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Abstract. We present a novel Fuzzy Description Logic (DL) based approach to
automate matchmaking in e-marketplaces. We model traders’ preferences with the
aid of Fuzzy DLs and, given a request, use utility values computed w.r.t. Pareto
agreements to rank a set of offers. In particular, we introduce an expressive Fuzzy
DL, extended with concrete domains in order to handle numerical, as well as non
numerical features, and to deal with vagueness in buyer/seller preferences. Hence,
agents can express preferences as e.g., I am searching for a passenger car costing
about 22000e yet if the car has a GPS system and more than two-year warranty
I can spend up to 25000e. We note that, among all possible matches, our match-
making approach chooses the mutually beneficial ones.

1 Introduction

In an e-marketplace, a transaction can be organized in three different stages [25]: dis-
covery, negotiation and execution. During the discovery phase, the marketplace helps the
buyer to look for promising offers best matching her request. The result of this match-
making phase is a ranked list of offers (usually ranked with respect to buyer’s prefer-
ences). In the eventual negotiation phase, the marketplace guides the buyer and the seller
to reach an agreement. With the execution of the transaction, the buyer and the seller
exchange the good.

Usually negotiation and matchmaking are two distinct processes executed sequen-
tially. First, the marketplace ranks offers for the buyer taking into account her request,
i.e., her preferences expressed w.r.t. some utility function, then, usually, a negotiation
starts with the seller having the best ranked supply, in order to reach an agreement that
satisfies both traders. That is, the marketplace tries to find an agreement which is Pareto
efficient 5, as well as beneficial for both traders [16].

Looking at the nature of matchmaking and negotiation we see that in the former
there is only one active actor – the buyer – while in the latter we have two active actors
– both traders. A typical marketplace uses only buyer’s preferences for discovery and
both traders’ preferences for negotiation. In a few words we can say that discovery is

5 An agreement is Pareto efficient when it is not possible to improve the utility of one trader,
without lowered the utility of the opponent one.



“unilateral”, while negotiation is “bilateral”. Due to this difference, it might occur often
that an offer resulting promising for the buyer i.e., with a good satisfaction degree for her
preferences, does not lead to an agreement because, on the other side, seller’s preferences
are not adequately satisfied.

The idea behind the approach we propose in this paper is to merge the discovery and
negotiation phase in a bilateral matchmaking. In our bilateral matchmaking scenario
given a buyer’s request and a set of supplies, the matchmaker computes for each supply
a Pareto-efficient agreement maximazing the degree of satisfaction of the traders (see
Section 4), and then ranks all these agreements w.r.t. the utility of the buyer.

We set our framework in an e-marketplace selling highly differentiated products (e.g.,
cars, Personal Computers, travel services, etc.), therefore there is a need for a Knowledge
Representation language able to model not only complex user preferences on set of is-
sues, but also relations among the issues themselves.

We propose here a fuzzy Description Logic (see, [24] for an overview) endowed
with concrete domains to model relations among issues and as a communication lan-
guage between traders. We may represent facts such as that a Ferrari is an Italian car
maker (Ferrari v ItalianMaker ), or that a Sedan is a type of Passenger Car (Sedan v
PassengerCar ), or the fact that a car cannot have at the same time a fuel that is both
Diesel and GAS (Diesel u Gasoline v⊥). Such kind of relations can be expressed in
a Theory (from now on an Ontology) T . Furthermore, we may represent preferences,
such as e.g., a seller can state that “If you want an embedded alarm system you’ll have
to wait more than one month” (AlarmSystem v (> deliverytime 30)), as well as a
buyer can state that “I would like a passenger car with an alarm system if it costs more
than 25000e”(PassengerCar u (> price 25000)) v AlarmSystem)). In our proposal,
concrete domains allow to deal with numerical features, which are mixed, in preferences,
with non numerical ones.

