
Partial and Informative Common Subsumers of
Concepts Collections in Description Logics

Simona Colucci13, Eugenio Di Sciascio1, and Francesco Maria Donini2

1 SisInfLab–Politecnico di Bari, Bari, Italy
2 Università della Tuscia, Viterbo, Italy

3 D.O.O.M. s.r.l., Matera, Italy

Abstract. Least Common Subsumers in Description Logics have shown their
usefulness for discovering commonalities among all concepts of a collection.
Several applications are nevertheless focused on searching for properties shared
by significant portions of a collection rather than by the collection as a whole.
Actually, this is an issue we faced in a real case scenario that provided initial
motivation for this study, namely the process of Core Competence extraction in
knowledge intensive companies. The paper defines four reasoning services for the
identification of meaningful common subsumers describing partial commonali-
ties in a collection. In particular Common Subsumers adding informative content
to the Least Common Subsumer are investigated, with reference to ALN and
ELN .

1 Introduction

Least Common Subsumers(LCSs) were originally proposed by Cohen, Borgida and
Hirsh [5] as novel reasoning service for the Description Logic underlying Classic [4].
By definition, for a collection of concept descriptions, their LCS represents the most
specific concept description subsuming all of the elements of the collection.

The usefulness of the inference task has been shown in several applications, varying
from learning from examples ([6],[7] , [9]), to similarity-based Information Retrieval
([12], [13]) and bottom-up construction of knowledge bases ([1], [2]).

Nevertheless, there are some problems in which the computation of LCS does not
provide solutions. The LCS in fact intuitively represents properties shared by all the
elements of a given collection. In several applications, instead, such a sharing is not
required to be full: in other words we could be interested in finding a concept description
subsuming a portion of the elements in the collection.

Different perspectives on the introduced problem may be taken: if the LCS of the
collection is the universal concept, we can determine the concept description subsum-
ing a number m of concept descriptions in the collection, where m is the maximum
cardinality of subsets of the collection for which a common subsumer non-equivalent
to the universal concept exists. We give the name Best Common Subsumer to such a
concept description, in analogy with LCS.

Alternatively, we could be interested in determining a concept description subsum-
ing at least k elements in the collection, where k is a threshold value established a priori

on the basis of a decisional process dependent on the application domain. We give such
a different concept description the name k-Common Subsumer (k-CS).

In particular, the search should revert on those k-CSs adding informative content to
LCS: we call Informative k-Common Subsumer (IkCS) a k-CS more specific than the
LCS of the collection.

We here introduce the k-CS, the IkCS, the BCS and one more specific service (Best
Informative Common Subsumer), starting by outlining the application problem motivat-
ing our research: Core Competence individuation in knowledge-intensive companies. In
particular we give a definition of introduced services and some useful results known by
LCS theory in Section 3. In Section 4 we propose some computation results for intro-
duced services in different DLs. Final remarks close the paper.

2 Motivation

The proposal of the k-Common Subsumer and all its specifications as reasoning prob-
lems in DL originates from a universally shared need in knowledge intensive com-
panies: the recognition of most characterizing knowledge, well known in knowledge
management literature by the name Core Competence. The term Core Competence was
introduced by Hamel and Prahalad [10] to identify the knowledge specializing a com-
pany, the skills the management should invest on to achieve competitive advantage.

In large companies the process of identifying Core Competence becomes a very
complex task, due to difficulties in getting in touch with and analyzing available sources
of knowledge. Just as an example, let us think of a multinational consulting company,
involved in the decisional process of choosing the business sectors — and the related in-
tellectual capital — to invest on in its long term strategy. By manually performing such
a selection process the management may neglect several competencies that, although
characterizing many company employees, are difficult to discover because of different
reasons (for example, competencies never used in past projects, or competencies not
explicitly asserted in personnel profiles).

The depicted scenario suggests that in large, knowledge intensive, companies the
process of Core Competence extraction calls for knowledge-based systems exploiting
the semantics of available information. For the implementation of services for automatic
Core Competence extraction, we model company knowledge through DLs; in particular
we assume hereafter for the sake of simplicity that the only source of knowledge lies
in company personnel and we therefore focus on employees profile descriptions. The
information stored in profiles can be aggregated in order to extract fields of excellence
of the company.

