
Modeling, Auto-generation and Adaptation of
Multi-Agent Systems

Liang Xiao and Des Greer

School of Computer Science,
Queen's University Belfast

Belfast, BT7 1NN, UK
email: { l.xiao, des.greer }@qub.ac.uk

phone: +44 (0)28 9097 4656
fax: +44 (0)28 9097 5666

Abstract. We propose a lightweight approach that provides mechanisms for
dynamic agent behavior at run-time. Agent collaborations are modeled in UML
diagrams and agent behaviors are encoded in XML-based business rules. The
combination of these captures the behavioral requirements and governs inter-
agent and intra-agent behaviors. A CASE tool has been developed to enable the
dynamic specification of agent behaviors and the generation of the agent
systems. Agents get the appropriate rules in XML format and then translate and
execute them at run-time. These rules are externalized and so maintenance
effort is reduced, since there is no need to recode and regenerate the agent
system. Rather, the system model is easily configured by users and agents will
always get up-to-date rules to execute at run-time. The approach is illustrated
with the aid of an e-business example and its efficacy discussed.
Keywords. adaptivity, agent, business rule, e-Business, requirements, UML

1 Introduction

Agent-oriented systems differ from object-oriented systems in that agents are active,
while objects are passive. Thus, agents have the goal of having dynamic behaviors.
Therefore, agent systems should be easily adaptable, being easily changed by
engineers. Better still, would be that they were adaptive, where systems change their
behavior according to their context [1].

Although many tools and techniques are available for agent-oriented systems
development, there is no unified and mature way to do it. What is more, existing agent
platforms, like JADE [2], require designers and developers to code agent behaviors in
fixed class methods and the way to write them varies one platform to another. This
lack of uniformity of approach means that maintaining agent systems is potentially
expensive. Being able to automatically generate agent systems and adapt their
behaviors with changing requirements would alleviate this maintenance burden. We
describe the Adaptive Agent Model as an approach that generates agent systems from
models and configures agent behaviors and ontologies at run-time. AAM continually

reflects new requirements immediately in the generated agent systems. AAM assumes
the use of UML and stores business rules in XML format.

1.1 Agent systems and platforms

Various agent platforms are available, the JADE [2] (Java Agent DEvelopment)
framework being one of them. JADE is aimed at developing multi-agent systems and
applications conforming to FIPA [3] standards. With JADE, an agent is able to carry
out several concurrent tasks in response to different external events. Sending and
receiving messages are the two main activities of agents. Traditionally, developers are
required to write code for every agent, their behaviors during communication,
message passing, and ontology used in programming languages before building and
implementing agents running on agent platforms.

1.2 Business rules and agent behaviors

A business rule is a compact statement about some aspect of a business. It is a
constraint in the sense that a business rule lays down what must or must not be the
case [4]. Often, business rules are hard-coded into programs, but keeping business
rules distinct from code has many advantages, including the fact that they remain
highly understandable and accessible to non-programmers. XML-based rules have
been used in the IBM San Francisco Framework [5] as templates to specify the
contents and structures for code that is to be generated. With this approach, changing
of XML rule templates allows mappings to new object structures. Figure 1 shows an
example, where a generic XML rule has been converted to a specific Java method,
getDiscount () in this case.

<Rule>

<Target> Attributes </Target>
<Condition> scope = public </Condition>
public &type; get&u.name;() {
 return iv&u.name;;
}

</Rule>
If the name of one of the public attributes for an Order class was “discount”, and its
type “Double”, then this template would generate:

public Double getDiscount() {
 return ivDiscount;
}

Fig. 1. Example of code generation using rules

Because agent behaviors represent actual system requirements and are subject to
change, the application of business rules to the agent world should offer similar
advantages as in the object world.

1.3 Agent-oriented UML

Agent-Object-Relationship (AOR) [6] models show social interaction processes in
organizational information systems in the form of interaction pattern diagrams. These
model agents, ordinary objects, events, actions, claims, commitments, and reaction
rules which dictate behaviors. AOR can be viewed as an extension of UML for agent
systems and is capable of capturing the semantics of business domains. The
construction and editing of rules are not in its scope. Moreover, how agents, objects
and rules work together are not described adequately. However, it provides a good
notation system for the agent world and we later adapt and use it for our conceptual
modeling of agents, rules and their interactions.

