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Abstract. We reuse here the framework, the setting, and the semantic modelling
for the automated synthesis of the SWS Challenge Mediator presented in the
companion paper [5], and show how to exchange the synthesis paradigm from a
linear-time-logic proof based algorithm to a runtime, abductive synthesis imple-
mented in Prolog, that responds directly to situational changes. Both solutions
take advantage of a policy-oriented enterprise management approach.

1 Motivation

The Semantic Web Service Challenge Mediation Scenario has been solved in [5] by
synthesis of its business logic within jABC [1]. There, we use semantic annotations
for data and services expressed via type and activity taxonomies, and we derive auto-
matically several versions of the business logic by means of a proof algorithm for the
(semantic) linear time logic SLTL. We showed thus that, given high-level, declarative
knowledge about the goals to be achieved by the mediator, and abstract information on
the available services, their purpose, and their compatibility conditions, we could au-
tomatically produce the set of processes that solve the goal and satisfy the constraints.
This way, we produced a set of solutions that are correct by construction, are at the
same time executable service orchestrations, and are amenable to investigation for com-
pliance wrt. additional criteria, since these orchestrations can be directly analyzed with
jABC’s mechanisms, e.g. by model checking.

Such an approach has the typical advantages of design-time solutions: they can be
saved, compiled for specific platforms, thus living outside the environment where they
are computed, and are adequate for documentation, auditing, and massive reusal.

In cases where the environment is highly dynamic it may however be desirable
to have a more reactive generation of solutions. Typically this leads to on-the-fly ap-
proaches, where the (piecewise) creation of the solution and its (possibly piecewise)
execution happen simultaneously. SAP’s Goal-oriented Enterprise Management (GEM)



Fig. 1. GEM Orchestration Graph in the jABC: The workflow of a GEM agent

approach, that follows the principles introduced in [2, 3], is a representative of this class.
A typical advantage of such approaches is their situation awareness: changes in the
environment are directly taken into account while building the solution. The typical
drawback is that the existence of a solution cannot be guaranteed, and if the solution
space empties, expensive backtracking and rollbacks are needed. Also, justification and
further analysis can only be carried out by a-posteriori validation.

An ideal environment should therefore offer both paradigms and enable the user to
choose from case to case. This is what we want to achieve with the jABC. To this aim,
it is important that both synthesis approaches foot on the same semantic descriptions,
use the same information in roughly the same way, and can share the same grounding.

In this paper, we show how both approaches are instances of business knowledge-
driven process synthesis [6, 3], and how we can accommodate both in the jABC environ-
ment in a modular way: we exchange the synthesis method with SAP’s GEM approach
to automatically solve the same mediation task using the same domain modelling and
service grounding.



1.1 Agent-based Mediator Synthesis.

One first step towards the solution is to implement the idea behind this on-the-fly con-
cept within a working prototype. The basic idea is to construct a set of agents that
interact with the company’s system and find parts of workflows as solutions to goals
in a dynamic environment. The concept behind the behavior of an agent is presented
in [3] and illustrated here in Fig. 1. In this reference model, a GEM agent refers to sit-
uations and goals in order to identify suitable subgoals that, in the given situation, can
be reduced via business rules resulting in a fragment of a plan that can be enacted.

We implemented the GEM reference agent as a jABC orchestration: there is a work-
ing jABC process, implemented as a service, for each single agent component, shown
later in fig. 4, and the jABC orchestration of Fig. 1 corresponds to the workflow of
the reference description. Each agent component Goal Hypothesizer, Guide, Explainer,
Analyzer, Performer is implemented as a Prolog algorithm that is accessed in the jABC
as a jETI service hosted on a remote machine. External resources are the collections of
BusinessExecutionPolicies, AgentScopePatterns, AgentPurposeRules, that feed the sin-
gle agents with knowledge, and the collection of BusinessObjects on which the agents
operates. They are also hosted elsewhere and accessed as services. Additionally, Expla-
nations that justify the decisions taken can be consulted.

In order to understand how this works in practice, we need first to introduce ab-
ductive reasoning, the event calculus, and to explain how the GEM synthesis process is
organized.

In the following, Section 2 sketches abductive reasoning and the event calculus,
Section 3 describes the Goal-oriented Enterprise Management system (GEM), and Sec-
tion 4 shows how to use GEM to solve the first Mediation scenario. Finally a conclusion
is drawn and the ongoing tasks are presented in section 5.

