Σ and all (d1, d2) ∈ S with d1 ∈ AI1 , d2 ∈ AI2 ;
– for all role names r ∈ Σ, all (d1, d2) ∈ S, and all e1 ∈ ∆I1 with (d1, e1) ∈
rI1 , there exists e2 ∈ ∆I2 such that (d2, e2) ∈ rI2 and (e1, e2) ∈ S.

If d1 ∈ ∆I1 , d2 ∈ ∆I2 , and there is an Σ-simulation S from I1 to I2 with
(d1, d2) ∈ S, then (I2, d2) Σ-simulates (I1, d1), written (I1, d1) ≤Σ (I2, d2). If
Σ = NC ∪ NR, we write ‘≤’ instead of ‘≤Σ ’.

Let I be an interpretation, Σ a signature, and d ∈ ∆I . We define the abbrevi-
ation dΣ,I := {C | d ∈ CI and sig(C) ⊆ Σ}. The outdegree of an interpretation
I is the the maximum number of role successors at any point in its domain and
for any role in NR. Formally, the outdegree of I is max{|{d′ ∈ ∆I | (d, d′) ∈
rI}| : d ∈ ∆I , r ∈ NR}.

The following characterization of Σ-simulation establishes a connection be-
tween Σ-simulation and Σ-concepts. The proof is standard; see, e.g., [3].

Theorem 1 (Characterization of Σ-simulation). If (I1, d1) ≤Σ (I2, d2),
then dΣ,I11 ⊆ dΣ,I22 . Conversely, if I1, I2 have finite out-degree, and dΣ,I11 ⊆
dΣ,I22 , then (I1, d1) ≤Σ (I2, d2).

We use sub(C) and sub(T ) to denote the set of subconcepts of a concept C
and the set of subconcepts occurring in the TBox T , respectively.

Definition 3 (Canonical model). Let C = (T ,R) be a CBox, and D a con-
cept. The canonical model ID,C = (∆ID,C , ·ID,C ) is defined as follows:

– ∆ID,C = {D} ∪ {C | ∃r.C ∈ sub(D) ∪ sub(T )};



– C ∈ AID,C iff C |= C v A, for all A ∈ NC;
– (C,C ′) ∈ rID,C iff one of the following holds:

(a) C |= C v ∃r.C ′ and C ′ ∈ sub(T ),
(b) R |= C v ∃r.C ′ and C ′ ∈ sub(C).

The model ID,C can be constructed in polynomial time in the size of C and D
as subsumption wrt. CBoxes in EL can be decided in polynomial time [1].

Example 3. For an illustration of canonical models, recall the TBox T = {Toe v
∃isPartOf.Foot, Foot v ∃isPartOf.Leg} from the introduction together with the
RBox R = {hasLocation ◦ isPartOf v hasLocation}. Figure 1 shows the canonical
model ID,C , where D = ∃hasLocation.Toe and C = (T ,R). a

hasLocation

Foot LegToe

∃hasLocation.Toe

isPartOfisPartOf

hasL
ocatio

nhasLocation

Fig. 1. The canonical model ID,C .

The following lemma summarizes the relevant properties of canonical models.
It extends similar lemmas for EL in [11] and it can be proven analogously. To
account for the additional role inclusions, we deploy the following notion of a
closure.

The closure cl(C, D) of a CBox C = (T ,R) and a concept D is the smallest
set such that:
– sub(T ) ⊆ cl(C, D);
– sub(D) ⊆ cl(C, D);
– if ∃r.C ∈ cl(C, D) and r v s ∈ R, then ∃s.C ∈ cl(C, D);
– if ∃r.C ∈ cl(C, D), ∃s.C ′ ∈ cl(C, C), and r ◦ s v t ∈ R, then ∃t.C ′ ∈ cl(C, D).

We use cl(C) to denote the closure that satisfies the first and the last conditions.