2 Background and motivation

Current approaches to agent-oriented system design and implementation are
fundamentally based on the identification of agent interaction protocols, message
routing, and the precise specification of the ontology. This need for complete upfront
design makes it difficult to manage agent conversations flexibly and to reuse agent
behavior subclasses [7]. Using Agent Patterns [8] is one way for better code
encapsulation and reuse. It is argued in [8] that much research work such as Gaia [9],
MaSE [10], and Tropos [11] emphasize only the design of basic elements like goals,
communications, roles, and so on. Although the reuse of patterns, which are observed
as recurring agent tasks appearing in similar agent communications, can reduce
repetitive code, the chance that a pattern can be reused without change is low. Reuse
of patterns in different context is not straightforward. In addition, this approach is not
adaptive since system requirements change means that models need to be changed,
patterns need to be re-written and agent classes re-generated.

State machines have also been suggested for agent behavior modeling [12] and the
Extensible Agent Behavior Specification Language (XABSL) has been specified [13]
to replace native programming language and to support Behavior Modules design.
Intermediate code can be generated from XABSL documents and an agent engine has
been developed to execute this code. The language is good at specifying individual
agent behavior, but cannot express behaviors that involve inter-agent collaboration.
Moreover, although agent behaviors are modeled in XABSL, they must be compiled
before being executed by the agent engine. Thus, changing the XABSL document
always requires re-compilation.

Agent behaviors are modeled as workflow processes in [14] and a Behavior Type
Design Tool is described for constructing behaviors. This approach provides a
convenient way to compose agent behaviors visually. However, its use of Agent
Behavior Representation Language (ABRL) to describe agent interaction scenarios
and “guard expressions” to control the behavior execution order does not facilitate the
modeling of systems as a whole. Further the approach does not offer an agent system
generation solution.

In answer to the weaknesses of the existing approaches, we propose the use of
UML diagrams to model agent interactions and XML-based business rules to encode
agent behaviors. Stable business classes are available for these rules to act upon. Rules
govern agent behaviors, make decisions for agents in various contexts, have controls
over the invocation of business classes and are adaptive. Agents and their rules are
specified using an AAM-CASE tool. Rule definitions in terms of inter-agent behaviors
are generated from the given UML diagrams, while rule definitions in terms of intra-
agent behaviors are specified in the tool, so that different business classes can be used
in different message processing or agent actions. Agent systems can be generated from
the tool. Each agent reacts to events according to the XML-based rules document at
run-time. Rules can be changed in the tool very easily and it makes use of extensible
ontologies.

3 Solution approach: Adaptive Agent Model

We emphasize the integration of UML diagrams which model inter-agent relationships
and XML rule definitions each of which describes an individual agent behavior. UML
model information will become part of the XML definitions and enable agents to
understand their communication with the outside world.

3.1 Case study

To illustrate our approach and to use in our discussion later, we introduce an
ecommerce case study. Suppose a retailer runs an online shop. The retailer has an
association with customers and also with various supplier companies, who may or may
not serve the retailer, depending on different conditions. Overall, the relationship
between customers, retailers and supplier companies can change at any time. The
business vocabulary is also changeable and the decision making process for each
company, retailer and customer is unpredictable.

3.2 Structural model: Agent Diagram

Structural models are built through Agent Diagrams, and show agents, business rules,
business classes and their relationship. Agents manage rules and rules manage the
invocation of business classes. Such models are used for agent identification, agent
relationship identification, and eventually building an Agent/Rule/Class hierarchy.
They are later the basis for the behavioral models.

Agents are identified to represent distinct conceptual domains. Agent Diagram has
Class Diagram, the backbone of UML [15] as its counterpart in the object-oriented
models. In AAM agents are regarded as superior to classes. Each rounded cornered
box represents an agent and is divided into three compartments. The top compartment
holds the name of the agent, the middle compartment holds the classes managed by the
agent along with their instantiation and the bottom compartment holds the rules that

govern the functions of the agent. They resemble a class name, an attribute list, and an
operation list constituting a class diagram in the OO world.