2 Abductive reasoning

In contrast to the traditional composition, Our general approach towards synthesizing
business processes is based on the notion of abductive reasoning. We synthesize a goal-
driven process on the basis of available services represented as descriptions of pre- and
postconditions (or conditions and effects), as well as policies which constrain which
goals are admissible (main goal and subgoals) and how to achieve them. We now take
a brief look at the nature of abductive reasoning, how it is realized in ways of program-
ming and then describe the process synthesis by ways of a planner implementing a form
of abductive process synthesis.

Abductive reasoning is also called reasoning to the best explanation. It is the kind
of reasoning used to hypothesize causes on the basis of observed results. Thus one of
its main applications is in diagnosis, where symptoms are observed and their causes
are abduced = hypothesized. A simple way to illustrate abductive reasoning in a more
logical way is to imagine the abduction step as modus ponens in a backward manner.
In modus ponens, given P− > q, once we observe P , we can deduce Q. In abduction,
given P− > q, once we observe Q we infer that P is an admissible cause of Q.



The relation between deduction, abduction, and induction (another form of reason-
ing forming rules from observations) has been studied extensively by Peirce. The only
sound kind of reasoning is deduction. However, the only way to obtain new knowledge
is by 1) using abduction and induction and 2) then prove the validity of newly obtained
facts or rules within a previously formed theory (where refinement of this theory is also
an option in case of conflicts with new facts/rules).

A whole area in logic programming concerns the use of abduction as form of reason-
ing to enhance given theories by new, yet not integrated information. For the synthesis
of business processes we employ the general idea of abductive logic programming.

2.1 Abductive logic programming.

Abductive logic programming is an extension of logic programming which is charac-
terized by the possibility that predicates which are not completely defined can be used
to explain other predicates. I.e. the explaining (or abducible) predicates are derived by
abduction. Abductive logic programs typically consist of:

– a logical program, consisting of facts and rules which can be used in the common
deductive way,

– a set of abducible predicates which are incompletely defined (think of them as if
parts in if-then rules)

– a set of integrity constraints which determine certain properties the program must
comply with.

We now apply these notions in our domain of business process synthesis to see the
connection.

We have a description of the world in form of an ordinary logic program. Situations
are described by facts holding at a certain time. Services can be seen like (very complex)
if-then rules with the preconditions being abducible predicates. Likewise, goals can be
seen as abducible predicates which may explain other goals. Policies can be seen as
constraints whose violations would lead to non-admissible programs.

Important to know is that in order to achieve a goal, i.e., complete the abducible
predicate, a goal often has to be decomposed into a number of subgoals which can be
achieved - normally in a certain order - so that one subgoal can be explained on the
basis of the achievement of another.

If we have a business goal that we want to be achieved with a business process, then
what we expect is a process that achieves the goal by execution of a sequence of services
that transform an initial situation into a situation in which the goal is consistent. Such a
synthesis of a process can be realized by a planning algorithm.

The algorithm underlying our planning strategy is derived from the well-known
event calculus, proposed in [4] and extended by many for various purposes.

2.2 Event Calculus in Short.

Generally, the event calculus facilitates the representation and reasoning about dynamic
entities involving actions and their effects using (a subset of) first order logic. This



makes it a promising approach for planning. The language of the event calculus allows
for the representation of time independently of any of events occurring.

The most common representation of event calculus can be briefly described as fol-
lows:

1. a set of time points which can be denoted by integers,
2. a set of properties, called fluents, which can vary over time, i.e., from one time

point to another, and
3. a set of event types.

The event calculus is based on the notion of fluents which can be manipulated by
actions in time. Fluents are usually functions which are specified by the predicate holds
to be in effect at a certain time point. Fluents can be changed by actions. A fluent
is initiated, i.e., made to hold by means of an initialize, and can be terminated by a
terminate action. If we ’count’ actions at time steps we can say whether a certain fluent
is true or false at a given time point. Translated into our domain this means that we
can regard services as actions, while looking at preconditions and effects as fluents.
The event calculus takes a number of domain-independent axioms as a foundational
theory, which is a logic program. It is enriched by domain-dependent information about
entities like constituents of situations, service preconditions and effects, and service
descriptions that state which fluents hold before and after the execution of a service.
Additionally, constraints in terms of policies can be added to ”control” which changes
can legitimately happen at certain time points.

It is now straightforward to realize a planner over goals, services with their precon-
ditions and effects in compliance with formalized policies.