We note that in this scenario a buyer request, as well as a seller supply, can be split
into two parts: one involving issues that have to be necessarily satisfied in order to ac-
cept a final agreement, which we call hard constraints, and another one involving issues
buyer and seller are willing to negotiate on, we call these soft constraints. Among soft
constraints there can be also fuzzy constraints, which are preferences involving numeri-
cal features. Fuzzy constraints are represented in our approach using fuzzy membership
functions, see Section 2, therefore while a simple soft constraint can or cannot be satis-
fied, a fuzzy constraints can also be satisfied to a “certain degree”. For example, a buyer
can state, among soft constraints, that if a GPS system is mounted on the car she can
spend up to 25000 for a sedan; if the price in the proposed agreement is equal to 25500
we should not simply say that the preference is not satisfied at all, but rather that is satis-
fied to a certain degree, as will be better described later on (see Section 3).

We note that in our framework it is possible to model positive and negative prefer-
ences (I would like a car black or gray, but not red), as well as conditional preferences
(I would like leather seats if the car is black) involving both numerical features and non
numerical ones (If you want a car with GPS system you have to wait at least one month)
or only numerical ones (I accept to pay more than 25000e only if there is more than a
two-year warranty).

Besides we model quantitative preferences; thanks to the weight assigned to each
preference it is possible to determine a relative importance among them, rather than only
a total order between them. Obviously, the whole approach holds also if the user does not



specify a weight for each preference, but only a global order on preferences. However, in
that case, the relative importance among preferences is missed.

The rest of the paper is structured as follows: next section discusses the fuzzy lan-
guage we adopt in order to express traders’ preferences. In Section 3 we set the stage of
the the bilateral matchmaking problem in fuzzy DL and then we illustrate how to com-
pute Pareto agreements. In Section 5 the whole process is highlighted with the aid of a
simple example. Related Work and discussion close the paper.

2 A Fuzzy DL to express preferences

In a bilateral matchmaking scenario traders express preferences involving numerical as
well as non numerical issues, in some way interrelated. The variables representing nu-
merical features are either involved in hard constraints or soft constraints. In hard con-
straints, the variables are always constrained by comparing them to some constant, like
(6 price 20.000), or (> month warranty 60), and such constraints can be combined
into complex requirements, e.g., Sedan u (6 price 25.000)u (6 deliverytime 30) (rep-
resenting a sedan, costing no more than 25.000 euros, delivered in at most 30 days), or
AlarmSystem u (> price 26.000) (expressing the seller’s requirement “if you want an
alarm system mounted you’ll have to spend at least 26.000 euros”). Vice-versa when
numerical features are involved in soft constraints, also called fuzzy constraints, the vari-
ables representing numerical features are constrained by so-called fuzzy membership
functions, as shown below.
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For instance, (∃price.ls(18000, 22000)) dictates that given a price it returns the degree
of truth to which the constraint is satisfied. Essentially, (∃price.ls(18000, 22000)) states
that if the price is no higher than 18000 then the constraint is definitely satisfied, while
if the price is higher than 22000 then the constraint is definitely not satisfied. In between
18000 and 22000, we use linear interpolation, given a price, to evaluate the satisfaction
degree of the constraint.

Fuzzy DL syntax. Now, we specify the syntax of our fuzzy DL for matchmaking. The
fuzzy DL considers the salient features of the fuzzyDL reasoner fuzzyDL 6 (see [3]). The
basic fuzzy DL we consider is the fuzzy DL SHIF(D) [24], i.e., SHIF with concrete
data types. But, for our purpose, we do not need individuals and assertions. So, let us
consider an alphabet for concepts names (denoted A), abstract roles names (denoted
R), i.e., binary predicates concrete roles names (denoted T ), and modifiers (denoted
m). Ra also contains a non-empty subset Fa of abstract feature names (denoted r),
while Rc contains a non-empty subset Fc of concrete feature names (denoted t). Features
are functional roles. Concepts in fuzzy SHIF (denoted C, D) are build as usual from
atomic concepts A and roles R: >,⊥, A,C u D,C t D,¬C,∀R.C and ∃R.C. Now,

6 http://gaia.isti.cnr.it/ straccia/software/fuzzyDL/fuzzyDL.html



Fuzzy SHIF(D) extends SHIF with concrete data types [1], i.e., it has the additional
concept constructs ∀T.d, ∃T.d and DR, where

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)
DR → (> t val) | (6 t val) | (= t val)

and val is an integer or a real depending on the range of the concrete feature t. For
instance, the expression Sedan u (6 price 25.000) will denote the set of sedans costing
no more than 25.000 euros, while Sedan u (∃price.ls(18000, 22000)), says informally,
specifies the class of sedans with a price whose degree of satisfaction is determined by
ls(18000, 22000). Finally, we further extend SHIF(D) as follows:

C, D → (w1C1 + w2C2 + . . . + wkCk) | C[> n] | C[6 n]

where n ∈ [0, 1], wi ∈ [0, 1],
∑k
i=1 wi = 1. The expression (w1C1+w2C2+. . .+wkCk)

denotes a weighted sum, while C[> n] and C[6 n] are threshold concepts.
A fuzzy DL ontology (also Knowledge Base, KB) K = 〈T ,R〉 consists of a fuzzy

TBox T and a fuzzy RBox R. A fuzzy TBox T is a finite set of fuzzy General Concept
Inclusion axioms (GCIs) 〈C v D,n〉, where n ∈ (0, 1] and C,D are concepts. If the
truth value n is omitted then the value 1 is assumed. Informally, 〈C v D,n〉 states that
all instances of conceptC are instances of conceptD to degree n, that is, the subsumption
degree between C andD is at least n. For instance, 〈Sedan v PassengerCar, 1〉 states
that a sedan is a passenger car. We write C = D as a shorthand of the two axioms
〈C v D, 1〉 and 〈D v C, 1〉. Axioms of the form A = D are called concept definitions
(e.g., , InsurancePlus = DriverInsurance u TheftInsurance). A fuzzy RBox R is a
finite set of role axioms of the form: (i) (fun R), stating that a role R is functional,
i.e., R is a feature; (ii) (trans R), stating that a role R is transitive; (iii) R1 v R2,
meaning that role R2 subsumes role R1; and (iii) (inv R1 R2), stating that role R2 is
the inverse of R1 (and vice versa). A simple role is a role which is neither transitive nor
has a transitive subroles. An important restriction is that functional needs to be simple.

Fuzzy DL semantics [3]. The main idea is that concepts and roles are interpreted as
fuzzy subsets of an interpretation’s domain. Therefore, axioms, rather than being “clas-
sical” evaluated (being either true or false), they are “many-valued” evaluated, i.e., their
evaluation takes a degree of truth in [0, 1].

A fuzzy interpretation I = (∆I , ·I) relative to a concrete domain D = 〈∆D, C(D)〉
consists of a nonempty set ∆I (the domain), disjoint from ∆D, and of a fuzzy interpreta-
tion function ·I that assigns: (i) to each abstract concept C a function CI : ∆I → [0, 1];
(ii) to each abstract role R a function RI : ∆I × ∆I → [0, 1]; (iii) to each abstract
feature r a partial function rI : ∆I × ∆I → [0, 1] such that for all x ∈ ∆I there
is an unique y ∈ ∆I on which rI(x, y) is defined; (iv) to each concrete role T a
function RI : ∆I × ∆D → [0, 1]; (v) to each concrete feature t a partial function
tI : ∆I × ∆D → [0, 1] such that for all x ∈ ∆I there is an unique v ∈ ∆D on
which tI(x, v) is defined. In order to extend the mapping, the interpretation function
·I is extended to roles and complex concepts, we need functions to define the negation,
conjunction, disjunction (called norms), etc of values in [0, 1]. The choice of them is not



arbitrary. Some well-known specific choices are described in the table below.

Łukasiewicz Logic Gödel Logic Product Logic Zadeh

	x 1− x if x = 0 then 1
else 0

if x = 0 then 1
else 0

1− x

x⊗ y max(x+ y − 1, 0) min(x, y) x · y min(x, y)
x⊕ y min(x+ y, 1) max(x, y) x+ y − x · y max(x, y)

x⇒ y
if x 6 y then 1

else 1− x+ y
if x 6 y then 1

else y
if x 6 y then 1

else y/x max(1− x, y)

The next table highlights some salient properties of them.

Property Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

x ⊗ 	 x = 0 • • •
x ⊕ 	 x = 1 •
x ⊗ x = x • •
x ⊕ x = x • •
		 x = x • •

x ⇒ y = 	 x ⊕ y • •
	 (x ⇒ y) = x ∧ ¬ y • •
	 (x ⊗ y) = 	 x ⊕ 	 y • • • •
	 (x ⊕ y) = 	 x ⊗ 	 y • • • •

It is important to note that we can never enforce that a choice of the interpretation of the
connectors satisfies all listed properties, because then the logic will collapse to classical
boolean propositional logic.

