
A Concept-Based Query Language
Not Using Proper Relation Names

Vladimir Ovchinnikov, PhD in Computer Science

Russia, 398024, Lipetsk, prospekt Pobedi 104-44,
ovch@lipetsk.ru,

Lipetsk State Technical University, Russia,
Novolipetsk Iron & Steel Corporation, Russia.

Abstract. The paper is focused on a concept-based query language that permits
querying by using only application domain concepts. The query language has
features making it simple and transparent for end-users: each query operation is
completely defined by its result signature and nested operation’s signatures; a
query’s signature represents an unordered set of application domain concepts;
join predicates are not to be specified in an explicit form. In addition, the paper
introduces constructions of closures and contexts as applied to the language.
The constructions permit querying some indirectly associated concepts as if
they are associated directly and adopting queries to users’ needs without
rewriting. All the properties make query creation and reading simpler in
comparison with other known query languages. This query language is named
as SCQL (Semantically Complete Query Language).

Keywords. Database Modeling and Query Languages, Conceptual Query
Language, Concept-Based Query Language, Semantically Complete Query
Language.

1. Introduction

Conceptual models serve as means of application domain modeling as opposed to
means of system implementation modeling. A conceptual model does not concern
with implementation details and represents a description of an application domain’s
essence. Conceptual query languages are meant as tools for querying conceptual
models and have dual use. On the one hand, conceptual queries play the key role in
constraint formalization: any constraint can be represented as an underlying query and
an assertion upon it. On the other hand, such queries can be used for data request
formulation. In both cases, conceptual query transparency and simplicity are the most
important.

Conceptual query simplification can be achieved by using natural names for
entities and relations when modeling and querying [4, 7, 10, 14]. The method
significantly simplifies end-users’ work as interaction with systems takes place
directly in application domains’ terms. Examples of such query languages are
LISA-D [5, 6] based on Object-Role Modeling [3], CQL [10]. But this simplification

mailto:ovch@lipetsk.ru

is not structural: the languages’ core remains complex. Let us illustrate the fact with
the example of project management domain. Persons, tasks, and projects are the main
entities of the domain. Projects consist of tasks which are assigned to persons; also
persons can directly participate in projects’ teams. The domain has the following
formalization in ORM:

being-part-of

consisting-ofbeing-developing-by

participating-in

solving

being-assigned-to

Person

Task

Project

Fig. 1. ORM Model of Project Management Domain

The query “select all tasks assigned to persons participating in the project MES” is
formulated in LISA-D as “Task being-assigned-to Person participating-in Project
MES”. The path expression has the following complexity factors: a) the order of
entities and relations is important and should be kept correct; b) the appropriate
predicator precise name should be remembered. A user is not insured against creation
of senseless queries like “Task solving Person”, “Person consisting of Project”, or
mistakes like “Person solved Task”. In addition, LISA-D does not support subqueries
[5]. Using the language proposed further, the query is formulated as (Task–Person–
Project=“MES”). A user has not to remember relation or predicator precise names and
has not to keep correct sequence of relations. Also the language does support for
subqueries.

Unfortunately, LISA-D did not become an industrial standard for information
system development and is slightly supported by tools. Now the standard is SQL.
Therefore, let us use SQL as comparison basis below. The above example domain can
be formalized as ER and physical models as the Fig. 2 shows. To use the example
below as running one, we introduce person’s phone, age, skills, and employees as
persons’ particular case.

The above query should be formulated in SQL as follows:
SELECT Task_ID FROM PersonTaskRel ptr, PersonProjectRel ppr
WHERE ptr.Person_ID = ppr.Person_ID AND ppr.Project_ID = ‘MES’

In comparison with the query (Task–Person–Project=“MES”) proposed, the SQL
query has the following complexities: a) the join predicate “ptr.Person_ID =
ppr.Person_ID” is defined explicitly; b) the appropriate precise table names should be
remembered; c) the query’s result signature is lacking in semantics since it consists of
abstract columns not associated with the domain’s concepts; d) fields’ and tables’
names are far from natural language.