The planner starts the plan generation when a goal is supplied. It tries to find a
service which initiates those fluents that are described in the goal. If such a service is
found, it will be checked whether the preconditions of that service, which are expressed
as fluents, hold. If not, another service must be found whose execution will ensure that
the fluents hold and so forth. The whole planning process can be much more complex,
since more than one service might be required to satisfy goals and subgoals by initiating
required fluents. Note that ordering of services is ensured through time points that are
attached to service invocations.

The plan is complete if preconditions for a service are actually contained in the
description of the initial situation. This way, trough abduction we arrive at a plan that
can now be executed to transform the initial situation into a situation in which the
supplied goal can be achieved. The whole plan is represented in a declarative form and
it can be proven to be correct given the resources utilized because, while the synthesis
was based on abduction, the proof can be done in a deductive way.

In the concrete SWS Mediation Scenario, a final goal for the SWS Challenge Media-
tion is to transform a PIP3A4PurchaseOrderRequest into a PIP3A4PurchaseOrderCon-
firmation. As this is a rather complex thing to do for a single on-the-fly agent (planner),
this goal is split up into several subgoals that are solved individually. Collectively, they
yield the desired solution.



3 The GEM approach

3.1 Situation Description.

The prerequisite for establishing a GEM system is that an enterprise’s current data,
called ”situation”, and its IT systems’ capabilities, e.g., Web service operations, are
specified using the event calculus, e.g.

Situation: [por(por1)] Operation: [createOrder(POR),
(requires,[por(POR)]),
(terminates,[]),
(initializes,[po(PO),po_basedOn(PO,POR)])]

3.2 GEM Agents.

A GEM agent is a generic software with a memory that observes the enterprise’s sit-
uation, and influences it through operation invocations. An agent is configured with
respect to the types of relevant observations, the business goals to pursue upon an obser-
vation, and the business execution policies to maintain when influencing the situation.

The processing of a GEM agent is structured into the five components Analyzer,
Goal Hypothesizer, Guide, Performer (comprising the Execution Initiator, and the Exe-
cution Monitor), Explainer depicted in Fig. 1. The components are realized as PROLOG
programs. They store their internal results in the memory of the agent. Concretely,

– The Analyzer probes the situation based on the configured relevant observation,
e.g., reacting on a purchase order request ?-por(POR), and stores the observa-
tions, e.g., [por(por1)].

– The Goal Hypothesizer generates a business goal based on both the configuration
and the observation, e.g., the goal is to trigger the internal purchase order manage-
ment denoted by a purchase order document in the situation, and the confirmation
of the purchase order request denoted by a purchase order request document in the
situation [po(po1),poc(poc1)].

– The Guide invokes an event calculus planner [7] with the inputs of the IT system’s
capabilities, the situation, the business execution policies, and the goal, resulting in
a partial-order plan, e.g.,

[[happens(createOrder(por1),t1),
happens(sendFeedback(por1),t2)], [before(t1,t2)]]

– The Execution Initiator creates a process execution instance in the memory of the
agent based on a plan, e.g., stating that the execution currently stands before the
first operation’s time [(before,t1)]. In addition, the Execution Initiator tells
the Analyzer to wait for the precondition of the first operation in the plan to occur.

– The Execution Monitor only reacts on observations made by the Analyzer that were
requested by the Execution Initiator. This is in contrast to the Goal Hypothesizer,
which reacts only to observations made due to the agent’s scope configuration.



Fig. 2. Loading the data into jABC

The Execution Monitor’s processing depends further on the observation made. If a
precondition was observed, the respective operation is invoked in the IT system, e.g., by
a Web service call, and the process execution instance is updated, e.g., [(after,t1)].
In this case, the Analyzer is asked to wait for the postcondition of the just invoked oper-
ation. If a postcondition was observed, the process execution instance is updated, e.g.,
[(done,t1),(before,t2)], and the Analyzer is asked to wait for the postcondi-
tion of the respective operation.

Partial order plans are correctly tracked by triggering multiple preconditions when
the postcondition of an operation preceding a fork is observed, and only invoking an
operation following a join when all operations preceding the join are known to be fin-
ished.

3.3 Hiding the Agent Structure.

As shown in Fig. 4, several GEM agents can be hieararchically encapsulated inside the
jABC within a single GraphSIB each, and thus their complexity and internal organiza-
tion can be hidden from the end users. The overall process becomes a black box, and
could be hosted itself as a service on some remote machine.