Lemma 1 (Properties of canonical models). Let C = (T ,R) be a CBox
and C a concept. Then the following holds:
1. IC,C is a model of C.
2. For all D ∈ ∆IC,C and all E ∈ cl(C, C), we have D ∈ EIC,C iff C |= D v E.
3. For all models I of C and all d ∈ ∆I , the following conditions are equivalent:

(a) d ∈ CI ;
(b) (IC,C , C) ≤ (I, d).

4. The following conditions are equivalent:
(a) C |= C v D;
(b) C ∈ DIC,C ;
(c) (ID,C , D) ≤ (IC,C , C).

5. If ∃r.D ∈ cl(C, Ci) for all i ∈ {1, 2}, then (IC1,C , D) ≤ (IC2,C , D).



5 Characterization of Σ-entailment

In this section, we provide a characterization of Σ-entailment wrt. CBoxes in
terms of canonical models. The lemmas are extensions of their EL-counterparts
in [11]. They account for the additional role inclusion axioms, but they can be
proven in a similar way.

We first consider an auxiliary lemma, which we need for proving Lemma 4
below.

Lemma 2. Let C = (T ,R) be a CBox. Suppose C |= C v ∃r.D. Then one of
the following holds:

(a) there exists a C ′ ∈ sub(T ) such that C |= C v ∃r.C ′ and C |= C ′ v D;
(b) there exists a C ′ ∈ sub(C) such that R |= C v ∃r.C ′ and C |= C ′ v D.

Example 4. We illustrate the cases in Lemma 2. Intuitively, the distinction is
between two cases of how a concept in the context of a CBox can enforce a role
successor: (i) using TBox axioms; or (ii) without the TBox. For the former case,
let C = (T ,R) be a CBox with T = {A v ∃s.B,B v B′} and R = {r ◦ s v r}.
Suppose C |= ∃r.A v ∃r.B′. For this entailment, only Case (a) applies: we have
that C |= ∃r.A v ∃r.B, C |= B v B′, and B ∈ sub(T ). In other words, the
concept ∃r.A triggers the TBox axiom A v ∃s.B which implies ∃r.∃s.B. Using
the right-identity rule in R, we get ∃r.B. Then, from the CI B v B′, it follows
that ∃r.B′.

Consider (ii). Let C = (T ,R) with T = {A v B′} and R = {r ◦ s v r}.
Suppose C |= C v ∃r.B′, where C = ∃r.∃s.(A u B). Here, Case (b) applies:
it holds that R |= C v ∃r.(A u B), C |= A u B v B′, and A u B ∈ sub(C).
Intuitively, C itself enforces a role path of length two without utilizing CIs from
T . The path is then abbreviated by R. Finally, the TBox axiom together with
∃r.(A uB) implies ∃r.B′. a

The following lemma is essential for characterizing Σ-entailment. Intuitively,
it states that, given an arbitrary large concept C, we can always find a possi-
bly shorter concept with bounded outdegree that expresses the same “relevant”
information. What information is considered relevant, is made precise by a set
of consequences KC(D) of a concept D in the presence of a CBox C. We are
interested in those consequences that are concepts of the closure cl(C, D).

The set KC(D) is given as:

KC(D) = {E ∈ cl(C, E) | C |= D v E}.

Lemma 3 (Bounded outdegree). For all CBoxes C = (T ,R) and concepts
C, there is a concept D such that the following conditions are satisfied:

1. ∅ |= C v D;
2. KC(C) = KC(D);
3. |D| ≤ |C|;
4. the outdegree of D is bounded by |C|.



For the following characterization of Σ-entailment, we use a relation ‘⇒1’
on concepts. Let C1, C2 be CBoxes, C a Σ-concept, and D a sig(C2)-concept.
We write C ⇒1 D if, and only if, for all Σ-concepts E, C2 |= D v E implies
C1 |= C v E.