LISA-D, SQL, and other query languages use proper relation names for
referencing to relations. A user has to remember a lot of precise names to formulate
queries. The reason of this lies in underlying modeling techniques: ORM, ER, and
others. The techniques imply identification of relations by their proper names. Any
two entities of the models can have a lot of association ways, and each of the ways

takes its own unique name. Not all relations can be named clearly and shortly.
Sometimes full names of relations are whole sentences, actually enumerating
participated concepts and only. For instance, the relationship of “Person” and “Task”
can be named like “Persons solving tasks”, “Tasks being solved by persons”, or
“Assignments of tasks to persons”. A user cannot think about entities as they are
merely associated. But it is not necessary to remember the association’s precise name
if one refers to it by (Person, Task) as the proposed language implies. Another
complexity factor is that queries’ result signatures are not based on application
domains’ concepts, and a query’s result interpretation is completely determined by its
structure. For instance, the result “Task_ID” in the previous SQL query can mean
anything a priori, even phone number. Moreover, a user is not insured against
formulation of senseless queries, for instance, joining tables with “Age = Level”. As a
result, the languages are too complicated for end-users.

Project

Project_ID <pi> VA30 <M>

Person

Person_ID
Age
Phone

<pi> N
N
VA80

<M>
<M>

Task

Task_ID <pi> N <M>

Employee

Skill

Level N <M>

Skil lType

Skil lType_ID <pi> VA30 <M>

Project

Project_ID VARCHAR2(30) <pk>

Person

Person_ID
Age
Phone

NUMBER
NUMBER
VARCHAR2(80)

<pk>
Task

Task_ID
Project_ID

NUMBER
VARCHAR2(30)

<pk>
<fk>

Employee

Person_ID NUMBER <pk,fk>

Skill

SkillType_ID
Person_ID
Level

VARCHAR2(30)
NUMBER
NUMBER

<pk,fk1>
<pk,fk2>

SkillType

Skil lType_ID VARCHAR2(30) <pk>

PersonTaskRel

Person_ID
Task_ID

NUMBER
NUMBER

<pk,fk1>
<pk,fk2>

PersonProjectRel

Project_ID
Person_ID

VARCHAR2(30)
NUMBER

<pk,fk1>
<pk,fk2>

Fig. 2. ER and Physical Model of Project Management Domain

Another way of query simplification is use of a GUI application concealing query
complexity, as, for instance, Conquer-II [1] and OSM-QL [2] propose. Using
intuitively clear interface elements like trees, an end-user can easily construct
conceptual queries. Nevertheless, the way has the limit imposed by strong impact of a
query language’s core on a user interface structure, for example, tree node types, node
connectivity and node attributes. Since each operation of the language proposed
further is completely defined by its resulting signature and nested operation’s
signatures, we suppose that the language suites the purpose well and should be
developed in the direction in the future.

2. Restriction Imposed on Underlying Model

It is known the only way of referencing to relations without explicit naming it: to use
concept combinations as references to relations so that each concept combination gets
identification of an appropriate relation. The identification would imply a sequence of

concepts, but this method is acknowledged as non-transparent. The proposed
language uses another way of relation identification: by means of application domain
concept sets. Not any model can be used as basis for a query language not using
proper relation names. Such model is to permit identification of relations by domain
concept sets. The model having the property was proposed at [11, 13] and was named
as Semantically Complete Model (SCM). SCM is a full-scale modeling technique that
is near to natural language text (see [11, 13] for notation details). SCM model of the
above running example is the following:
Person solves Tasks
Person has a Skill Level for a Skill Type
 [(Person, Skill Type) → Skill Level]
Person is of Age →

Person has a Phone →
Employee is a Person ≡
Project consists of Tasks ←
Project has a team of Persons

Formally, an SCM model represents a set of associations based on sets of concepts.
Let be set of all SCM models, a be set of all associations, c be set of all
concepts, determine associations for models, and

m
amma ×⊆ caac ×⊆ determine

concepts for associations. Then the association identification constraint “a model
cannot have two associations based on the same set of concepts” is formulated as
follows:

[C1]
() ()

(){ } (){ }⎭
⎬
⎫

⎩
⎨
⎧

∈′′′′≠∈′′′
→∈′′′∧∈′′

∈′′∀∈′∀∈′∀
accacaccac

maammaam
aaaamm

,|,|
,,

.