4 Using GEM to solve the Mediation

This generic GEM Agent provides a generic on-the-fly synthesis capability. Its im-
plementation is completely independent from the concrete setting and problem to be
solved. It behaviour is in fact controlled (and this way parameterized) by the knowl-
edge basis, in particular by the external policies that describe the enterprise system
under consideration.

We use GEM’s Prolog reasoner to 1) derive specific subgoals and 2) call Moon’s
web services. This is a problem-oriented decomposition, since the specification of the



Web service semantics, the enterprise’s goals and policies happens on a higher level
not mentioning concrete operations and their permissible sequences, but rather talking
about desired and unwanted dependencies of the business objects manipulated through
the operations using the event calculus (see below), that takes here the role played by
SLTL in the companion approach.

As such, the entire GEM approach is embedded within the jABC, and the synthesis
process is modeled in the jABC.

4.1 Integrating the GEM system in jABC.

To use the Prolog implementation of GEM in the Java based jABC, a wrapper class
encapsulates the calls of any GEM agent procedure: Situation Analyzer, Goal Hypothe-
sizer, Guide, Execution Initiator and Execution Monitor. This is the same technique we
used in [5] to call the LTL synthesis algorithm, which is implemented in C++ and runs
on a remote machine.

Each agent procedure is embedded in an own SIB in the jABC, so that this way
we have a GEM SIB-palette in the jABC and we can call every agent procedure indi-
vidually. The orchestration of the GEM agent procedures is modelled in the jABC as a
service logic graph: its workflow is presented in Fig. 1. The GEM system is executed
on a remote machine and called via web services, so GEM users need not take care of
any Prolog installation: this is virtualized by the jABC

4.2 The GEM Synthesis Process in jABC.

In every agent execution, the Analyzer is the first procedure to be executed (thus the
start SIB, underlined): here the situation is observed. As explained in Sect. 3, the An-
alyzer decides that a new plan has to be created by calling the Goal Hypothesizer or
to follow the plan execution by calling the Execution Monitor. Alternatively the Ana-
lyzer’s observation can end up with the result that nothing is done for the agent. So the
three SIBs Analyzer, Execution Initiator, and Execution Monitor are legal final SIBs
for the GEM orchestration graph. Additionally, every SIB can terminate the workflow in
case of an error. In case of the observation of an exceptional pattern, first the Execution
Monitor is called to reset the execution to the last goal, and then the Goal Hypothesizer
is called to create a new plan.

4.3 Service invocation: The invocation of a (Moon) Operation.

When the Execution Monitor requests an (abstract) operation, a concrete service must
be called. Solving the problem in general turns out to be more complex than first ex-
pected. Besides the communication of the invocation request itself (service invocation),
jABC has to manage storing the data and mapping between the data representation of
GEM and the real world (service binding and communication).

To communicate an invocation request, the SIB wrapper offers an own Java class,
Invoke, containing the name of the operation, a list of input identifiers, a list of out-
put identifiers and finally an operation identifier. The operation identifier is used by



Fig. 3. Exemplary Moon invocation sequence

jABC to call the synchronous response method, also offered by the interface. Using this
method, jABC informs GEM about the success of the operation.

As we can see, GEM and jABC only exchange identifiers for the real world objects,
like input and output values. The advantage is that GEM does not need to store complex
objects nor send complex messages. So the planner only has to include and manage the
(abstract, minimal) information needed for decision making. This decouples GEM from
concrete data issues.

On the other hand we need to map the GEM id’s to the real world data, and of
course store the data and make it accessible during execution. This is usually done via
the internal execution context of the jABC. However, to enable other (external) systems
to enhance the situation for GEM with further knowledge and to store it, we introduce
a similar external execution context, which is accessible via web services. As shown
in Fig. 2, for every requested data, like SearchCustomerResponse or LineItem, an
own getter and setter service exists, to load and save the data using the id’s assigned by
GEM with the Invoke-object.

Two generic DataLoad SIBs were created, respectively to Load the input data into
the jABC context of the GEM agent execution, and to Save it from the jABC to the
external context. These SIBs must know which context-ids to use when accessing the
jABC context. To this aim, the signatures of all operations on which the GEM opera-
tions and the Operation-SIBs in jABC are based upon are initially imported, and their
parameter names are then taken to load/save the objects from/to the jABC context.