Lemma 4 (Characterization of non-Σ-entailment). Let C1 = (T1,R1) and
C2 = (T2,R2) be two CBoxes, and Σ ⊆ sig(C2) a signature. Then DiffΣ(C1, C2) 6=
∅ if, and only if, there is a Σ-concept C and a sig(C2)-concept D ∈ cl(C2) such
that:

(a) C2 |= C v D;
(b) C 6⇒1 D;
(c) the outdegree of C is bounded by |C2|.

The next lemma characterizes the relation ‘⇒1’ semantically in terms of Σ-
simulation between canonical models. Moreover, it states that membership in
‘⇒1’ can be decided in polynomial time.

Lemma 5 (Semantic characterization). Let C1, C2 be CBoxes and C,D con-
cepts. Then we have C ⇒1 D if, and only if, (ID,C2 , D) ≤Σ (IC,C1 , C). Hence,
the problem C ⇒1 D is decidable in polynomial time in the size of C,D, and C2.

6 Algorithm

We present an algorithm for deciding Σ-entailment for EL with role inclusions.
To check whether C1 vΣ C2, the algorithm searches for a Σ-concept C such
that for some D ∈ sub(T2), the Points (a)–(c) of Lemma 4 are satisfied. The
algorithm proceeds in rounds. In the first round, Points (a) and (b) are checked
for all conjunctions C of concept names from Σ and all D ∈ sub(T2). Each check
can be done in polynomial time by Lemma 5. In case, no suitable C is found in
round one, the algorithm proceeds to the second round in which concepts C of
role depth one are considered. Here C is a conjunction of concept names from
Σ and concepts of the form ∃r.E, where r is a role from Σ and E is a candidate
for C from the previous round, i.e., E is a conjunction of concept names. By
Point (c) of Lemma 4, we only have to consider those Cs with no more than |T2|
many conjuncts of the form ∃r.E. For checking Points (a) and (b), we make use
of the information we have gained about the Es in the previous round. If still
no suitable C is found, the algorithm starts round three that checks concepts
C of role depth two in which we reuse the Cs from the second round as role
successors. If again no suitable concept C was found, the algorithm proceeds to
the next round, etc.

To avoid constructing doubly exponentially large concepts C, the algorithm
uses a succinct data structure that represents the relevant information about C.
Which information about C is relevant can be read of the characterization of
Σ-entailment in Lemma 4: For every C, take the quintuple

C] = (Q0,Q1,Q2,Q3,Q4),



where the set Q0 contains all concept names occurring in the top-level conjunc-
tion of C,

Q1 = KC1(C),
Q2 = KC2(C),
Q3 = {(r,D′) ∈ (Σ ∩ NR)× sub(T2) | C ′ ⇒1 D

′ and
C1 |= C v ∃r.C ′}, and

Q4 = {D ∈ sub(T2) | C ⇒1 D}.

The quintuple C] is said to be determined by C. Intuitively, the components
Q1 and Q2 contain concepts that are implied by C in the context of C1 and C2,
respectively, and Q4 contains concepts which, while being in the context of C2,
can be Σ-simulated by C in the context of C1.

According to Lemma 4, the quintuple C] determined by a concept C contains
sufficient information to decide whether C is the left-hand side of a CI witnessing
the logical difference between two CBoxes. Moreover, the information in C]

enables the recursive search described above and to formulate a termination
condition for the algorithm to run in exponential time.

Figure 2 presents the algorithm for deciding Σ-entailment for EL with role
inclusions. Observe that the termination condition Q2 \ Q4 6= ∅ corresponds
to satisfaction of Points (a) and (b) in Lemma 4. Note that Point (a) in the
definition of the set F3 uses canonical models, which are constructed on demand
in polynomial time.

Notice that, in Figure 2, we use a binary auxiliary relation vrhR on roles for an
RBox R such that r vrhR s if, and only if, r v s ∈ R. Let vrhR

∗ be the reflexive,
transitive closure of vrhR .

