
On concept lattices and implication bases from

reduced contexts

Vaclav Snasel, Martin Polovincak, Hussam M. Dahwa, and Zdenek Horak

VSB Technical University Ostrava, Czech Republic
{Vaclav.Snasel, Martin.Polovincak.fei, Hussam.Dahwa,

Zdenek.Horak.st4}@vsb.cz

Abstract. Our paper introduces well-known methods for compressing
formal context and focuses on concept lattices and attribute implication
base changes of compressed formal contexts. In this paper Singular Value
Decomposition and Non-negative Matrix Factorisation methods for com-
pressing formal context are discussed. Computing concept lattices from
reduced formal contexts results in a smaller number of concepts (with
respect to the original lattice). Similarly, we present results of experi-
ments in which we show a way to control smoothly the size of generated
Guigues-Duquenne bases and provide some noise resistance for the basis
construction process.

1 Introduction

In this paper we are dealing with approaches to obtain concept lattices and
attribute implication bases from binary data tables using methods of matrix
decomposition. Matrix decomposition methods are well-known in the area of
information retrieval under the name Latent Semantic Indexing (LSI) or Latent
Semantic Analysis (LSA) ([1]). LSI and LSA have been used for discovery of
latent dependencies between terms (or documents). We would like to apply this
approach in the area of formal concept analysis (FCA). The goal is to minimise
input data before construction of the concept lattices and implication bases,
which will result in reduced computational time.

Bases of attribute implications are an interesting form of knowledge extrac-
tion, because they are human-readable, convey all information from the data
source, and still are as small as possible. Since they are in the basic form very
exact, they are also vulnerable to noise in the data and we have almost no con-
trol over the resulting number of implications in the bases. Reducing the data
to a lower dimension and reconstructing them could help us solve both previous
problems. The scalability and computational tractability of FCA are a frequent
problem; see, for example, [9] for references. Relevant experiments can be found
also in [10].

2 Basic notions

2.1 Formal concept analysis

Formal Concept Analysis (FCA) was first introduced by Rudolf Wille in 1980.
FCA is based on the philosophical understanding of the world in terms of objects



and attributes. It is assumed that a relation exists to connect objects to the
attributes they possess. Formal context and formal concept are the fundamental
notions of FCA [2], [3].

A formal context C = (G, M, I) consists of two sets, G and M , with I in
relation to G and M . The elements of G are defined as objects and the elements of
M are defined as attributes of the context. In order to express that an object g ∈
G is related to I with the attribute m ∈ M , we record it as gIm or (g, m) ∈ I and
read that object g has the attribute m. I is also defined as the context incidence
relation. For a set A ⊆ G of objects we define A

′

= {m ∈ M | gIm for all g ∈ A}
(the set of attributes common to the objects in A). Correspondingly, for a set
B ⊆ M of attributes, we define B

′

= {g ∈ G | gIm for all m ∈ B} (the set of
objects which have all attributes in B).

A formal concept of the context (G, M, I) is a pair (A, B) with A ⊆ G,
B ⊆ M , A

′

= B and B
′

= A. We call A the extent and B the intent of the
concept (A, B). B(G, M, I) denotes the set of all concepts of context (G, M, I)
and forms a complete lattice. For more details, see [2].

2.2 Attribute implication

Attribute implication (over set of attributes M) is an expression A ⇒ B, where
A, B ⊆ M (A and B are sets of attributes). The implication can be read as: if
an object has all attributes from A, then it also has all attributes from B and
holds in the context (G, M, I) if A

′ ⊆ B
′

.
Pseudo-intent of formal context (G, M, I) is a set A of attributes which holds

that A 6= A
′′

and B
′′ ⊆ A for each pseudo-intent B ⊂ A. We call a set T of

attribute implications non-redundant, if no implication from T follows (see
[4] for details) from the rest of the set. Set T of attribute implications is true

in formal context (G, M, I) if all implications from T hold in (G, M, I). Set T

of implications is called sound and complete with respect to formal context
(G, M, I) if T is true in (G, M, I) and each implication true in (G, M, I) follows
from T . As base w.r.t. (G, M, I) we call the set of attribute implications, which
is sound and complete (w.r.t. (G, M, I)) and non-redundant. The set T = {A ⇒
A

′′ | A is a pseudo-intent of (G, M, I)} is a complete, minimal and non-redundant
set of implications and is called the Guigues-Duquenne basis (referred to below
as GD).

