
Towards Parallel Classification of TBoxes

Mina Aslani and Volker Haarslev

Concordia University, Montreal, Canada

Abstract. One of the most frequently used inference services of descrip-
tion logic reasoners is the classification of TBoxes with a subsumption
hierarchy of all named concepts as the result. In response to (i) emerging
TBoxes from the semantic web community consisting of up to hundreds
of thousand of named concepts and (ii) the increasing availability of
multi-processor and multi- or many-core computers, we propose a par-
allel approach for TBox classification. First experiments on parallelizing
well-known algorithms for TBox classification were conducted to study
the trade-off between incompleteness and speed improvement.

1 Introduction

Due to the recent popularity of OWL ontologies in the semantic web one can
observe a trend toward the development of very large or huge OWL-DL on-
tologies. For instance, well known examples from the bioinformatics or medical
community are SNOMED, UMLS, GALEN, or FMA. Some (versions) of these
ontologies consist of more than hundreds of thousands of named concepts and
have become challenging even for the most advanced and optimized description
logic (DL) reasoners. Although specialized DL reasoners for certain sublogics
(e.g., CEL [2] for EL++) and OWL-DL reasoners such as FaCT++ [15], Pel-
let [14], or RacerPro1 could demonstrate impressive speed enhancement due to
newly designed optimization techniques, we expect the need for parallelizing de-
scription logic inference services in the near future in order to achieve a better
scalability. Our research is also strongly motivated by recent trends in computer
hardware where CPUs (will) feature multi-cores (2 to 8 cores) or many-cores
(tens or even hundreds of cores), e.g., see [11]. These CPUs promise significant
speed-ups for algorithms exploiting so-called thread-level parallelism. This type
of parallelism is very promising for DL reasoning algorithms that can be executed
in parallel but might share common data structures (e.g., and/or parallelism in
proofs, classification of TBoxes, ABox realization or query answering).

First approaches on more scalable ABox reasoning algorithms were investi-
gated with the Racer architecture [10] where novel instance retrieval algorithms
were developed and analyzed, which exploit a variety of techniques such as in-
dex maintenance, dependency analysis, precompletion generation, etc. Other
research focused on scalable ABox reasoning with optimization techniques to
partition ABoxes into independent parts and/or creating condensed (summary)

1 http://racer-systems.com



ABoxes [6, 9, 4]. These approaches rely on the observation that the structure of
particular Aboxes is often redundant and these Aboxes contain assertions not
needed for ABox consistency checking or query answering.

Parallel algorithms for description logic reasoning were first explored in the
FLEX system [3] where various distributed message-passing schemes for rule
execution were evaluated. The reported results seemed to be promising but the
research suffered from severe limitations due to the hardware available for ex-
periments at that time. The only other approach on parallelizing description
logic reasoning [12] reports promising results using multi-core/processor hard-
ware, where the parallel treatment of disjunctions and individual merging (due
to number restrictions) is explored. There also exists work on parallel reasoning
in first-order theorem proving but due to completely different proof techniques
(resolution versus tableaux) and reasoning architectures this is not considered
as relevant here. To the best of our knowledge this is the first reported approach
on investigating parallel TBox classification.

2 Architecture

This section describes the architecture of the implemented system and its under-
lying algorithms for thread-based parallel classification. In contrast to starting
to implement a parallel TBox classifier, we decided to first conduct a field study
with the goal to evaluate the impact of parameters such as number of threads,
number of concepts (also called partition size) to be inserted per thread, and
strategy to partition a given set of concepts, on the completeness of the classifier
if one assumes a type of parallelization that deliberately sacrifices completeness.
Using such a strategy we wanted to get some experience about the quality of a
sound but incomplete parallel classifier, or, in other words, we wanted to find
out about the amount of work needed to find and add missed subsumptions.

In order to focus better on this study we developed a simulator using a
multi-threaded architecture which utilizes an input file created by Racer. This
file contains a list of concept names to be classified into a taxonomy and infor-
mation about them. This information replaces the standard tableau reasoning
procedure and is also used as lookup data for verifying the parallel classification
results. The decision to avoid the implementation of tableau algorithms makes
the simulator independent of a particular DL logic. Racer generates this file for a
given OWL-DL ontology from a complete TBox classification. The information
about a concept name available in the input file contains the concept’s satisfi-
ability status, a pseudo model (if satisfiable), its so-called told subsumers and
disjoints, and parents and children (in the complete taxonomy). The information
about the parents and children is used to compute the set of ancestors and de-
scendants of a concept. This information is only used for (i) emulating a tableau
subsumption test, i.e., by checking whether a possible subsumer (subsumee) is
in the list of ancestors (descendants) of given concept, and (ii) in order to find
missing subsumptions in the taxonomy computed by the parallel classifier.