We assume that the possession of Core Competence, as it is reasonable, is not nec-
essarily required by the whole company personnel: the management can set the level of
coverage necessary to consider a particular skill as part of the Core Competence.

In order to understand the rationale of the proposed assumptions, consider the fol-
lowing simple example. In a small company only four people are employed:

– Allison, a Process Planner and Mathematician, endowed with knowledge in Infor-
mation Systems and Quality Assurance Techniques

– Eva, an Asset Manager with knowledge about Psychology

– Walter, an Engineer expert in VBScript, Java and C since 3 years and with knowl-
edge about UML, Computer Graphics, Client Server Protocol and Information Sys-
tems

– Michael, a Managerial Engineer with advanced knowledge of Internet Technology,
Operation Optimization, Production Management and Distribution Management
and expert in Asset Allocation since 3 years.

In order to model this small knowledge domain we provide the TBox excerpt in Figure
1. The four concept descriptions representing employees profiles are shown in Table 1.

Skill w





Psychology
ProcessP lanning
Mathematics
ProcPerfMonitoring
QualityAssTechs
Internet
OperationsOptimization
DistributionManagement
AssetAllocation
Design
Management
SupplyChain
ProductionManagement
ComputerGraphics
ClientServerProtocol
UML

Programming w





Script w
{

Javascript
V Bscript

OOP w
{

Java
C + +

Structural w C

InformationSystems w
{

DBMS
TCP/IP
ERPsystem

Mathematician ≡ ∃hasKnowledge.(Mathematics u (≥ 5 hasExperienceY ears))
ProcessP lanner ≡ ∃hasKnowledge.(ProcessP lanning u (≥ 5 hasExperienceY ears)) u

∃hasKnowledge.ProcPerfMonitoring
Manager ≡ ∃hasKnowledge.(Management u (≥ 7 hasExperienceY ears))
AssetManager ≡ Manager u ∃hasKnowledge.(AssetAllocation u (≥ 5 hasExperienceY ears))
Engineer ≡ ∃hasKnowledge.(Design u (≥ 4 hasExperienceY ears))
ManagerialEng ≡ Engineer u ∃hasKnowledge.SupplyChain u

∃hasKnowledge.(ProductionManagement u (≥ 5 hasExperienceY ears))

Fig. 1. An Excerpt of TBox T Concept Inclusions and Concept Definitions

We note that the DL sufficient to express such a TBox is ELN . However, the general
problem of Skill Management may require other constructs, as well [8].

It is easy to see that the LCS of the collection of employees profiles is the universal
concept: if we defined Core Competence only the competence held by all of the employ-
ees, we may simply assert that our small company does not have any Core Competence.
If we instead give up such a full skill coverage and assume that a competence owned by
at least half of the employees might be a Core Competence, we may list “Information
Systems”, “Engineer” job title and three years of experienced knowledge in “Asset Al-

Employee Name Concept Description Representing Employee Profile

Allison
ProcessP lanner uMathematicianu
∃hasKnowledge.InformationSystemsu
∃hasKnowledge.QualityAssTechs

Eva AssetManager u ∃hasKnowledge.Psychology

Walter

Engineeru
∃hasKnowledge.(V Bscript u (≥ 3 hasExperienceY ears)) u
∃hasKnowledge.(Java u (≥ 3 hasExperienceY ears)) u
∃hasKnowledge.(C u (≥ 3 hasExperienceY ears)) u
∃hasKnowledge.UML u ∃hasKnowledge.ComputerGraphicsu
∃hasKnowledge.ClientServerProtocolu
∃hasKnowledge.InformationSystems

Michael

ManagerialEng u ∃hasKnowledge.Internet u
∃hasKnowledge.OperationsOptimization u
∃hasKnowledge.DistributionManagement u
∃hasKnowledge.(AssetAllocation u (≥ 3 hasExperienceY ears))

Table 1. The Concept Descriptions representing Employee Profiles

location” in it. Such a result is obviously much more significant than the first one w.r.t.
the objective of determining skills to invest on.