Agent systems always require interactions among many agents. Such interactions
are modeled as message passing between agents. The message sender requests a
service from the message receiver. The message receiver uses its internal business
objects for the computation required to fulfill the request and then, possibly, takes a
further action. Different situations will arise and these are modeled as rules that agents
should obey. Thus, a rule is responsible for the behavior of an agent in dealing with a
particular situation. Multiple rules can be defined to let the agent collaborate with
other agents to achieve different goals.

Fig. 2. The Agent Diagram for case study

In Figure 2, “RetailerAgent” and “CompanyAgent” are the two identified agents for
our case study. “RetailerAgent” has a rule “orderProcessing” that will construct an
object with type “BusinessInfo”, package it into a “Call for proposal” message and
send the message to “CompanyAgent”. To respond to such requests,
“CompanyAgent” will offer a deal, if the order is attractive, using the rule
“saleProcessing”. Thus, we have an association relationship between the two agents
involved and a constraint for them. They resemble an association between two classes
and a constraint for classes in the OO world. During the processing of rule
“saleProcessing”, an “Order” object will be constructed from the received
“BusinessInfo” structure and the constructed object should pass an
“isOrderAttractive” check before “CompanyAgent” proceeds to offer a deal,
“Proposal” for the order. Thus, such a business class of “Order” is managed by
“CompanyAgent” and it has at least three methods that will be invoked by the agent
rule.

3.3 Behavioral model: Agent Communication Diagram

Agent Diagrams capture the static relationship between different entities and depict
the whole system. Agent Communication Diagrams are used to model the interaction

constraint

association

Call for
proposal

RetailerAgent

……

orderProcessing ()
……

CompanyAgent

order:Order
……

saleProcessing (order)
……

{ RetailerAgent.
orderProcessing.actionMessage()
equals to
CompanyAgent.
saleProcessing.eventMessage() }

Order

+ Order (b: BusinessInfo)
+ isOrderAttractive (): boolean
+ createProposal (): Proposal

of agents. Such behavioral models organize agents, rules and messages around
business processes. For every business process, all participating agents will appear in
the diagram, with message passing between them to accomplish certain business goals.

Software Architecture refers to the communication structures for system entities. In
traditional object-oriented systems, objects are aware of which other objects they will
pass messages to, but are unaware of which objects will pass messages to them. Full
architecture independence requires that the detail of where objects will send messages
should also be hidden [16]. In agent-oriented systems, business processes are
implemented by the collaboration of agents. The management of this collaboration
requires the agent architecture to be well modeled. In order to generate agent systems
and be able to adapt them afterwards without re-generation and re-compilation, full
architecture independence (two-way encapsulation) is required, and the interaction
information should not be hard-coded so that agents can adapt their collaboration in
communication according to changing requirements, two techniques are used in
combination for this purpose.

In our approach, UML is used to model agent collaborations, describing how
message passing among coordination agents can accomplish business tasks. UML
diagrams provide a blueprint for involved business rules, the composition elements of
our diagrams. Each rule governs an individual agent behavior in participating
collaborations. Rules are connected to form a flow of decision making, process by
process, one decision being made at each connection point. As such, the model
visualizes the actual system function in a sequence of agent actions dictated by rules.
User specified agent collaborations in UML diagrams are used to generate the inter-
agent part of the rules definition, in XML format. It is through these rules that agent
systems are adapted both in collaborations and internally without re-code or re-
generation, since we let agents get appropriate rules to execute only at run-time, and
rules get configured continuously through supporting tools we provide.

Accurately, the UML diagram used for the design of multi-agent behaviors is the
Agent Communication Diagram. It has been developed based on Agent Diagram and
used for the generation of agent systems. Figure 3 describes the process from the case
study, where a customer orders products from a business company through a retailer.
Business classes are not shown on the diagram but the invocations of their methods
are, such as, the one for condition check. R2 has been shown previously as
“saleProcessing” in the bottom compartment of “CompanyAgent” in Figure 2.