Once the simulator has read in this file, the told subsumer information is
passed to a preprocessing algorithm which creates a taxonomy skeleton based
on the already known (told) subsumptions and generates a topological order
list (e.g., using a depth first traversal) from this skeleton. In the topological
order list, from left to right, parent concepts precede their children concepts. To
our surprise, the results of our experiments indicate that our initial assumption
about the adequacy of using a topological order for parallel processing is not
true although this ordering is a good choice for the sequential processing.

To implement the concurrency in our system, at least two memory manage-
ment approaches could be taken into account by using either (i) sets of local
trees (so-called PARTREE approach) or (ii) one global tree. In the PARTREE
algorithm [13] a local tree is assigned to each thread, and after all the threads
have finished the construction of their local hierarchy, the local trees are merged
into one global tree. TBox classification through a local tree algorithm would not
need any communication or synchronization between the threads. PARTREE is
well suited for distributed systems which do not have shared memory. On the
other hand, the global tree approach implements a shared space which is accessi-
ble to different threads running in parallel. The global tree approach was chosen
because it better fits to our envisioned multi-core environment. To ensure data
integrity a lock mechanism for single nodes is used. This allows a proper lock
granularity and helps to increase the number of simultaneous write accesses to
the subsumption hierarchy under construction.

In order to avoid unnecessary tree traversals and tableau subsumption tests
when computing the subsumption hierarchy, the parallel classifier adapted the
enhanced traversal method [1], which is an algorithm that was designed for
sequential execution. This technique consists of two phases for each concept to
be inserted, where the top-search determines its parents or predecessors and the
bottom-search phase its children or successors. Algorithm 1 and 2 outline the
traversal procedures for the top-search phase.

Algorithm 1 top search(new,current)
mark(current,‘visited’)
pos-succ ← ∅
for all y predecessor of current do

if enhanced top subs(y,new) then
pos-succ ← pos-succ ∪ {y}

if pos-succ = ∅ then
return current

else
result ← ∅
for all y ∈ pos-succ do

if y not marked ‘visited’ then
result ← result ∪ top search(new,y)

return result



The procedure top search outlined in Algorithm 1 traverses the taxonomy
top-down from a current concept and tries to push the new concept down the
taxonomy as far as possible. It uses an auxiliary procedure enhanced top subs
(outlined in Algorithm 2).

Algorithm 2 enhanced top subs(y,c)
if y marked ‘positive’ then

return true
else if y marked ‘negative’ then

return false
else

for all z successor of y do
if enhanced top subs(z,c) and y is subsumed by c then

mark(y,‘positive’)
return true

else
mark(y,‘negative’)
return false

In a symmetric manner the procedure bottom search traverses the taxonomy
bottom-up from a current concept and tries to push the new concept up the tax-
onomy as far as possible. It uses an auxiliary procedure enhanced bottom subs.
Both procedures are omitted the sake of brevity.

The procedure parallel tbox classification is sketched in Algorithm 3. It is
called with a list of named concepts and sorts them in a topological order w.r.t.
to the initial taxonomy created from the already known predecessors and suc-
cessors of each concept (using the told subsumer information). Alternatively,
the procedure parallel tbox classification can be also executed with a random
order of the given concept list. The classifier assign partitions with a fixed or
dynamically increased size from the concept list to idle threads and activates
idle threads with their assigned partition using the procedure insert partition
sketched in Algorithm 4. All threads work in parallel. The exists either a fixed
number of threads or the number of threads grows dynamically.

The procedure insert partition inserts all concepts of a given partition into
the global taxonomy. For updating a concept or its predecessor or successors, it
locks the corresponding nodes. It first performs for each concept the top-search
phase (starting from the top concept >) and afterwards the bottom-search phase
(starting from the bottom concept ⊥).