SCM has another restriction proving its name: an association of one SCM model
cannot be based on a concept set being proper subset of other associations’ concept
sets. This restriction guarantees each association defines semantics of underlying
concepts’ correlation completely.

[C2]
() ()

(){ } (){ }⎭
⎬
⎫

⎩
⎨
⎧

∈′′′′⊆/∈′′′
→∈′′′∧∈′′

∈′′∀∈′∀∈′∀
accacaccac

maammaam
aaaamm

,|,|
,,

.

The restriction is not discussed in the paper in details as it does not influence on main
properties of the language proposed (see [12] for details). The conceptual language
based on SCM and not using proper association names for query formulation is
named as Semantically Complete Query Language (SCQL) [12, 13].

3. Association Referencing within SCQL Expressions

SCQL does not use proper association names. As a result of C1, defining a concept
set, one makes a reference to an association. SCQL provides for simple notation of
such references: enumeration of concepts by comma in round brackets. Concept order
in such enumerations is not important. For instance, both of the references (Person,
Skill Level, Skill Type) and (Person, Skill Type, Skill Level) are correct. As you see,
using SCQL, one has not to remember proper association names and should know the
fact of concepts’ correlation only.

A SCQL composition can be considered as a mathematical composition of
associations based on domain concepts and not sets (see the next section for details).
A SCQL path expression is a composition of several binary associations and is

defined as concept chains. Each chained concept pair is considered as a concept set
referencing to an association. A chain as a whole represents a composition of all
associations referenced by pairs indicated with dashes. For instance, (Person–Task–
Project) selects for each task its project and assigned persons by composing the
associations (Person, Task) and (Task, Project). As you see, chain links have no any
attributes besides concepts themselves as opposed to, for example, LISA-D where
names of used relations (predicators, saying more precisely) are to be defined
explicitly. SCQL path expressions can be written starting from any edge concept, for
example, (Project–Task–Person) is equivalent to (Person–Task–Project). A star
expression, when binary associations of a composition are organized as a star with
one central concept, can be formulated using the path notation as (Phone–Person–
Project), or using the star notation as (Person–[Project, Phone, …]).

One concept can play several roles within an expression, for example, when using
one association several times. For this purpose SCQL has the conception “role
concept”. A role concept represents a concept extended with a role name indicating
the concept’s role in a certain SCQL expression. Role names are placed in round
brackets after concepts if different roles are necessary. For instance, consider the
expression (Project(Task’s)–Task–Person–Project(Person’s)). Here the projects are
semantically diverse columns of the expression’s result and have the role names
“Task’s” and “Person’s”. Not using the roles, the expression becomes cyclic with one
project column: (Project–Task–Person–Project), which reads as “select persons with
their tasks being part of projects the persons are members”. Since the expression is
cyclic, it can be equivalently reformulated starting from any concept, for instance, as
(Person–Task–Project–Person). Formally, let be set of role concepts, rn be set of
role names. Then the maps and reflect that each role
concept pertains to a concept and can have a role name.

rc
crcrcc →: rnrcrcrn →:

SCQL expressions can be additionally simplified by using association closures. An
association closure is defined over one SCM model and represents a set of
associations. When applying a closure, some indirectly associated concepts can be
used within expressions as if they are connected directly. For example, if (Employee,
Person) and (Person, Phone) are included to a closure, one can select data using
(Employee, Phone) or (Employee–Phone) instead of (Employee–Person–Phone).
Closures increase query transparency since they permit omitting transition details
when it is obvious for users. Actually, a closure represents a predefined composition
being used implicitly, namely a composition of all associations included to the
closure. SCQL provides for transparent way of closure use: by enumerating concepts
(role concepts) in round brackets, one can make a reference to an association as well
as a projection of a closure. For a given concept set a closure is applied only if there is
no an association based on it. For example, (Employee, Phone) is projection of the
closure’s composition (Employee–Person–Phone), while (Person, Phone) is reference
to the appropriate association. Formally, let ac be set of all closures. Then

 defines associations included to each closure. Closures serve for similar
purpose as the abbreviated concept-based query language presented in [8, 9] which
does not require entire query paths to be specified but only their terminal points.

aacaca ×⊆

Closures make possible governing expression execution contexts. The simplest
context is empty one when closures are not used and all concept enumerations refer to
associations directly as (Person, Phone). Contexts can contain several active closures.