One more SIB is necessary to guarantee a completely generic GEM agent workflow:
the Operation Call Switch. This SIB simply forwards the invocation to the right Ser-
vice operation, on the basis of a description of the Operations supported by an external
agent. Fig. 3 shows the exemplary invocation request of the Moon Service Search Cus-
tomer, together with the operation selection Operation Call Switch and the Load/Save
SIBs.

Once an operation is invoked, the Operation Call Switch is called again: since
GEM may work with multiple threads, the Execution Monitor could send more than
one invocation request in one message. The Operation Call Switch then decides to call
the next operation or, if this was the last operation, return control to the next agent.



Fig. 4. Mediation Scenario 1 with GEM/jABC

4.4 GEM at work for the Mediator.

To remain close to the Mediation scenario description, two Moon agents are created:

– a CRM agent that communicates with Moon’s customer relationship management
system, and

– a Sales agent that communicates with Moon’s Order Management System.

Since jABC supports hierarchical Service Logic Graphs, we hierarchically encap-
sulate the entire GEM agent graph in a single GraphSIB: this way both agents use the
same model of Fig. 1, which is instantiated twice. A model parameter determines the
type of the agent.

As we see in Fig. 4, when a Blue Purchase order request arrives, the SIB SaveAuth-
Token starts the planning of the mediator solution. We have two instances of the GEM
agent of Fig. 1, one for the CRM Agent and one for the Sales Agent, each of them
determining

– either the next operation to be executed by that agent, passing the control to the own
operation executor (SIBs CRM Agent Operations and Sales Agent Operations)



Fig. 5. Operations of the Moon sales agent (i.e., its SIB Library

– or the own termination, passing then the token to the next agent.

During execution, one agent is thus able to complete one step of its execution, then
passing the execution to the next agent. This rotation prevents agents from taking a lot
time completing multiple tasks, while other agents wait. In fact, at any time the situation
could be enriched by another participant, giving an agent new tasks and inducing longer
delays for the other agents, up to starvation. The scheduling strategy can however be
easily changed by modifying this graph.

The set of operations of an agent is itself modelled within a GraphSIB, see Fig. 4.
While Fig. 3 shows the only operation (SearchCustomer) of the CRM agent, the Sales
agent has much more to do. As shown in Fig. 5 the sales agent has to call the four
web service operations CreateOrder, AddLineItem, CloseOrder, and SendPOCon-
firmation. Additionally the SIB SendWaitFor is called to be able to react on a asyn-
chronous response, here used by the service which receives the confirmation of any line
item.

Each of these operations is implemented along the lines shown in Fig. 3: it is in
fact an invocation pattern comprising a Load-SIB, potential SIBs for data mediation,
the specific Operation-SIB, a Save-SIB and a SIB for the synchronous response.

4.5 Mediator Execution: Communication with the testbed.

To communicate with the SWS Challenge testbed, two more web services are created:

– The first receives the PurchaseOrderRequest message of the Blue Company,
writes the relevant data into the GEM situation and stores the corresponding objects
into the external context. This is the only place where the situation is written outside
the GEM system.

– The second web service receives the confirmation of any line item and informs
GEM about it. The receipt of a line item confirmation is designed using a proce-
dure for an asynchronous response of the AddLineItem operation. The interface



offers a further method for that purpose and an additionally class WaitFor (similar
to invoke), with which GEM informs jABC that the agent waits for a specific op-
eration to be done. So every operation can have a synchronous and asynchronous
response.

5 Conclusion

We showed here how to reuse the framework, the setting, and the semantic modelling
for the automated synthesis of the SWS Challenge Mediator presented in [5], in or-
der to exchange the synthesis paradigm from a linear-time-logic proof based algorithm
to an abductive synthesis implemented in Prolog, that responds directly to situational
changes.

Both synthesis approaches have the potential to become a highly flexible middle
layer for large scaling business processes, combining the advantages of agent technol-
ogy and service-oriented computing. By enhancing the underlying reasoning technol-
ogy the prototype has the chance to become a declarative mediator controllable by non-
programmers, like business experts. Since it is situation aware, it can react promptly to
situational changes, and this way potentially self-adapt during execution.

The implementation is still prototypical, and restricted so far to Mediation scenario
Part 1. We are currently working on extending it to the other parts of the scenario, and
on a hybrid approach that takes advantage of the dynamic agent behavior within a full
service-oriented framework that considers even the reasoning algorithms as retargetable
services.
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