Now, the mapping ·I is extended to roles, complex concepts and GCIs as follows:

⊥I(x) = 0 (= t val)I(x) = supc∈∆D t(x, v) ⊗ (v = val)

>I(x) = 1 (∀R.C)I(x) = inf
y∈∆I R

I(x, y) ⇒ CI(y)

(¬C)I(x) = 	CI(x)) (∃R.C)I(x) = sup
y∈∆I R

I(x, y) ⊗ CI(y)

(C uD)I(x) = CI(x) ⊗DI(x) (∀T.d)I(x) = infy∈∆D TI(x, v) ⇒ dI(y)

(C tD)I(x) = CI(x) ⊕DI(x) (∃T.d)I(x) = supy∈∆D TI(x, v) ⊗ dI(y)

(> t val)I(x) = supc∈∆D t(x, v) ⊗ (v > val) (6 t val)I(x) = supc∈∆D t(x, v) ⊗ (v 6 val)

((w1C1 + w2C2 + . . . + wkCk)I(x) = w1C1
I(x) + · · · + wkCk

I(x)

(C[> n])I(x) =

CI(x), ifCI(x) > n
0, otherwise

(C[6 n])I(x) =

CI(x), ifCI(x) 6 n
0, otherwise

(C v D)I = inf
x∈∆I C

I(x) ⇒ DI(x)

The notion of satisfaction of a fuzzy axiom E by a fuzzy interpretation I, denoted I |=
E, is defined as follows: I |= 〈τ > n〉 iff τI > n, I |= (trans R) iff ∀x,y∈∆I , RI(x, y) >
supz∈∆I RI(x, z) ⊗ RI(z, y), I |= R1 v R2 iff ∀x, y ∈ ∆I .R1

I(x, y) 6 R2
I(x, y),

and I |= (inv R1R2) iff ∀x, y ∈ ∆I .R1
I(x, y) = R2

I(y, x).
For a set of axioms E , we say that I satisfies E iff I satisfies each element in E . We

say that I is a model of E (resp. E) iff I |= E (resp. I |= E). I satisfies (is a model
of) a fuzzy KB K = 〈A, T ,R〉, denoted I |= K, iff I is a model of each component
A, T andR, respectively. An axiom E is a logical consequence of a knowledge base K,
denoted K |= E iff every model of K satisfies E. Given K, the best satisfiability bound
of a concept C, denoted bsb(K, C), is

bsb(K, C) = sup
I

sup
x∈∆I

{CI(x) | I |= K} .

Essentially, among all models I of the KB, we are determining the maximal degree of
truth that the concept C may have over all individuals x ∈ ∆I .

We conclude this section with the following remark. For the sake of our purpose, for
the remainder of the paper we will use Łukasiewicz Logic as the specific interpretation of
the connectives. The reason for this choice is due to the nice logical and computational



properties of Łukasiewicz Logic. Furthermore, if we use ·G to represent Gödel operators,
we note that x ⊗G y = min(x, y) and x ⊕G y = max(x, y) can also be defined in it
by means of x ⊗ (x → y) and 	(	x ⊗G 	y), respectively. As a consequence, we may
define the following additional macros on concepts: let C,D be concepts, then C →
D := ¬C tD, C uGD := C u (C → D), and C tGD := ¬(¬C uGD)) are concepts
as well.

We know that a solution maximizing the sum of traders’ preference value is Pareto
optimal then, intuitively, a further important property for our purpose is that in Łukasiewicz
Logic the conjunction function allows us to determine Pareto optimal solutions in the fol-
lowing sense.

Proposition 1. If the maxima of x ⊗Ł y, with 〈x, y〉 ∈ S ⊆ [0, 1] × [0, 1], where ⊗Ł is
Łukasiewicz t-norm, is positive then the maxima is also Pareto optimal.

As we will see later on, relying on Łukasiewicz logic will guarantee that the solutions
of the bilateral matchmaking process are then Pareto optimal ones. Note also that the
maxima of x⊗G y, with 〈x, y〉 ∈ S, is not Pareto optimal.