In this case, all associations of active closures are united to one consolidated closure
of a context. If a concept enumeration does not refer to an association, the
consolidated closure is projected on these concepts. A special case of closures is
default closures. A default closure of a model is used by default for expressions if the
contrary is not indicated explicitly. A closure not being default is to be uniquely
named. Closures can be added and removed explicitly when tuning an expression
execution context. Contexts permit simplifying and clarifying query expressions
significantly. For instance, all non-cycle path and star expressions can by written as
simple enumeration of required concepts without indicating chains or stars explicitly
as (Employee, Phone) in the example above. Formally, let be context set, then cx

accxcxac ×⊆ defines closures constituting each context. Both default closures
and named closures ncc are subsets of the general closure set: , .

dac
acdac ⊆ acnac ⊆

Query semantics can change greatly when modifying a context. It makes SCQL
more flexible, but if one uses the context mechanism heedlessly, semantics of
complex queries can change unpredictably; context change is to be closely controlled.
Note that all SCQL queries stay sensible in any context, but senses differ. SCQL
contexts can be created according to different strategies. An obvious strategy is to
reflect users’ preferences for data browsing. This approach is suitable for simple
queries when users go from one concept to another without writing complex
expressions. In this case, contexts can be changed explicitly or automatically by using
browsing statistics, for instance, a frequency of association use. Another strategy of
context creation aims to reflection of shortenings generally accepted by a community
or an application domain. The shortenings underlie the default closure. Additionally,
several named closures can be created to provide for some optional shortening being
active for some part of a community or an application domain. The options are
activated when necessary. And the last strategy can be used in natural language
recognition systems. The strategy implies a context changes dynamically for each
new text part. According to this strategy, a context of previous text part is used as
basis for a context of next text part and the last context is modified by using some
statistics of both text parts. Context mechanism of SCQL is unique in its own. Other
known languages have no context mechanisms at such deep architectural level:
context change does not require query rewriting.

4. SCQL expression properties

The paper is focused on the following main SCQL property: it permits query
formulation only by using application domain concepts. It is guaranteed by the fact
that associations are identified by concept sets. The property increases transparency
and simplicity of query expressions, especially when using closures, path and star
expressions. Furthermore, SCQL has other interesting properties based on features of
its operations that are considered below.

An expression of any query language represents a tree of operations. A set of
possible operation types varies from one language to another, but leaf operations are
to be selections from relations of an underlying model. Let e be set of all expressions,

 be set of operations, o ot be set of operation types, determine operations eo →oe :

of each expression, and otooot →: determine an operation type for each operation.
Then leaf operation types are subset of all operation types () and leaf
operations are subset of all operations (). It is true that all and only leaf
operations are to be of leaf operation types:

otlot ⊂
olo ⊂

[C3] .
()
() (){ }⎭

⎬
⎫

⎩
⎨
⎧

∈/′∧∈/′∨∈′∧∈′
→∈′′

∈′∀∈′∀
lottoloolottoloo

oottoo
ottooo

,

Operations can be nested to other operations: . All and only leaf
operations have no nested operations:

oooo →:

[C4]
(){ }()
(){ }() ⎭

⎬
⎫

⎩
⎨
⎧

∅≠∈′′′′′→∈/′
∧∅=∈′′′′′→∈′

∈′∀
oooooloo
oooooloo

oo
,|
,|

.

SCQL provides for the following operations serving as not leaf ones: composition,
transformation, union, and minus. Let comp be set of all composition operations,

 be transformation operation set, be union operation set, and be
minus operation set. All they are subset of the general operation set: ,

, , ; and they are not leaf operations:

trans union minus
otrans ⊂

ounion⊂ ominus ⊂ ocomp⊂
[C5] (){ }loounionminustranscompo ∈/′∈′∀ UUU .