Bases of implications are interesting to us, since they convey all the informa-
tion contained in the data table in human-understandable form and they are as
small as possible. More on GD bases can be found in [4].

Illustrative example As objects we can consider numbers from 1 to 10 and some
basic properties of these numbers form attributes of these objects. Table con-
taining this information can be used as formal context. The computed Guigues-
Duquenne basis is presented below.

{composite, odd} ⇒ {composite, odd, square}
{even, square} ⇒ {composite, even, square}

{even, odd} ⇒ {composite, even, odd, prime, square}
{composite, prime} ⇒ {composite, even, odd, prime, square}

{odd, square} ⇒ {composite, even, odd, prime, square}



2.3 Singular Value Decomposition

Singular value decomposition (SVD) is well-known because of its application in
information retrieval as LSI. SVD is especially suitable in its variant for sparse
matrices [5].

Theorem 1: Let A be an m×n rank-r matrix, σ1 ≥ · · · ≥ σr be the eigenvalues
of a matrix

√
AAT . Then there are orthogonal matrices U = (u1, . . . , ur) and

V = (v1, . . . , vr), whose column vectors are orthonormal, and a diagonal matrix
Σ = diag(σ1, . . . , σr). The decomposition A = UΣV T is called singular value
decomposition of matrix A and numbers σ1, . . . , σr are singular values of the
matrix A. Columns of U (or V ) are called left (or right) singular vectors of
matrix A.

Because the singular values usually fall quickly, we can take only k greatest
singular values and corresponding singular vector co-ordinates and create a k-
reduced singular decomposition of A. Let us have k, 0 < k < r and singular value
decomposition of A

A = UΣV T = (UkU0)

(

Σk 0
0 Σ0

) (

V T
k

V T
0

)

We call Ak = UkΣkV T
k a k-reduced singular value decomposition (rank-k SVD).

Theorem 2: (Eckart-Young) among all m × n matrices C of rank at most k

Ak is the one, that minimises ||Ak − A||2F =
∑

i,j

(Ai,j − Cw,j)
2.

2.4 Non-negative Matrix Decomposition

Non-negative matrix factorisation differs from other rank reduction methods
for vector space models in text mining by the use of constraints that produce
non-negative basis vectors, which make possible the concept of a parts-based
representation. [6] first introduced the notion of parts-based representations for
problems in image analysis or text mining that occupy non-negative subspaces
in a vector-space model. Basis vectors contain no negative entries. This allows
only additive combinations of the vectors to reproduce the original. NMF can be
used to organise text collections into partitioned structures or clusters directly
derived from the non-negative factors (see [8]).

Common approaches to NMF obtain an approximation of V by comput-
ing a (W, H) pair to minimise the Frobenius norm of the difference V − WH .
Let V ∈ Rm×n be a non-negative matrix and W ∈ Rm×k and H ∈ Rk×n for
0 < k ≪ min(m, n). Then, the objective function or minimisation problem can
be stated as min‖V − WH‖2 with Wij > 0 and Hij > 0 for each i and j.

There are several methods for computing NMF. We have used the multiplica-
tive method algorithm proposed by Lee and Seung [6], [7].

3 Experiments

In our experiments we have focused on generating concept lattices and bases
from original and reduced context and analysing the differences with respect
to the results obtained using original context. Since used reduction methods
generate non-binary data, simple rounding was used to obtain boolean matrices.



3.1 Concept lattices

Concept lattice experiments were based on the formal context in Table 1 (see
fig. 1 for corresponding lattice).