3 Field Study

In order to evaluate the adequacy of our proposed algorithms in practice, and
also to assess the performance of our parallel TBox classification algorithm, we
configured our system so that it runs various experiments over ontologies with



Algorithm 3 parallel tbox classification(concept list,shuffle flag)
topological order list ← topological order(concept list)
if shuffle flag then

topological order list ← random shuffle(topological order list)
repeat

assign each idle thread ti a partition pi from topological order list
run idle thread ti with insert partition(pi)

until all concepts in topological order list are inserted
compute missing subsumptions and ratio
print statistics

Algorithm 4 insert partition(partition)
for all new ∈ partition do

parents ← top search(new,>)
lock(new)
set predecessors of new to parents
for all pred predecessor of new do

lock(pred)
add new to successors of pred
unlock(pred)

unlock(new)
children ← bottom search(new,⊥)
lock(new)
set successors of new to children
for all succ successor of new do

lock(succ)
add new to predecessors of succ
unlock(succ)

unlock(new)



Table 1. Used test ontologies.
Ontology Name DL Expressivity No. of named concepts

Galen SHF 2,730
Galen1 ALC 2,730
Umls-2 ALCHIN 9,479

Fig. 1. Scenario 1: Missing subsumptions in Galen (2 and 5 threads).

various sizes, complexity and expressivity. The simulation work we conducted
mainly consists of two parts. In the first part we use the topological order list as
the input for our parallel TBox classification. In the second part, we randomly
shuffle the topological order, based on a custom random shuffle algorithm, and
thereafter we use the shuffled list as the input for our simulation. Once the
shuffle order has been computed, it is saved and later reused for our tests. The
simulations were run on three different scenarios using the ontologies shown in
Table 1. We only have preliminary result for Galen, Galen1, and Umls-2. As
already mentioned, two parameters which influence the parallel TBox classifi-
cation, namely partition size, and the number of threads, vary in the following
three scenarios. The results are measured on the basis of the number of missed
subsumptions in the taxonomy produced by parallel classifier vs. the complete
taxonomy.

3.1 Partition size and number of threads are constant

In this scenario, the topological order list is divided into partitions of a constant
size for each test. After each test the partition size is increased by a factor of 5.
As shown in Figure 1, when we configured our system to run with two threads,
the number of missing subsumptions decreases and then slightly increases as
the partition size increases. Running the simulation with 5 threads, the number
of missing subsumptions decreases when the topological order is not shuffled;



Fig. 2. Scenario 1: Ratio of passed and missed subsumption tests in Galen.

however, if it is shuffled the missing subsumptions decreases and then dramat-
ically increases as the partition size increases. In the worst case, the missing
subsumptions make 2% of all detected subsumptions.

Figure 2 shows the ratio for passed subsumption tests2 and failed subsump-
tion tests.3 In this figure, we notice that the increase of the number of threads has
a linear effect on ratio. In other words, when we add more threads to our system,
the ratio linearly decreases and that is what we expected. Conducting the same
tests for Umls-2 (not shown here) one gets at most 1% of missed subsumptions
and the ratio has the same trend as Galen.

3.2 Partition size is dynamic and grows exponentially and the
number of threads is constant

In this scenario, the partition size grows exponentially (5n), however the number
of threads remains constant in each test run. As displayed in Figure 3, in all
the cases the missing subsumptions decrease except for the case when we have
shuffled the topological order list and the number of threads is equal to 5. The
percentage of missing subsumptions in the worst case is 0.25%. If the partitions
grow in size, the algorithms perform closer to the sequential case; having the
ratios (passed, failed subsumption tests) close to 1 (as in the sequential case)
supports our conjecture (see Figure 4). For Umls-2 (not shown here) the number
of missing subsumptions is 0.02% and the ratio follows a trend close to Galen.



Fig. 3. Scenario 2: Missing subsumptions in Galen (2 and 5 threads).

Fig. 4. Scenario 2: Ratio of passed and missed subsumption tests in Galen.

3.3 Number of threads is dynamic and grows exponentially

In this scenario, the number of threads grows exponentially (2n) but the parti-
tion size remains constant. Figure 5 shows the test results for the cases when a
topological and a random order is used. In this figure, we observe that the miss-
ing subsumptions varies up and down based on the initial value for the number
of threads. Figure 6 displays the ratio for passed and failed subsumption tests.
This figure shows that we have a smooth decrease of the ratio.

2 Total number of passed (successful) subsumption tests in the parallel case divided
by the total number of passed subsumption tests in the sequential case.

3 Total number of failed (unsuccessful) subsumption tests in the parallel case divided
by the total number of failed subsumption tests in the sequential case.



Fig. 5. Scenario 3: Missing subsumptions in Galen (increasing number of threads).