A SCQL composition is a mathematical superposition operating on role concepts
and not sets. A SCQL composition fulfills join-like transformation of nested
operations: a) it selects all Cartesian product’s instances having the same values of
identical role concepts; b) it keeps one value for each role concept within each result
instance. For example, if we have two nested operations with signatures (Person,
Project(1), Project(2)) and (Project(2), Task), then their composition’s result has the
signature (Person, Project(1), Project(2), Task) as it is shown at Fig. 3. See Fig. 3. for
illustration of how the result’s instances are formed.

Person Project(1) Project(2)

3 5 6
7 8 6

19 1

Project(2) Task
6 5
8 4

Person Project(1) Project(2)
3 5 6
7 8 6

Task
5
5

1 1

19 1 1

Fig. 3. SCQL Composition Example

Compositions’ result signatures do not include one role concept several times
while SQL join signatures can include several semantically identical columns. A
composition’s signature contains union of all role concepts of nested operations’
signatures without duplication. For instance, the following SQL query’s result has
two semantically identical columns “Person_ID”.
SELECT * FROM PersonTaskRel ptr, PersonProjectRel ppr
WHERE ptr.Person_ID = ppr.Person_ID AND ppr.Project_ID = ‘MES’

While the equivalent SCQL composition (Task–Person–Project=“MES”) has only one
column for the concept “Person” in spite of the fact that both composed associations
contain the concept.

Another property of SCQL composition is implicit construction of join predicates
while SQL requires definition of join predicates in the explicit form. Implicit join
predicates are constructed automatically as equality of identical role concepts of
different nested operations. Since a SCQL composition does not have any additional
parameter besides a set of nested operations, it is written as simple enumeration of
nested operations in round brackets as ((Person, Phone), (Person, Skill Level, Skill
Type)), and using path notation the same query is written as (Phone–(Person, Skill
Level, Skill Type)). Here the associations (Person, Phone) and (Person, Skill Level,
Skill Type) are composed by the concept “Person” without an explicit predicate. Note
that the query’s result signature is (Person, Phone, Skill Level, Skill Type) with the
single concept “Person”.

Also SCQL provides for outer compositions being similar to SQL outer join. By
marking a nested operation with plus right after, one defines an outer composition as
((Person, Phone)+, (Person, Skill Level, Skill Type)). Here the association (Person,
Phone) is outwardly added to the result of (Person, Skill Level, Skill Type). It is true
that any outer composition is to have at least one nested operation not marked with
plus; all plus-marked (outer) nested operations are to have common role concepts
with non-outer ones; and all non-outer nested operations are to form a connected
graph within each composition.

SCQL compositions provide for filtering as well. For this a special case of leaf
operations named logical selection is used. A logical selection represents selection of
all instances (combinations of role concept values) satisfying a certain predicate. Any
logical selection is to be nested to a composition only and is described by one
predicate. The predicate is to be based on role concepts of other operations nested to
the same composition and not being logical selections. Superposing logical selections
and other nested operations, a composition takes additional filtering effect: it is kept
only those instances that satisfy predicates of all nested logical selections. Logical
selections are written as logical predicates in round brackets as ((Person, Phone),
(Person, Skill Level, Skill Type), (Skill Level=”Experienced”)) in full notation; in
short notation the same query is written as (Phone–(Person, Skill
Level=”Experienced”, Skill Type)). It reads as “select persons’ skills of the
experienced level and persons’ phones”. In both cases two associations and one
logical selection are composed. Formally, let be set of predicates, ls be logical
selection set being subset of operation set: . Then each logical selection is
characterized by one predicate: . It is true that all logical selections are
leaf operations nested to compositions:

p
ols ⊂

plslsp →:

[C6] (){ }{ }compoooosloolosllssl ∈′→∈′′∈′∀∧∈′∈′∀ , .
Another leaf operation is association selection. While logical selection content is

calculated with a predicate, instances of association selections are to be stored in a
database explicitly. All leaf operations of SCQL expressions are to be either
association selections or logical selections. Each association selection is
parameterized by one concept set only and is written as role concept enumeration in
round brackets as (Person, Task). Role concept enumerations can be both references

to SCM associations as (Person, Phone) and closure projections as (Employee, Phone)
(see above). Formally, let be association selection set being subset of general
operation set: . Then there is

cs
ocs ⊂ rccscsrc ×⊆ determining role concepts for each

association selection.
SCQL minus and union have important differences from SQL analogues as well.