Example 5. We illustrates the algorithm in Figure 2 by computing an answer
to the question ‘Does C1 = {T , ∅} Σ-entail C2 = {T ,R}?’, where T and R are
as in Example 3 in Section 4. In Step 1, the algorithm computes the quintuples
in the set N0. For instance, the quintuple qToe ∈ N0 determined by the concept
name Toe. We have qToe = (Q0,Q1,Q2,Q3,Q4), where

Q0 = {Toe},
Q1 = {Toe,∃isPartOf.Foot},
Q2 = Q1,
Q3 = {(isPartOf,Foot), (isPartOf,∃isPartOf.Leg)},
Q4 = Q2.

In Step 2, the algorithm checks whether Q2 \ Q4 6= ∅. As this is not the case,
it proceeds with Step 3 by computing the set N ′0 of quintuples, each from a set
F0 of concept names from Σ and a set Q of pairs of a Σ-role and a quintuple
from N0. Let F0 = ∅ and Q = {(hasLocation, qToe)}. The algorithm computes
the quintuple qD determined by the concept D:

D =
l

A∈F0

A u
l

(r,(Q0,Q1,Q2,Q3,Q4))∈Q

∃r.(
l

D∈Q1

D)
)
.



Input: CBoxes C1 = (T1,R1) and C2 = (T2,R2) and signature Σ ⊆ sig(C2).

1. Compute the set N0 of quintuples determined by conjunctions of concept names
from Σ.

2. If N0 contains a quintuple (Q0,Q1,Q2,Q3,Q4) such that Q2 \ Q4 6= ∅, then
output ‘C1 6vΣ C2’.

3. Generate the sequence N1,N2, ... of sets of quintuples such that Ni+1 = Ni∪N ′i ,
where N ′i is the set of quintuples (F0,F1,F2,F3,F4) which can be obtained from
a set F0 of concept names from Σ and a set Q ⊆ (Σ ∩ NR) × Ni of cardinality
not exceeding |T2| in the following way:

– F1 = KC1
( l

A∈F0

A u
l

(r,(Q0,Q1,Q2,Q3,Q4))∈Q

∃r.(
l

D∈Q1

D)
)
;

– F2 = KC2
( l

A∈F0

A u
l

(r,(Q0,Q1,Q2,Q3,Q4))∈Q

∃r.(
l

D∈Q2

D)
)
;

– F3 =
{

(r,D) ∈ (Σ ∩ NR)× cl(C2) |
(a) there is a ∃r.C′ ∈ F1 such that (ID,C2 , D) ≤Σ (IC′,C1 , C

′); or
(b) there is a (s, (Q0,Q1,Q2,Q3,Q4)) ∈ Q such that:

(i) D ∈ Q4 and svrhR1

∗
r; or

(ii) (t,D) ∈ Q3, svrhR1

∗
r1, tvrhR1

∗
r2, and r1 ◦ r2 v r ∈ R1

}
;

– F4 =
{
D ∈ cl(C2) |
(a) for all A ∈ Σ, A ∈ KC2(D) implies A ∈ F1; and
(b) for all r ∈ Σ, (D,D′) ∈ rID,C2 implies (r,D′) ∈ F3

}
.

This is done until Ni contains a quintuple (Q0,Q1,Q2,Q3,Q4) such that Q2\Q4 6= ∅,
or Ni+1 = Ni. Output ‘C1 6vΣ C2’ if the first condition applies; otherwise, output
‘C1 vΣ C2’.

Fig. 2. Algorithm for deciding Σ-entailment in EL with role inclusions.

That is, D = D1 u D2, where D1 = ∃hasLocation.Toe and D2 = ∃hasLocation.
∃isPartOf.Foot. Then qD = (F0,F1,F2,F3,F4) is computed from F0 and Q,
where:

F1 = {D,D1, D2},
F2 = F1 ∪ {∃hasLocation.Foot,∃hasLocation.Leg},
F3 = {(hasLocation,Toe), (hasLocation,∃isPartOf.Foot},
F4 = ∅.