3 Definitions and Known Results

Definition 1 (LCS, [7]). Let C1, . . . , Cn be n concept descriptions in a DL L. An LCS
of C1, . . . , Cn, denoted by LCS(C1, . . . , Cn), is a concept description E in L such that
the following conditions hold:

(i) Ci v E for i = 1, . . . , n
(ii) E is the least L-concept description satisfying (i),i.e., , if E′ is an L-concept de-

scription satisfying Ci v E′ for all i = 1, . . . , n, then E v E′

It is well known that, if the DL L admits conjunction of concepts “u”, then the LCS is
unique up to concept equivalence (since if both E1 and E2 are common subsumers of
C1, . . . , Cn, then so is E1 u E2). Moreover, if union of concepts “t” is allowed in L,
then for every set of concepts C1, . . . , Cn ∈ L, their LCS is C1 t · · · t Cn. Hence, the
study of LCS is limited to DLs not admitting union.

Definition 2 (k-CS). Let C1, . . . , Cn be n concepts in a DL L, and let be k < n. A
k-Common Subsumer (k-CS) of C1, . . . , Cn is a concept D such that D is an LCS of k
concepts among C1, . . . , Cn.

Definition 3 (IkCS). Let C1, . . . , Cn be n concepts in a DL L, and let k < n. An
Informative k-Common Subsumer (IkCS) of C1, . . . , Cn is a k-CS E such that E is
strictly subsumed by LCS(C1, . . . , Cn).

Definition 4 (BICS). Let C1, . . . , Cn be n concepts in a DL L. A Best Informative
Common Subsumer (BICS) of C1, . . . , Cn is a concept B such that B is an Informative
k-CS for C1, . . . , Cn, and for every k < j ≤ n every j-CS is not informative.

For collections whose LCS is equivalent to the universal concept the following defini-
tion makes also sense:

Definition 5 (BCS). Let C1, . . . , Cn be n concepts in a DL L. A Best Common Sub-
sumer (BCS) of C1, . . . , Cn is a concept S such that S is a k-CS for C1, . . . , Cn, and
for every k < j ≤ n every j-CS ≡ >.

Proposition 1. If LCS(C1, . . . , Cn) ≡ >, every BCS is also a BICS.

Even though the services defined above may appear quite similar to each other at a first
sight, it has to be underlined that they deal with different problems:

– k-CS: can be computed for every collection of elements and finds least common
subsumers of k elements among the n belonging to the collection;

– IkCS: describes those k-CSs adding an informative content to the one provided by
LCS, i.e., more specific than LCS. Observe that IkCS does not exist when every
subset of k concepts has the same LCS as the one of all C1, . . . , Cn;

– BICS: describes IkCSs subsuming h concepts, such that h is the maximum cardi-
nality of subsets of the collection for which an IkCS exists. A BICS does not exist
if and only if Ci ≡ Cj for all i, j = 1, . . . , n;

– BCS: may be computed only for collections admitting only LCS equivalent to the
universal concept; it finds k-CSs such that k is the maximum cardinality of subsets
of the collection for which an LCS not equivalent to > exists.

By reverting to the example introduced in Section 2 it is easy to see that the concepts
describing knowledge of “Information Systems”, three years of experience in “Asset
Allocation” and “Engineer” job title represent a k-CS of the analyzed set of personnel
profiles if k equals 2. The three concepts can moreover be considered as Informative
k-CS because they add information to the LCS. We can also recognize in the three con-
cepts Best (and Best Informative) Common Subsumers: by adding any other personnel
profile in the set of subsumed concepts, their common subsumer reverts to the universal
concept and stops being Informative w.r.t. the LCS.

4 Computation

In the computation of partial and informative common subsumers of a collection of
concept descriptions C1, . . . , Cn we assume that all concepts Ci in the collection are
consistent; hence Ci 6≡ ⊥ for every Ci ∈ (C1, . . . , Cn).