SCQL permits nested operations’ signatures to be nonequivalent while SQL requires
alignment of both nested operations to have the same field quantity and type
sequences. The only requirement for SCQL minus is intersection of role concept sets
of nested operations. As a result, semantics of minus and union becomes more
transparent and order independent. For instance, selection of phones of persons
having no “experienced” skills is written in SQL with the minus operation as
SELECT Person_ID, Phone FROM Person
MINUS SELECT p.Person_ID, p.Phone FROM Person p, Skill s
WHERE p.Person_ID = s.Person_ID AND s.Level = 1 /*Experienced*/

The same query can be written in SCQL as ((Person, Phone) minus (Skill
Level=”Experienced”, Skill Type, Person)). As you see, the second nested operation
has not to be projected and correctly ordered as opposed to the above SQL query. The
result signature of the minus is the signature of the first nested operation: (Person,
Phone). And unions’ signatures are formed as a simple union of nested operations’
role concept sets. Formally, there is a restriction that any minus or union operation
has exactly two nested operations:
[C7] () (){ }{ }2,| =∈′′′′′∈′∀ ooooounionminuso U .

The last SCQL operation used as not leaf one is a transformation. Signatures of all
operations described above are completely calculated from nested operations’
signatures. SCQL transformations cover all cases concerned with controlled
modification of a single nested operation’s signature by means of projection,
grouping, and calculation of both aggregate and non-aggregate functions. To define a
transformation, one should specify result role concepts on basis of a nested
operation’s role concepts perhaps using functions. SCQL provides for two alternative
notations of result signature definition: in round brackets after dot and between
‘SELECT … FROM’ words. Both ways are equivalent, but the first one is used after
nested operation notation, and the second one is used before it. The way to use is
determined by a user’s preferences. SCQL does not require specifying role concepts
to be grouped in an explicit form. Grouping is fulfilled implicitly by role concepts not
participated in aggregate functions. For instance, the average age of persons working
on a project can be calculated as (Project–Person–Age).(Project, AVG(Age)) or as
SELECT Project, AVG(Age) FROM (Project–Person–Age). Here grouping on the
concept “Project” is implicitly done because the aggregate function AVG is used. The
same query in SQL is the following:
SELECT p.Person_ID,AVG(p.Age) FROM PersonProjectRel ppr,Person p
WHERE ppr.Person_ID = p.Person_ID GROUP BY ppr.Project_ID

As you can see, the SQL query contains tables’ names, a join criterion, and a
grouping column specified unlike the SCQL query.

The last formal constraint that should be imposed on SCQL expressions reads “any
transformation has only one nested operation”:

[C8] (){ }{ }1,| =∈′′′′′∈′∀ oooootranso .
Note that signatures of all SCQL operations represent unordered sets of role

concepts. Signatures of all not leaf operations, besides transformation operations, are
calculated on basis of nested operation’s signatures. Only transformation operations’
signatures are to be specified explicitly as rctranstransrc ×⊆ .

5. Conclusion

Summing all foresaid, we conclude the following. Semantically Complete Query
Language (SCQL) is a declarative conceptual language not using proper relation
names and based on Semantically Complete Model (SCM). All not leaf operations of
SCQL expressions, besides transformations, are merely parameterized by nested
operation sets and have no any additional parameters; and transformations have the
only additional parameter that is a result signature. Signatures of all SCQL operations
are unordered, and SCQL compositions do not require join predicates in an explicit
form. As a result, SCQL is more semantically transparent and simple for end-users
than other conceptual and data languages since the last require more detailed
specification of the query execution way: proper relation names, join predicates,
grouping fields, and other details.