Fig. 3. An Agent Communication Diagram describing a business process

 Customer
Agent

Retailer
Agent

Company
Agent

isOrderAttractive ()

 isProposalSatisfactory ()

Call for proposal
R2

R4

R1

R3
Propose

Accept proposal

Acknowledge Acknowledge

Place an order

-����������	
�����
 �������
��������������	
����
�����
 ��������������	�
����������	���
���	
�������������	�
��������
 ����������
	
����������
����
�������
	
������
 - �����
�	�

�
�����
��������- ��

�

����������������
�����������
����

���������������������������������

���������������

��

��������- ��

�

����������������
��������������
����

������������������������������������

���������������

������������

�������������
�	�

�
�����

 - ����
���
 �������������������	��
��
����������������
��������-������
����
 ��������������
�������	������
��������������	
����
�����
 ���������������������
����
�������������	
��������
 �����������������������
���
������������������
�����������-�����������
����������������-����������������
��������������������-��
��
���
������
��
���
��
��������������������-���
��
��
 ��
������������������������-���
�������
 �������������
������
�������������
������
�������
���������������������������������

��� ���������
�������
 �����
��
��
 ��������������������������������
������������ ������������
�������� �������
����
 �����
���

��������	
���

�����������������
�

��
�����
 ���	
���!
��"�����������������

������������
�
��������������������
 "�������

���������	
���

���
�	�	�
�

������	�������������	�� "
��
����

����
�	�	�
��

 - ����	�
�

 ����������������
�
�
���������������

�������-������
����
 ��
��������
����
�������������	
����
���
 ��������	������
�����������������	
�������
 �����������������������
 - ���������

������������������-���
����
���
 ��������������������
 �����������������������������������
������������������ ����
����
���
 ������������
������� �������
����
 �����	�
��
 ���	��	���#����	��	�����
������������	
�����

Fig. 4. The XML definition for rule “saleProcessing” owned by “CompanyAgent”�

We encode diagrammatic rules in the models with a main structure of {event,
processing, condition, action, priority} in XML. On receipt of an event (normally
modeled as a message), an agent would act on it if the condition of the rule which is
defined to deal with this event for the agent is satisfied. Rules are considered
according to their priorities set by users. The XML representation for rule R2 is given
in Figure 4.

UML diagrams are good at showing collaborations among agents, while XML rules
as such are good at precise definition of agent behaviors: this is what the UML
Diagrams lack [15]. In the diagram of Figure 3, “CompanyAgent” reacts to the “Call
for proposal” message from “RetailerAgent” by executing the above specifically
defined rule “saleProcessing” in XML.

3.4 AAM-CASE tool

A tool has been developed to enable the specification of the agent collaborations, rule
definitions and message flow control. Figure 5 captures a window from this tool
showing the construction of an Agent Communication Diagram in its main panel.
Rules can be defined either in XML text or using a more user-friendly tree structure as
shown in the left panel. By using this tool, part of the <event> and <action> sections
of rules can be generated when incoming/outgoing messages are specified and,
<processing>, <condition> and <priority> sections are given afterwards by users.
XML code is eventually generated from the completed tree structure and saved in a
rules document.

Fig. 5. AAM-CASE tool

3.5 Agent system implementation and deployment

The AAM-CASE tool uses a business rules document as the database. Once business
processes are specified graphically in the tool, agent interaction models, rule reaction
patterns and message flows are established accordingly. Agent systems are
automatically generated such that each rule maps to an agent behavior. Program code
is not generated at this moment. Instead, XML-based rules are plugged in and are
subsequently translated by agents at run-time. While the system is running, rules can
be updated through the tool, so that agent behaviors are continuously updated. The
system runs on the JADE platform and can be in a distributed network. All agents
access the central XML-based rules document via a parsing package. This allows
dynamic adjustment of agent communication structure and therefore the architecture
of the system. Sample pseudo code for agent behaviors is shown in Figure 6.

A shared module called “Rule” is used by all behaviors with its ability to access the
XML definition of rules and assemble corresponding objects. The methods
getPriority(), getEvent(), and getAction() are provided by “Rule”.