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

O0 0 0 0 0 0 0 0 0 0 1
O1 1 0 0 0 0 0 1 0 0 1
O2 0 0 0 0 0 0 1 0 0 1
O3 0 0 0 0 0 0 1 0 0 0
O4 1 0 0 0 0 0 1 0 0 0
O5 1 0 0 0 0 0 0 0 0 0
O6 0 0 1 1 0 0 1 1 0 0
O7 0 0 0 0 0 0 1 1 0 0
O8 0 0 1 1 0 0 0 0 0 0
O9 0 0 1 0 0 0 1 1 0 0
O10 0 0 0 1 0 0 1 1 0 0
O11 0 0 1 1 0 0 0 1 0 0
O12 0 0 1 1 0 0 1 0 0 0
O13 0 0 1 0 0 0 1 0 0 0
O14 0 0 1 0 0 0 0 1 0 0
O15 0 0 0 1 0 0 1 0 0 0
O16 0 0 0 1 0 0 0 1 0 0
O17 1 0 0 0 0 0 1 1 0 0
O18 0 0 1 1 0 0 0 0 0 1
O19 1 0 1 1 0 0 0 0 0 1

Table 1. Formal context

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

O0 0 0 0 0 0 0 0 0 0 0
O1 1 0 0 0 0 0 1 0 0 0
O2 1 0 0 0 0 0 0 0 0 1
O3 1 0 0 0 0 0 0 0 0 1
O4 1 0 0 0 0 0 0 1 0 0
O5 0 0 0 0 0 0 0 1 0 0
O6 0 0 1 1 0 0 1 1 0 0
O7 1 0 0 0 0 0 0 1 0 0
O8 0 0 1 1 0 0 1 0 0 0
O9 0 0 1 1 0 0 1 1 0 0
O10 0 0 1 1 0 0 1 1 0 0
O11 0 0 1 1 0 0 1 0 0 0
O12 0 0 1 1 0 0 1 0 0 1
O13 1 0 1 1 0 0 0 0 0 1
O14 0 0 0 0 0 0 1 0 0 0
O15 1 0 1 1 0 0 1 0 0 1
O16 0 0 0 0 0 0 1 0 0 0
O17 0 0 0 0 0 0 0 1 0 0
O18 0 0 1 1 0 0 1 0 0 0
O19 0 0 1 1 0 0 1 1 0 0
Table 2. Context after SVD reduction

In the following figures we can see that the node 3 from the original concept
lattice was deleted, because the attributes composition (A6 and A9) in the ob-
jects (O1, O2) is not available, as after using SVD the attribute A6 was deleted
from the object O2. The node 20 was deleted, too, because the attributes com-
position (A0 and A6) in the objects (O1, O4, O17) is not available, as after using
SVD, the attribute A6 was deleted from the original objects (O4, O17) and the
attribute A0 was deleted from object O17.

We can see also, that after use of SVD, some attributes are removed and
added, and more objects have the same compositions of attributes. The node 11
has a composition of attributes (A2 and A6) in the objects (O6, O9, O12, O13);
this composition of attributes (A2, A6) existed in the objects (O8, O10, O11,
O18, O19), too. The node 6 has composition of attributes (A3 and A6) in the
objects (O6, O10, O11, O16); this composition of attributes (A3, A6) existed
in the objects (O8, O9, O11, O18, O19) too. From that, the nodes (11 and 6)
are incorporated in new node (5), because all the attributes in the two nodes
are in all of the objects in the two nodes. That means that the new node 5 has
composition of attributes (A2, A3, A6) in the objects (O6, O8, O9, O10, O11,



Fig. 1. Concept lattice computed from formal context (Table 1)

Objects Attrs.

0 0, 1, 2, 18, 19 9
1 6, 7, 9, 10, 11, 14, 16, 17 7
2 1–4, 6, 7, 9, 10, 12, 13, 15, 17 6
3 1, 2 6, 9
4 6, 7, 9, 10, 17 6, 7
5 6, 8, 10–12, 15, 16, 18, 19 3
6 6, 10, 11, 16 3, 7
7 6, 10, 12, 15 3, 6
8 6, 10 3, 6, 7
9 6, 8–14, 18, 19 2

10 6, 9, 11, 14 2, 7
11 6, 9, 12, 13 2, 6
12 6, 9 2, 6, 7
13 6, 8, 11, 12, 18, 19 2, 3
14 18, 19 2, 3, 9
15 6, 11 2, 3, 7
16 6, 12 2, 3, 6
17 6 2, 3, 6, 7
18 1, 4, 5, 17, 19 0
19 1, 19 0, 9
20 1, 4, 17 0, 6
21 1 0, 6, 9
22 17 0, 6, 7
23 19 0, 2, 3, 9
24 0–9
25 0–19

Table 3. Formal concepts

Objects Attrs.