The reasoning services introduced in Section 3 ask for the concepts of the input
collection to be written in components according to the following recursive definition:

Definition 6 (Concept Components). Let C be a concept description in a DL L, with
C written in a conjunction C1 u · · · u Cm. The Concept Components of C are defined
as follows:

1. if Cj , with j = 1 . . . , m is either a concept name, or a negated concept name, or a
number restriction, then Cj is a Concept Component of C

2. if Cj = ∃R.D , with j = 1 . . . ,m, then ∃R.> is a Concept Component of C

3. if Cj = ∀R.E, with j = 1 . . . , m , then ∀R.Ek is a Concept Component of C, for
each Ek Concept Component of E

Observe that we do not propagate universal restriction over existential restriction since
existential restriction always simplify to a component of the form ∃R.>.

For the computation of the sets of k-CSs, IkCSs, BICSs and BCSs of a collection of
concepts we define in the following a Subsumers Matrix, for the representation of the
collection itself.

Definition 7 (Subsumers Matrix). Let C1, . . . , Cn be a collection of concept descrip-
tions Ci in a Description Logic L and let Dj ∈ {D1, . . . , Dm} be the Concept Com-
ponents deriving from all concepts in the collection. We define the Subsumers Matrix
S = (sij) , with i = 1 . . . n and j = 1 . . . m, such that sij = 1 if the component Dj

subsumes Ci, and sij = 0 if the component Dj does not subsume Ci.

Definition 8. Referring to the Subsumers Matrix of C1, . . . , Cn, we define:

Concept Component Signature (sigDj
) : set of indices of concepts C1, . . . , Cn sub-

sumed by Dj; observe that sigDj
⊆ {1, . . . , n};

Concept Component Cardinality (TDj) : cardinality of sigDj , that is, how many con-
cepts among C1, . . . , Cn are subsumed by Dj . Such a number is

∑n
i=1 sij;

Maximum Concept Component Cardinality (MS) : maximum among all concept com-
ponent cardinalities, that is, MS = max{TD1 , . . . TDm};

Partial Maximum Concept Component Cardinality (PMS) : maximum among the
cardinalities of concept components not subsuming all n concepts in the collection
(PMS = max{TDj |TDj < n}); by definition PMS < n;

Common Signature Class(
⋂

sigDj
) : concept formed by the conjunction of all concept

components whose signature contains Dj: u{Dh | sigDj ⊆ sigDh
}

Definition 7 hints that the determination of Subsumers Matrix includes an oracle to
subsumption. As a consequence the following proposition holds:

Proposition 2. Let L be a DL whose subsumption problem is decidable in polynomial
time. Then Subsumers Matrix determination in L is computable in polynomial time too.

Such a result causes the computation of common subsumers in DLs with different
complexities for subsumption to be treated separately in next subsections. Neverthe-
less some considerations are logic independent and preliminary to the determination of
common subsumers in every DL.

Firstly, we define the solution sets for the introduced reasoning services, indepen-
dently on the DL employed for the representation of concepts in a given collection:

B : set of BCSs of the collection
BI : set of BICSs of the collection
Ik : set of IkCSs of the collection, given k < n
Lk : set of k-CSs of the collection, given k < n

Proposition 3. Given a DL L and a collection of concept descriptions in L, for each
k < n the solution sets of the collection are such that Ik ⊆ Lk. If the collection admits
only the universal concept as LCS, then B = BI also holds.

Proposition 4. The following observations on the Subsumers matrix represent neces-
sary conditions to determine common subsumers of the collection:

1. Only concept components Dj for which TDj ≥ k are meaningful for the determi-
nation of Lk elements

2. Only concept components subsuming k concepts but not all n concepts in the col-
lection are meaningful for the determination of Ik elements: Dj for which k ≤
TDj

< n
3. Only concept components Dj for which TDj = PMS are taken into account for

the determination of BI elements
4. Only concept components Dj for which TDj

= MS , with MS < n may determine
B elements.

The representation (for k = 2) in Figure 2 shows the introduced necessary conditions
and should clarify the differences among introduced services. In particular, notice that
in case of a collection admitting LCS 6= > (left-hand side of Figure 2), the best common
subsumer of the collection is the LCS itself, so only the computation of BICSs makes
sense. On the contrary, for a collection admitting only LCS ≡ > (right-hand side of
Figure 2), BCSs may be computed and are BICSs too.