���������	
���
�������
�����
���������
�

����
�������	
�����������
���������	
�����������
����

� ����
������

��������
���������

� ������
�
�
���������	
�������� ������
���

 ����
��
!�
�����

�

�����
"��� �����
�
� 	
���# ����������
���

�"
�"��� �����	
�$����
���������	
���%����
��	
���� ������
��	
���&��� �����
����

�

'(
���
����
��
�������)��
��
���
��������
� ������
('

�������*�"�
)�������*�"�
�
�
�������*�"��
� 	
���+�������),���
���

�����
�
��
� ����
�)�������*�"���

�"
������	
��� ��������������
���

�

'(
���
���������
�"
���
����
��
�����"���
('

��������
�
�����	
��������������
���

� ������
� -
�
��
� ������
���

� -	
���+�������),���
�����������

�����
�������
�
��������	
���������
��	
���� ������
��	
���. ������
���

� -	
����������������
����������

���������	
����
�� -��

'(
������
����
�����/�
)����"�
('

���������	
���
����"
�# ����� 	
���+������. �� �
��0
"��� �����0
� ��

1

1

�
�
���������	
�������� ������
���

1

1

Fig. 6. Pseudo code for one behavior of “CompanyAgent”, mapping to its “saleProcessing”

rule

3.6 Adapting inter-agent collaborations

This approach achieves two-way encapsulation. Agent behaviors are guided by rules
so that they do not need to know who they will contact in advance. To reflect business
process change, the agent behavioral models can be changed easily with the tool.
These changes are automatically reflected in the XML definitions for corresponding
agent rules, for example, in their <event>/<message>/<from> and
<action>/<message>/<to> sections. This enables agents in the running system have
their partners changed in order to accomplish the updated business processes. On
receipt of any message, an agent reads the most recent rules, analyzes them and finds
out the appropriate agents to send messages to. In the case study, we may wish to re-
configure the rule “saleProcessing”, and let the “CompanyAgent” take a new action in
a condition previously not predicted.

Suppose now we wish to introduce a new occasion where if the current
“CompanyAgent” does not evaluate the received order request to be “attractive” or
can not fulfill the order request, it forwards the order to another “CompanyAgent”.
This new requirement can be specified, implemented and deployed by agents
automatically, via configuring the Agent Communication Diagrams through the tool.
The achievement of this dynamic collaboration is through painless model adjustment
rather than expensive code change. Further, we achieve a model-driven
communication architecture.

3.7 Adapting intra-agent behaviors

The behavior of agents in processing the event, checking the condition, and taking the
action is externalized in business rules. This means that they can be configured
dynamically. In fact, by changing the <event>, <processing>, <condition>, and
<action> fields in appropriate rules, alternative methods of the managed business
objects can be selected for invocation. In the case study, we can re-configure the rule
“saleProcessing” to invoke a new evaluation method of the “Order” class or event a
method of a new “Order” class to check the attractiveness of the order. In addition, we
can configure two couplets of <condition> and <action>, so that for ordinary
customers and company customers, different ways to generate sale proposals can be
used. All this can be carried out at run-time.

3.8 Adapting ontologies

Only business concepts registered through the tool and saved in the rules document
may appear in agent messages. When a new business concept is required, it can be
registered with its properties, and a new business class with attributes will be
generated by the tool. New vocabularies thus can become available for the
specification of agent rules through the tree structure on the left panel of the tool
(Figure 5). Also at run-time new classes with new methods thus can become available
for invocation by the running agent system. Eventually, all agents will be able to
understand the new vocabularies the other agents in the system are using even those

registered after the system has been running for a while. Hence, ontologies are always
updatable. For the case study, suppose that an additional attribute of the
“BusinessInfo” business object is required and added while the system is running, the
updated class becomes available to all agents immediately.

4 Evaluation and conclusion

Agent behaviors are modeled and externalized as rules, and represented in UML
diagrams. They are centrally managed and easy to be changed through the models or
the XML-based definitions. Agent behaviors reflect functional requirements. Because
rules are easy to edit, deploying new requirements requires minimal effort. The rules
are, in effect, executable requirements.

One weakness of the Adaptive Agent Model is that the framework’s externalization
of agent behaviors in XML-based rules will degrade the performance of such systems.
Every time an agent acts and reacts to events, it will read the rules document, test
rules’ applicability, find the one with the highest priority, and execute it. Therefore,
there is a trade-off between ease of adaptation and performance. However,
adding/upgrading hardware or using parallel computation will compensate the cost.