As opposed to other query languages, signatures of all SCQL queries have
semantic nature as they are sets of semantic role concepts, and not sequences of
abstract columns being not associated with an underlying model’s concepts. In
addition, SCQL does not permit creation of senseless queries unlike other languages
(see examples above). Path expressions are written as role concept chains without any
additional parameters. Also, SCQL has introduced conceptions of closures and
contexts. Closure mechanism permits querying some indirectly associated concepts as
if they are associated directly. Context mechanism based on closures permits adopting
SCQL queries to users’ needs without query rewriting and permits browsing SCM
models by end-users in the more transparent way. As a result, SCQL is useful both for
end-users and for professionals.

Now SCQL is used as foundation for SCM-based client/server technology which
permits to client programs to communicate with SCM servers in terms of SCQL
queries. At the moment, the SCM server is backed by any existing RDBMS system,
and it will support other DBMS types in the future. The technology permits creating
client/server applications interacting with end-users in terms of application domain
concepts and their unique associations. Any existing RDBMS of a certain version or
higher can be now overbuilt with SCM server to create SCM-based client/server
applications [13]. The next stage of SCM-based technologies’ development is creation
of a data integration system providing for a general access interface as a single SCM
model queried by means of SCQL. It will permit using SCQL in a distributed and
heterogeneous environment in the same way as in localized one. Embedding the
technology to Internet will permit for users browsing structured data just as, the way
semi-structured data are browsing now by means of HTML.

References

1. Bloesch A.C., Halpin T.A. Conceptual Queries using ConQuer-II // Proceedings of ER’97:
16-th International Conference on Conceptual Modeling, 1997, pp. 113-126.

2. Embley D.W., Wu H.A., Pinkston J.S., Czejdo B. OSM-QL: a calculus-based graphical
query language, Tech. Report, Dept. of Comp. Science, Brigham Young Univ., Utah,
1996.

3. Halpin T.A. Information Modeling and Relational Databases. Morgan Kaufmann, San
Francisco, 2001.

4. Halpin T.A. Business Rule Verbalization // In (Doroshenko A., Halpin T., Liddle S., Mayr
H. eds.) Proc. of the 3rd International Conference ISTA’2004: Information Systems
Technology and its Applications, Salt Lake City, GI Lecture Notes in Informatics P-48,
2004, pp. 39-52.

5. ter Hofstede A.H.M., Proper H.A., van der Weide. Formal Definition of a Conceptual
Language for the Description and Manipulation of Information Models // Information
Systems, 18(7), 1993, pp. 489-523.

6. ter Hofstede A.H.M., Proper H.A., van der Weide. Query Formulation as an Information
Retrieval Problem // The Computer Journal, 39, 1996, pp. 255-274.

7. ter Hofstede A.H.M., Proper H.A., van der Weide. Exploiting Fact Verbalisation in
Conceptual Information Modelling // Information Systems, 22(6/7), 1997, pp. 349-385.

8. Owei V., Navathe S.B., Rhee H.-S. An abbreviated concept-based query language and its
exploratory evaluation. // Journal of Systems and Software, 63(1), 2002, pp. 45-67.

9. Owei V., Navathe S. A formal basis for an abbreviated concept-based query language //
Data & Knowledge Engineering, 36(2), 2001, pp. 109-151.

10. Owei V., Navathe S. Enriching the conceptual basis for query formulation through
relationship semantics in databases // Information Systems, 26(6), 2001, pp. 445-475.

11. Ovchinnikov V.V. A Conceptual Modeling Technique Based on Semantically Complete
Model, its Applications // In (Doroshenko A., Halpin T., Liddle S., Mayr H. eds.) Proc. of
the 3rd International Conference ISTA’2004: Information Systems Technology and its
Applications, Salt Lake City, GI Lecture Notes in Informatics P-48, 2004, pp. 25-38.

12. Ovchinnikov V.V. A Semantically Complete Conceptual Modeling Technique // Journal
of Conceptual Modeling (www.inconcept.com/jcm), 32, 2004.

13. Ovchinnikov V.V. SCM Portal (scm.lipetsk.ru), 2005.
14. Owei V. Natural language querying of databases: an information extraction approach in

the conceptual query language // International Journal of human-Computer Studies, 53(4),
2000, pp. 439-492.