D1 D2 D . . . Dm

C1 x x x
C2 x x
C . . . x
Cn x x x

IkCS, k-CS k-CS, IkCS,
BICS

LCS, k-CS

D1 D2 D . . . Dm

C1 x x x
C2 x x
C . . .
Cn x x

k-CS, IkCS k-CS, IkCS k-CS, IkCS,
BICS, BCS

Fig. 2. Subsumers Matrices of a collection whose LCS 6= > (left) and of one whose
LCS ≡ > (right)

It has to be anyway underlined that the criteria exposed before are necessary to
determine common subsumers, but are not sufficient to find the most specific ones, as
required by Definition 2.

Given that associative property holds for LCS, one could think to compute k-CSs
by exploiting such a property and taking, for example, a simple dynamic programming
approach. In the following we provide a theorem dealing with the number of possible
kCSs showing that such an approach is instead inappropriate.

Theorem 1. For some sets of n concepts C1, . . . , Cn in a DL L, and for some k < n,
there are exponentially many kCS of C1, . . . , Cn.

Proof. Define the set of concepts A = {A1, ..., An}, and define A−i = A−{Ai}. For
i = 1, ..., n, define Ci = uA−i (so each Ci is the conjunction of all A’s but Ai). Then,
it is easy to verify that LCS{C1, . . . , Cn} ≡ > (no concept name Ai is common to all
C1, . . . , Cn).

Now let B be any subset of {1, ..., n}, and define A−B = {Aj | j ∈ {1, . . . , n} −
B}. We prove by induction on the cardinality of B that LCS{Ci | i ∈ B} = uA−B,

e.g., if B = {2, 4, 5}, then LCS{C2, C4, C5} = A1uA3uA6u· · ·uAn. For |B| = 1,
let B = {i} for any i ∈ {1, . . . , n}. Then LCS{Ci} = Ci = uA−B by definition.
Assuming the claim true for |B| = k, let i 6∈ B; observe that LCS{{Ci} ∪ {Cj | j ∈
B}} = LCS{Ci,LCS{{Cj | j ∈ B}}} = LCS{Ci,uA−B} by inductive hypothesis.
Now observe that Ci contains all concept names but Ai, hence LCS{Ci,uA−B} =
uA−B∪{i}, which proves the claim for |B| = k + 1. Hence, for every B such that
|B| = k, uA−B is a kCS of C1, . . . , Cn.

Finally, observe that there are
(

n
k

)
possible k-cardinality subsets of {1, ..., n}, hence

there are as many concepts uA−B which are kCS of C1, . . . , Cn, and for k = dn/2e,(
n
k

) ∈ Ω(2n).

Observe that in the proof, for k = n− 1, there are exactly n kCS A1, . . . , An— in
fact, LCS{C2, ..., Cn} = A1, and similarly for every subset of n − 1 concepts among
C1, . . . , Cn. By definition, these (n− 1)CS are also BCS, with maximum k = n− 1,
and moreover, in this case such (n− 1)CS are also BICS.

It may seem that computing a BCS of C1, . . . , Cn adds a source of complexity to the
problem of computing their LCS. However, once the k concepts whose LCS is a BCS
are identified, the computation reduces to finding an LCS. To identify such k concepts,
observe that it is sufficient to inspect the subsumers matrix, and find a component Dj

such that TDj is maximum (observe that such a maximum must be less than n, otherwise
LCS{C1, . . . , Cn} 6≡ > and the BCS equals the LCS). Once such a component Dj is
found, the BCS must be subsumed by Dj , either strictly, or the BCS is Dj itself. Hence
the BCS is LCS{Ci | sij = 1}, and we can conclude with the following theorem.

Theorem 2. Let m be the sum of the sizes of C1, . . . , Cn. Then finding a BCS of
C1, . . . , Cn amounts to the computation of O(m2) subsumption tests in L, plus the
computation of one LCS.

4.1 Informative Common Subsumers in ALN
Theorem 3. For a collection of concept descriptions inALN the necessary conditions
for solution sets determination exposed in Proposition 4 are also sufficient.