0 2, 3, 12, 13, 15 9
1 1, 4–7, 9, 10, 17, 19 7
2 6, 8–12, 14, 16, 18, 19 6
3 6, 8–13, 15, 18, 19 3, 6
4 12, 13, 15 2, 3, 9
5 6, 8–12, 18, 19 2, 3, 6
6 12 2, 3, 6, 9
7 6, 9, 10, 19 2, 3, 6, 7
8 1, 2, 3, 4, 7, 13, 15 0
9 2, 3, 13, 15 0, 9

10 1, 4, 7 0, 7
11 13, 15 0, 2, 3, 9
12 0–9
13 0–19

Table 4. Formal concepts after SVD
reduction



Fig. 2. Concept lattice computed from
SVD reduced formal context (Table 2)

Fig. 3. Concept lattice computed from
NMF reduced formal context

O12, O18, O19). Similar results can be obtained using NMF method. Consequent
lattice is shown in fig. 3.

3.2 Implication bases

Controlling size of the basis Controlling size of the basis In the first exper-
iment, we generated random contexts (binary data table with sixty objects,
fifteen attributes and several densities - 25%, 50%, 75%). Then the matrix was
reduced to a lower dimension by use of one of the methods mentioned. The
Guigues-Duquenne basis was later computed and results compared against the
basis computed from the original data. Size of input data has been selected
after computation of several different samples with respect to computational
tractability.

The following charts (Fig. 4) illustrate the results of this experiment:the
first row corresponds to reduction with the SVD method, the second one to
the NMF method. In the figures on the left we present the decreasing number of
implications in bases constructed from reduced contexts. Each curve corresponds
to one of the aforementioned densities. While lowering the dimension of the data,
we are surely losing a certain amount of information. The ratio of objects from
the original context, which do not hold in the new basis, is shown in the figures
on the right. The results were averaged among hundreds of samples.

Noise resistance Even one small change in source data can cause quite large
changes to the GD basis. That can be a huge problem in noisy environments,
so we have studied whether reduction into a lower dimension could be helpful.
In the following, we suppose that the data contain redundancy and we know
the number of rules contained in the data in advance. This situation is not
uncommon in applications. Since this is so, we can lower the dimension of the
formal context to the number of rules.

More precisely, we have taken several randomly-generated rules (using ten
attributes) and combined them into tens of rows to create formal context. Then
we put an amount of noise into the data. Later we reduced these datasets to
a lower dimension (with the original number of rules used as rank), using SVD
and NMF methods. In the last step we compared the GD bases computed from
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Fig. 4. Average base size and average ratio of uncovered objects for contexts with
various densities. Reduced using SVD (first row), NMF (second row).

the original data with the bases from reduced contexts. The results were again
averaged among hundreds of samples and fig. 5 comprises an illustrative chart
of the results of this experiment.

4 Conclusion and further work

Concept lattices We can see that singular value decomposition used as the first,
and non-negative matrix factorisation used as the second, practical approach,
were successful and reduced original concept lattices. The number of concepts
in reduced concept lattices is lower than in the case of original concept lattices.
It implies that computation time of reduced lattices will be lower, and that is
why reducing lattices can be useful.

Implication bases We have seen that the size of the resulting implication basis
can be smoothly controlled by reduction of the formal context. Our hypothesis
is as follows: reduction of formal context to lower dimension with SVD or NMF
can lead to faster computation of GD basis, while retaining the most important
parts (most objects are still covered by the new basis). Noise resistance in basis
construction can also be obtained by use of this method under usual conditions
(redundancy, etc.).



0 5 10 15
noise ratio [%]

0

20

40

60

80

100

or
ig

in
al

 r
ul

es
 fo

un
d 

[%
]

original

SVD

NMF
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