The algorithm terminates and outputs ‘C1 6vΣ C2’ since F2 \ F4 6= ∅. a

Before we continue to show correctness of the algorithm, we explicitly state
the concepts that determine the quintuples constructed in Step 3 of Figure 2.

Lemma 6. Let (F0,F1,F2,F3,F4) be the quintuple computed from F0 and Q in
Figure 2. For each (r, q) ∈ Q, let Cr,q be the concept which determines the quin-
tuple q. Then C =

d
A∈F0

A u
d

(r,q)∈Q ∃r.Cr,q determines (F0,F1,F2,F3,F4).



This lemma extends a similar lemma in [11] for EL. Notice that the presence of
role inclusions is accounted for by extending the representation of concepts by
one additional tuple component. This additional component – the fourth com-
ponent of a quintuple – is a set containing pairs of the form (r,D′). Intuitively,
(r,D′) means that the concept represented by the quintuple together with the
CBox C1 enforce a role path, which can be abbreviated to r by the RBox, leading
to point satisfying a concept, say, C ′ such that C ′ ⇒1 D

′.
Finally, we show correctness and complexity of the algorithm in Figure 2.

The proof is similar to the one for the corresponding theorem in [11].

Theorem 2 (Correctness and Complexity). The algorithm for deciding Σ-
entailment for EL with role inclusions is sound, complete, and runs in exponen-
tial time.

Proof. Soundness follows from Lemmas 4 and 6. For completeness, assume C v
D ∈ DiffΣ(C1, C2). By Lemma 4, C is of outdegree bounded by |C2| and D ∈
sub(T2) such that C2 |= C v D and C 6⇒1 D. If C is a conjunction of concept
names, then the algorithm outputs ‘C1 6vΣ C2’ in Step 2. Suppose C has role
depth n ≥ 1. One can show by induction on i using Lemma 6 that, for all i ≥ 0,
the set Ni contains all quintuples determined by subconcepts C ′ of C of role
depth smaller than i. Hence, after computing the set Ni for some i ≤ n, the
algorithm outputs ‘C1 6vΣ C2’.

For termination and time complexity consider the following. To see that
Steps 1 and 2 of the algorithm run in polynomial time notice that, by Lemma 5,
the algorithm can compute any quintuple determined by a conjunction of con-
cept names from Σ in polynomial time. Consider Step 3. For each quintuple
(Q0,Q1,Q2,Q3,Q4), we have Q0 ⊆ Σ and Qi ⊆ cl(C2), for 1 ≤ i ≤ 4. That is,
the total number of possible quintuples is bounded by 25|C2|. Consequently, the
algorithm terminates since Nj = Nj+1, for some j ≤ 25|C2|. For showing that the
algorithm runs in exponential time, we now show that Ni+1 can be computed
from Ni in exponential time. The number of pairs (F0,Q) in Figure 2, where
F0 ⊆ Σ ∩ NC and Q ⊆ (Σ ∩ NR) × Ni with |Q| ≤ |C2|, is exponential in |C2|.
Moreover, given a pair (F0,Q), computing the quintuple (F0,F1,F2,F3,F4) in
Figure 2 only takes polynomial time in |C2|. ut

7 Conclusion

We have shown that deciding Σ-entailment in EL with role inclusions for role
hierarchy (r v s), transitivity (r ◦ r v r), and right-identity (s ◦ r v s) is
ExpTime-complete. These forms of role inclusion axioms have been argued to
be of practical importance, e.g., in medical terminologies [8, 16]. The decision
procedure is an extension of the algorithm deciding conservative extensions in
EL [11]. Thus adding such role inclusion axioms does not increase the complexity
of the logical difference problem for EL.

For future work, it is interesting to extend the presented algorithmic frame-
work to capture more expressivity by, e.g., allowing for more role inclusions,
inverse roles, universal roles, nominals, etc.
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