3 Multi Issue Bilateral Matchmaking in fuzzy DLs

Marketplaces are typical scenarios where the notion of fuzziness appears frequently. The
concept of Cheap or Expensive are quite usual. In a similar way it is common to have a
fuzzy interpretation of numerical constraints. If a buyer looks for a car with a price lesser
than 15,000 eand a supplier selling his car for 15,500 e, we can not say they do not
match at all. Actually, they match with a certain degree. Hence, a fuzzy language, as the
one we presented in the previous sections, would be very useful to model demands and
supplies in matchmaking scenarios.

Similarly to the approach proposed in [19], we propose to use our fuzzy DL to repre-
sent both buyer’s demand and seller’s supply and represent relations among issues, both
abstract and numerical, by a fuzzy DL knowledge base.

As introduced in Section 1, in bilateral matchmaking scenarios, both buyer’s request
and seller’s offer can be split into hard constraints and soft constraints. Hard constraints
represent what has to be (necessarily) satisfied in the final agreement; soft constraints
represent traders’ preferences.

Example 1. Consider the example where buyer’s request is: “I am searching for a Pas-
senger Car equipped with Diesel engine. I need the car as soon as possible, and I can not
wait more than one month. Preferably I would like to pay less than 22,000e furthermore
I am willing to pay up to 24,000 e if warranty is greater than 160000 km. I won’t pay
more than 27,000 e’́.

Here, it is easy to see the difference between hard constraints and soft ones:

hard constraints : I want a Passenger Car provided with a Diesel engine. I can not wait
more than one month. I won’t pay more than 27,000 e .

soft constraints : I would like to pay less than 22,000 e furthermore I am willing to
pay up to 24,000 e if warranty is greater than 160000 km.

Definition 1 (Demand, Supply, Agreement). Given an ontology K = 〈T ,R〉 repre-
senting the knowledge on a marketplace domain



– a demand is a concept definition β of the form B = C[> 1.0] (for Buyer) such that
〈T ∪ {β},R〉 is satisfiable.

– a seller’s supply is a concept definition σ S = D[> 1.0] (for Seller) such that
〈T ∪ {σ},R〉 is satisfiable.

– I is a possible deal between β and σ iff I |= 〈T ∪ {σ, β},R〉. We also call I an
agreement.

σ and β represent the minimal requirements needed in the final agreement. As they are
mandatory the threshold value is set to 1.0, meaning that they have to be in the agreement.
Obviously, if seller and buyer have set hard constaints that are in conflict with each other,
that is 〈T ∪ {β, σ},R〉 has no models, then it is impossible to reach an agreement, i.e.,
the set of possible deals is empty. If the buyer is interested in a conflicting supply it is
necessary a revision of her hard constaints.

In the bilateral matchmaking process, besides hard constraints, both traders can ex-
press preferences on some (bundle of) issues. In our fuzzy DL framework preferences
can be represented as weighted formulae (see Section 2). More formally:

Definition 2 (Preferences). The buyer’s preference B is a weighted concept of the form
n1 · β1 t . . .t nk · βk, where each βi represents the subject of a buyer’s preference, and
ni is the weight associated to it. Analogously, the seller’s preference S is a weighted
concept of the form m1 · σ1 t . . . tmh · σh, where each σi represents the subject of a
seller’s preference, and mi is the weight associated to it.

For instance, the Buyer’s request in Example 1 is formalized as:

β is B = (PassengerCar uDiesel u (price 6 27, 000) u (deliverytime 6 30))[> 1.0]
β1 = (∃price.ls(22000 , 25000 ))
β2 = (∃km warranty .rs(140000 , 160000 ))→ (∃price , ls(24000 , 27000 ))

where price and km warranty are concrete features. We normalize the sum of the weights
of both agents’ to 1 to eliminate outliers, and make the set of preferences comparable.

The utility function, that we call preference utility, is then a weighted sum of the
preferences satisfied in the agreement.

Dealing with concrete features, we always have to set a reservation value [21] rep-
resented as a hard constraint. It is the maximum (or minimum) value in the range of
possible feature values to reach an agreement. If we consider Example 1 we see that the
buyer expresses two reservation values, one on price “more than 27,000e” and the other
on delivery time “less than 1 month”.