Proof. Let the Common Signature Class
⋂

sigDj
of a concept component Dj satisfy

one of the necessary conditions in Proposition 4 and let LCSDj be the LCS of the k
concepts subsumed by Dj . If

⋂
sigDj

is just a common subsumer and not the least one,

LCSDj <
⋂

sigDj
, hence LCSDj must be equivalent to

⋂
sigDj

uF , with F a suitable
concept. This means that F subsumes each concept Ci subsumed by Dj hence, accord-
ing to Definition 6, F must be one of the concept components conjoined in

⋂
sigDj

for
the computation of B, BI , Lk and Ik elements.

When a TBox is present—even a simple one, made of axioms A
.= C where A

is a name—Nebel proved that subsumption is PSPACE-hard even for the simple DL
FL0 [14]4. Hence, in the following complexity analysis we decouple the contribution

4 However, Nebel himself claims that exponentiality raises from the nesting of the definitions
(a concept that defines another that defines another etc.) and that for “bushy but not deep”

of the subsumption tests in the subsumers matrix computation from the computation of
different introduced common subsumers.

Theorem 4. Let C1, . . . , Cn, T be n concepts and a simple Tbox inALN , let m be the
sum of the sizes of C1, . . . , Cn, and let S(s) be a monotone function bounding the cost
of deciding C vT D in ALN , whose argument s is |C|+ |D|+ |T |. The computation
of the solution sets B, BI , Lk, Ik for a collection of concept descriptions in ALN is
then a problem in O(m2 + (S(m))2).

Proof. We propose an algorithm determining the sets BI , Lk, Ik, B of a collection
{C1, . . . , Cn} of concepts in ALN , whose Subsumers Matrix is given as input. Hence
the computation of the Subsumers Matrix can be carried over in polynomial time (see
Proposition 2).

According to Theorem 3 the determination of the output sets asks then only for the
enumeration of Common Signature Classes of the components Dj chosen according to
conditions in Proposition 4.

The algorithm for Common Subsumers enumeration in ALN is shown in the fol-
lowing:

Input : Subsumers Matrix S = (sij) for a collection of concepts {C1, . . . , Cn}
in ALN , integer k < n

Output: Lk; Ik; BI; B
foreach Dj ∈ {D1, . . . , Dm} do1

if TDj ≥ k then2

Lk = Lk ∪
⋂

sigDj
;3

if TDj < n then4

if TDj = MS then5

B = B ∪⋂
sigDj

;6

BI = BI ∪⋂
sigDj

;7

else if (TDj = PMS) then BI = BI ∪⋂
sigDj

;8

else Ik = Ik ∪
⋂

sigDj
;9

return Lk,B , Ik, BI;10

Algorithm 1: An algorithm for Common Subsumers enumeration in ALN
It is straightforward to verify that the algorithm runs in O(m2). Given that sub-

sumers matrix can be computed in O(m2 + (S(m))2), the claim follows.

4.2 Informative Common Subsumers in ELN

Theorem 5. The computation of the solution sets B, BI , Lk, Ik for a collection of
concept descriptions in ELN may be reduced to the problem of computing the LCS of
the subsets of the collection and may then grow exponential in the size of the collection.

TBoxes exponentiality does not arise. A precise characterization of what “bushy but not deep”
means has been given by Di Noia et al. [15].

Proof. For computing Lk it is sufficient to compute for every subset {i1, . . . , ik} ⊆
{1, . . . , n} the concept LCS(Ci1 , . . . , Cik

). The same holds for Ik, excluding those
LCS(C1, . . . , Ck) which are equivalent to LCS(C1, . . . , Cn).

For the computation of the sets B and BI , instead, we provide an algorithm that
used the one proposed by Kusters and Molitor [11] for LCS computation. The algorithm
takes as input the collection C1, . . . , Cn represented through its Subsumers Matrix.

Consider now the Concept Components of the elements Ci in the collection: the re-
duction in Step 2 of Definition 6 causes not all the components to be straightly included
in the solution sets B and BI . For example, consider the concept description
C1 = AssetManageru∃hasKnowledge.Psychology: the resulting concept compo-
nent is D1 = ∃hasKnowledge.> (taking also into account the TBox in Figure 1. Even
though such component is selected for the determination of the solution sets according
to Proposition 4, it just individuates the concepts in the collection to consider for the
determination of B and BI . For each component Dj we denote LCSDj

the LCS of the
Ci such that sij = 1.