4 Discussion and Conclusion

While there exists some work on parallel algorithms for description logic rea-
soning [3, 12] and on parallel reasoning for first-order theorem proving (with
completely different proof techniques based on resolution), parallel TBox clas-
sification has not been addressed yet. There has also been substantial work on
reasoning through modularity and partitioning knowledge bases (e.g., [5, 8, 7]).
In [5], the proposed greedy algorithm performs automated partitioning, and the
authors have investigated how to reason effectively with partitioned sets of logi-
cal axioms that have overlap in content and may even require different reasoning
engines. Their partition-based reasoning algorithms have been proposed for rea-
soning with logical theories in propositional and first-order predicate logic that
are decomposed into related partitions of axioms.

As pointed out, there has also been extensive work on modularity. In [8], a
logic-based framework for modularity of ontologies is proposed. This formaliza-
tion is very interesting for the ontologies that can be modularized. For these
cases, every module can be assigned to a particular thread and can be classified
in parallel. The approach reported in [7] also proposed a technique for incre-
mental ontology reasoning that is, reasoning that reuses the results obtained
from previous computations. This technique is based on the notion of a module
and can be applied to arbitrary queries against ontologies expressed in OWL-
DL. The approach focused on a particular kind of modules that exhibit a set
of compelling properties and apply their method to incremental classification of
OWL-DL ontologies. The techniques do not depend on a particular reasoner or
reasoning method and can be easily implemented in any existing prover.

In our paper, we have described an architecture for parallelizing well-known
algorithms for TBox classification. Our work is targeted for ontologies where
independent partitions cannot be constructed; therefore we did not use the pre-



Fig. 6. Scenario 3: Ratio of passed and missed subsumption tests in Galen.

viously mentioned approaches in our system. The experimental evaluation of our
proposed technique shows that the result are very promising because the num-
ber of missed subsumptions is surprisingly small. As we discussed in previous
sections, due to missing subsumptions in classification, the algorithm is sound
but incomplete. In our next steps we plan to ensure completeness by adding
a recovery or repair phase. We will also plan to implement the technique in a
multi-core / multi-processor environment.

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management, 4(2):109–132, 1994.

2. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for
life science ontologies. In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning
(IJCAR’06), volume 4130 of LNAI, pages 287–291. Springer-Verlag, 2006.

3. F. Bergmann and J. Quantz. Parallelizing description logics. In Proc. of 19th Ann.
German Conf. on Artificial Intelligence, LNCS, pages 137–148. Springer-Verlag,
1995.

4. J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, E. Schonberg, and
K. Srinivas. Scalable semantic retrieval through summarization and refinement. In
21st Conf. on Artificial Intelligence (AAAI), pages 299–304. AAAI Press, 2007.

5. Amir Eyal and Sheila Mcllraith. Partition-based logical reasoning for first-order
and propositional theories. Artifical Intelligence, 162(1-2):49–88, 2005.

6. A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas. The summary
Abox: Cutting ontologies down to size. In Proc. of Int. Semantic Web Conf.
(ISWC), volume 4273 of LNCS, pages 343–356. Springer-Verlag, 2006.

7. Bernardo Cuenca Grau, Christian Halaschek-Wiener, , and Yevgeny Kazakov. His-
tory matters: Incremental ontology reasoning using modules. In Proceedings of the



6th International Semantic Web Conference (ISWC 2007), Busan, South Korea,
November 11-15. Springer, 2007.

8. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A
logical framework for modularity of ontologies. In In Proc. of the 20th Inter-
national Joint Conference on Artificial Intelligence(IJCAI 2007), Busan, South
Korea, November 11-15, pages 298–303, 2007.

9. Y. Guo and J. Heflin. A scalable approach for partitioning OWL knowledge bases.
In Proc. 2nd Int. Workshop on Scalable Semantic Web Knowledge Base Systems,
Athens, USA, pages 47–60, 2006.

10. V. Haarslev and R. Möller. On the scalability of description logic instance retrieval.
Journal of Automated Reasoning, 2007. 54 pages. Submitted for review.

11. Intel Inc. Innovating for today and the future. http://www.intel.com/multi-core/
[Accessed February, 2008].

12. T. Liebig and F. Müller. Parallelizing tableaux-based description logic reasoning.
In Proc. of 3rd Int. Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS ’07), Vilamoura, Portugal, Nov 27, LNCS. Springer-Verlag, 2007.

13. H. Shan and J. P. Singh. Parallel tree building on a range of shared address space
multiprocessors: Algorithms and application performance. In Proc. of the First
Merged Symp. IPPS/SPDP 1998), pages 475–484, 1998.

14. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–
53, 2007.

15. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System
description. In Proc. of the Int. Joint Conf. on Automated Reasoning, LNAI, pages
292–297. Springer-Verlag, 2006.