Reservation value is the maximum (or minimum) value in the range of possible fea-
ture values to reach an agreement, e.g., the maximum price the buyer wants to pay for a
car or the minimum warranty required, as well as, from the seller’s perspective the min-
imum price he will accept to sell the car or the minimum delivery time. Usually, each
participant knows its own reservation value and ignores the opponent’s one7. In the fol-
lowing, given a concrete feature f we refer to reservation values of buyer and seller on f
with rβ,f and rσ,f respectively.

7 Actually, it is possible that traders know probability distributions of opponent’s reservation
value.



Since reservation values represent hard constraints then buyer’s ones are added to β
and seller’s ones to σ (see Example 1).

The last elements we have to introduced in order to formally define an agreement in
a bilateral matchmaking process are disagreement thresholds, also called disagreement
payoffs, tβ , tσ . They represent the minimum utility that the agent need to reach to accept
the agreement. Minimum utilities may incorporate an agent’s attitude toward concluding
the transaction, but also overhead costs involved in the transaction itself, e.g., fixed taxes.

Definition 3. Given an ontology K = 〈T ,R〉, a demand β, a set of buyer’s preferences
B and a disagreement threshold tβ , a supply σ and a set of seller’s preferences S and a
disagreement threshold tσ , an agreement in a bilateral matchmaking process is a model
I of

K̄ = 〈T ∪ {σ, β} ∪ {Buy = (B[> tβ ]), Sell = (S[> tσ])},R〉 .

Clearly, not every agreement I is beneficial both for the buyer and for the seller. We need
a criterion to find the optimal mutual agreement. Given a demand and a set of supplies,
for each of them we will compute the optimal agreement with the demand and we will
rank them with respect to the buyer’s utility value in the optimal agreement itself.

4 Computing Pareto agreements

To compute an optimal agreement we rely on the notion of Pareto agreement. Given an
ontology K representing a set of constraints, we are interested in agreements that are
Pareto-efficient, in order to make traders as much as possible satisfied. In our fuzzy DL
based framework, in order to compute a Pareto agreement we procede as follows.

Let K be a fuzzy DL ontology, let β be the buyer’s demand, let σ be the seller’s
supply, let B and S be respectively the buyer’s and seller’s preferences. We define K̄ as
the ontology

K̄ = 〈T ∪ {σ, β} ∪ {Buy = (B[> tβ ]), Sell = (S[> tσ])},R〉 .

In K̄, the concept Buy collects all the buyer’s preferences. Hence, the higher is the max-
imal degree of satisfiability of Buy (i.e., bsb(K̄, Buy)), the more the buyer is satisfied.
Similarly, the concept Sell collects all the seller’s preferences in such a way that the
higher is the maximal degree of satisfiability of Sell (i.e., bsb(K̄, Sell)), the more the
seller is satisfied. Now, it is clear that the best agreement among the buyer and the seller
is the one assigning the maximal degree of satisfiability to the conjunction Buy u Sell
(remember we use Łukasiewicz semantics). In formulae, once we determine

vP = bsb(K̄, Buy u Sell) ,

we can say that a Pareto agreement is a model Ī of K̄ such that

vP = sup
x∈∆I

(Buy u Sell)I(x) > 0 ,

that is the Pareto agreement value is attained at Ī and has to be positive.
A Pareto agreement can be computed using the fuzzyDL reasoner.



5 The matchmaking process

Summing up, given a demand and a set of supplies, the bilateral matchmaking process is
executed covering the following steps:

Initial Setting. The buyer defines hard constraints β and preferences (soft con-
straints) B with corresponding weights for each preference n1, n2, ..., nk , as well as the
threshold tβ . The same did the sellers when they posted the description of their supply
within the marketplace8. Notice that for numerical features involved in the negotiation
process, both in β and σ their respective reservation values are set either in the form
(6 f rf ) or in the form (> f rf ).

Find Optimal Agreements. For each supply in the marketplace, the matchmaker
computes the corresponding Pareto agreement (see Section 4). Without loss of general-
ity, here we assume there exists only one ontology. In case more than one ontology exist,
before finding Pareto agreements the matchmaker has to perform an ontology matching
process in order to make all supplies comparable with the demand.