The proposed algorithm is shown in the following:
Input : Subsumers Matrix S = (sij) for a collection of concepts

Ci ∈ {C1, . . . , Cn} in ELN
Output: BI; B
if MS = n then1

B := ∅;2

foreach Dj s.t. TDj = PMS do BI := BI ∪ LCSDj3

else4

foreach Dj s.t. TDj = MS do5

B := B ∪ LCSDj ;6

BI := B7

return B , BI;8

Algorithm 2: An algorithm for Common Subsumers enumeration in ELN
The algorithm requires the computation of the LCS of l concepts — with l ≤ n— in

lines 3, 6. Similarly to the approach used in [3] we limit the size on the input collection
from n to l, and we compute the LCS of the l concepts as shown in [11]. The problem
of determining the solution sets of a collection may be then reduced to the computation
of the LCS of subsets of the collection itself.

5 Final Remarks

Motivated by a real-world application need, namely finding Core Competence in knowl-
edge intensive companies, novel reasoning services finding commonalities among por-
tions in a collection of concepts in DL have been investigated and defined in ALN
and ELN . It has been shown that partial and informative common subsumers can be
computed in polynomial time in ALN ; in ELN the problem of computing partial and
informative common subumers may be instead reduced to LCS computation and the
complexity is therefore bounded by the one for LCS.

The computation algorithm for ALN has been implemented in the framework of
Impakt, a novel and optimized commercial system for competences and skills manage-
ment [8], which will be released late this year by D.O.O.M.srl.

Acknowledgment

We acknowledge the three anonymous reviewers for helpful advices. This work has
been supported in part by EU-FP6-IST-26896 project and Apulia Region funded projects
PE 013 Innovative models for customer profiling and PS 092 DIPIS.

References

1. F. Baader and R. Küsters. Computing the least common subsumer and the most specific
concept in the presence of cyclic ALN -concept descriptions. In Proc. of KI-98, volume
1504, pages 129–140, 1998.

2. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in description
logics with existential restrictions. In Proc. of IJCAI ’99, pages 96–101, 1999.

3. F. Baader and R. Molitor. Building and structuring description logic knowledge bases us-
ing least common subsumers and concept analysis. In Proc. of ICCS ’00, pages 292–305,
London, UK, 2000.

4. A. Borgida, R.J. Brachman, D. L. McGuinness, and L. Alperin Resnick. CLASSIC: A struc-
tural data model for objects. In Proc. of ACM SIGMOD, pages 59–67, 1989.

5. W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in description
logics. In Proc. of AAAI-92, pages 754–760. AAAIP, 1992.

6. W. Cohen and H. Hirsh. The learnability of description logics with equality constraints.
Machine Learning, 17(2-3):169–199, 1994.

7. W. Cohen and H. Hirsh. Learning the CLASSIC description logics: Theorethical and exper-
imental results. In Proc. of KR’94, pages 121–133, 1994.

8. S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and A. Ragone. Semantic-based skill
management for automated task assignment and courseware composition. Journal of Uni-
versal Computer Science, 13(9):1184–1212, 2007.

9. M. Frazier and L. Pitt. CLASSIC learning. In Proc. of the 7th Annual ACM Conference on
Computational Learning Theory, pages 23–34, 1994.

10. G. Hamel and C. K. Prahalad. The core competence of the corporation. Harvard Business
Review, May-June:79–91, 1990.

11. Ralf Kusters and Ralf Molitor. Computing least common subsumers in ALEN. In IJCAI,
pages 219–224, 2001.

12. T. Mantay, R. Moller, and A. Kaplunova. Computing probabilistic least common subsumers
in description logics. In KI - Kunstliche Intelligenz, pages 89–100, 1999.

13. R. Möller, V. Haarslev, and B. Neumann. Semantics-based information retrieval. In Proc. of
IT&KNOWS-98, Vienna, Budapest, 1998.

14. Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422 of
LNAI. Springer, 1990.

15. T. Di Noia, E. Di Sciascio, and F.M. Donini. Semantic matchmaking as non-monotonic
reasoning: A description logic approach. Journal of Artificial Intelligence Research, 29:269–
307, 2007.