In the future, we expect to achieve self-adaptivity in the AAM where, as agents
interact with end users they perceive their behaviors and preferences. As shown in
Figure 7, this allows agents to update their beliefs, and so deduce rules that can be
added to the central rules document. These inferred rules can be shared and executed
by all agents and are subject to amendment. After some time, a mature and reliable
rule set, independent of those acquired through the tool can be established.

Fig. 7. Future Adaptive Agent Model

AAM would be useful for those domains that have frequently changing
requirements where re-development would otherwise be costly. Particularly, AAM
should work well when there is collaboration between many different entities and
where this collaboration may be subject to adjustment, as a result of changing business
processes. AAM is also suitable where the business environment is frequently
changing with emerging concepts and behaviors.

End users

Business people (business
infrastructure/architecture
designer)

AAM
CASE tool

Business
Rules
Document

(including UML
models & rules)

Generation

Business people (business
decision maker)

Agent
System

Agent beliefs

Adaptive
Information
(behaviors)

Feedback

Adaptive
Information
(requirements)

Other future work will include the development of richer business rules. The
Adaptive Agent Model will be made more powerful and more flexible, but work so far
indicates that it will contribute in a novel and substantive way to the business need for
adaptivity in systems.

5 References

1. Lieberherr, K., “Workshop on Adaptable and Adaptive Software”, Proceedings of the
Tenth Conference on Object Oriented Programming Systems Languages and Applications,
149-154, 1995.

2. JADE platform, http://sharon.cselt.it/projects/jade/.
3. Foundation for Intelligent Physical Agents, http://www.fipa.org/.
4. Morgan, T., “Business Rules and Information Systems”, Addison-Wesley, 2002.
5. Bohrer, K.A., “Architecture of the San Francisco Frameworks”, IBM Systems Journal,

37(2) 156-169, 1998.
6. Wagner, G., “The Agent-Object-Relationship Metamodel: Towards a Unified View of

State and Behavior”, Information Systems, 28(5) 475-504, 2003.
7. Griss, M., Fonseca, S., Cowan, D. & Kessler, R., “SmartAgent: Extending the JADE

Agent Behavior Model”, Proceedings of SEMAS, 2002.
8. Cossentino, M., Burrafato, P., Lombardo, S. & Sabatucci, L. “Introducing Pattern Reuse

in the Design of Multi-Agent Systems”, AITA'02 workshop at NODe02, 2002.
9. Wooldridge, M., Jennings, N.R. & Kinny, D., “The Gaia Methodology for Agent-Oriented

Analysis and Design”, Journal of Autonomous Agents and Multi-Agent Systems, 3(3)
285-312, 2000.

10. DeLoach, S.A., Wood, M.F. & Sparkman, C.H., “Multiagent Systems Engineering”,
International Journal on Software Engineering and Knowledge Engineering, 11(3) 231-
258, 2001.

11. Castro, J., Kolp, M. & Mylopoulos, J., “Towards Requirements-Driven Information
Systems Engineering: The Tropos Project”, Information Systems, Elsevier, Amsterdam,
The Netherlands, 2002.

12. Arai, T. & Stolzenburg, F., “Multiagent systems specification by UML statecharts aiming
at intelligent manufacturing”, Proceedings of the First International Joint Conference on
Autonomous Agents & Multi-Agent Systems, 11-18, 2002.

13. Lotzsch, M., Bach, J., Burkhard, H.-D. & Jungel, M., “Designing Agent Behavior with the
Extensible Agent Behavior Specification Language XABSL”, RoboCup 2003: Robot
Soccer World Cup VII, volume 3020 of Lecture Notes in Artificial Intelligence, 114-124.
Springer, 2004.

14. Laleci, G. B., Kabak, Y., Dogac, A., Cingil, I., Kirbas, S., Yildiz, A., Sinir, S., Ozdikis, O.
& Ozturk, O., “A Platform for Agent Behavior Design and Multi Agent Orchestration”,
Agent-Oriented Software Engineering Workshop, the Third International Joint Conference
on Autonomous Agents & Multi-Agent Systems, 2004.

15. Fowler, M., “UML distilled” third edition, Addison-Wesley, 2004.
16. Object Management Group, Inc., “Applying UML 2 to Model-Driven Architecture”, 250

First Ave. Suite 100, Needham, MA 02494, USA, 2003.