Ranking. Given a supply σi and the corresponding optimal agreement Īi, we rank
σi w.r.t. the value of BuyĪi , i.e., w.r.t. the buyer’s degree of satisfiability.

Let us present a tiny example in order to better clarify the approach. For the sake of
simplicity, we will consider only one seller, clearly, in a real case scenario, the whole
process will be repeated for each seller’s supply posted in the e-marketplace. Given the
toy ontology K = 〈T , ∅〉, with

T =


Sedan v PassengerCar
ExternalColorBlack v ¬ExternalColorGray
SatelliteAlarm v AlarmSystem
InsurancePlus = DriverInsurance u TheftInsurance
NavigatorPack = SatelliteAlarm uGPS system

The buyer and the seller specify their hard and soft constraints. For each numerical fea-
ture involved in soft constraints we associate a fuzzy function. If the bargainer has stated
a reservation value on that feature, it will be used in the definition of the fuzzy function,
otherwise a default value will be used.

β is B = PassengerCar u (6 price 26000)[> 1.0]
β1 = ((∃HasAlarmSystem.AlarmSystem)→ (∃Has Price.L(22300, 22750)))
β2 = ((∃HasInsurance.DriverInsurance)u((∃HasInsurance.TheftInsurance)t

(∃HasInsurance.F ireInsurance)))
β3 = ((∃HasAirConditioning.Airconditioning)u(∃HasExColor.(ExColorBlackt

ExColorGray)))
β4 = (∃price.ls(22000 , 24000 ))

8 An investigation on how to compute tβ ,tσ ,ni and mi is out of the scope of this paper. We can
assume they are determined in advance by means of either direct assignment methods (Order-
ing, Simple Assessing or Ratio Comparison) or pairwise comparison methods (like AHP and
Geometric Mean) [18].



β5 = (∃km warranty .rs(150000 , 175000 ))
B = (0.1 · β1 + 0.2 · β2 + 0.1 · β3 + 0.2 · β4 + 0.4 · β5)[> 0.7]

σ is S = Sedan u (> price 22000)[> 1.0]
σ1 = ((∃HasNavigator.NavigatorPack)→ (∃Has Price.R(22500, 22750))))
σ2 = (∃HasInsurance.InsuranceP lus)
σ3 = (∃km warranty .ls(100000 , 125000 ))
σ4 = (∃HasMWarranty.L(60, 72))
σ5 = ((∃HasExColor.ExColorBlack)→ (∃HasAirConditioning.AirConditioning))
S = (0.3 · σ1 + 0.1 · σ2 + 0.3 · σ3 + 0.1 · σ4 + 0.2 · σ5)[> 0.6]

Let
K̄ = 〈T ∪ {σ, β} ∪ {Buy = (B[> tβ ]), Sell = (S[> tσ])},R〉

Then, it can be verified that the Pareto optimal agreement value is

vP = bsb(K, Buy u Sell) = 0.7625 ,

with a Pareto agreement Ī that maximally satisfies

(= HasPrice 22500.0) u (= HasKMWarranty 100000.0) u (= HasMWarranty 60.0) .

i.e., , the car may be sold with a price of 22500, 100000 km warranty and 60 month
warranty.

6 Related Work and discussion

Automated bilateral negotiation has been widely investigated, both in artificial intelli-
gence and in microeconomics research communities. AI-oriented research has usually
focused on automated negotiation among agents, and on designing high-level protocols
for agent interaction [13, 6, 12]. As stated in [15], negotiation mechanisms often involve
the presence of a mediator , which collects information from bargainers and exploits them
in order to propose an efficient negotiation outcome. Various recent proposals adopt a
mediator, including [7, 11, 8]. However in these approaches no semantic relations among
issues are investigated. Several recent logic-based approaches to negotiation are based on
propositional logic. In [4], Weighted Propositional Formulas (WPF) are used to express
agents preferences in the allocation of indivisible goods, but no common knowledge (as
our ontology) is present. The work presented here builds on [20], where a basic proposi-
tional logic framework endowed of a logical theory was proposed. In [19] the approach
was extended and generalized and complexity issues were discussed. We are currently
investigating other negotiation protocols, without the presence of a mediator, allowing
to reach an agreement in a reasonable amount of communication rounds. The use of
aggregate operators is also under investigation.
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