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Abstract. The paper is focused on a concept-based query language that permits 
querying by using only application domain concepts. The query language has 
features making it simple and transparent for end-users: each query operation is 
completely defined by its result signature and nested operation’s signatures; a 
query’s signature represents an unordered set of application domain concepts; 
join predicates are not to be specified in an explicit form. In addition, the paper 
introduces constructions of closures and contexts as applied to the language. 
The constructions permit querying some indirectly associated concepts as if 
they are associated directly and adopting queries to users’ needs without 
rewriting. All the properties make query creation and reading simpler in 
comparison with other known query languages. This query language is named 
as SCQL (Semantically Complete Query Language). 

Keywords. Database Modeling and Query Languages, Conceptual Query 
Language, Concept-Based Query Language, Semantically Complete Query 
Language. 

1. Introduction 

Conceptual models serve as means of application domain modeling as opposed to 
means of system implementation modeling. A conceptual model does not concern 
with implementation details and represents a description of an application domain’s 
essence. Conceptual query languages are meant as tools for querying conceptual 
models and have dual use. On the one hand, conceptual queries play the key role in 
constraint formalization: any constraint can be represented as an underlying query and 
an assertion upon it. On the other hand, such queries can be used for data request 
formulation. In both cases, conceptual query transparency and simplicity are the most 
important. 

Conceptual query simplification can be achieved by using natural names for 
entities and relations when modeling and querying [4, 7, 10, 14]. The method 
significantly simplifies end-users’ work as interaction with systems takes place 
directly in application domains’ terms. Examples of such query languages are 
LISA-D [5, 6] based on Object-Role Modeling [3], CQL [10]. But this simplification 

mailto:ovch@lipetsk.ru


is not structural: the languages’ core remains complex. Let us illustrate the fact with 
the example of project management domain. Persons, tasks, and projects are the main 
entities of the domain. Projects consist of tasks which are assigned to persons; also 
persons can directly participate in projects’ teams. The domain has the following 
formalization in ORM: 
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Fig. 1. ORM Model of Project Management Domain 

The query “select all tasks assigned to persons participating in the project MES” is 
formulated in LISA-D as “Task being-assigned-to Person participating-in Project 
MES”. The path expression has the following complexity factors: a) the order of 
entities and relations is important and should be kept correct; b) the appropriate 
predicator precise name should be remembered. A user is not insured against creation 
of senseless queries like “Task solving Person”, “Person consisting of Project”, or 
mistakes like “Person solved Task”. In addition, LISA-D does not support subqueries 
[5]. Using the language proposed further, the query is formulated as (Task–Person–
Project=“MES”). A user has not to remember relation or predicator precise names and 
has not to keep correct sequence of relations. Also the language does support for 
subqueries. 

Unfortunately, LISA-D did not become an industrial standard for information 
system development and is slightly supported by tools. Now the standard is SQL. 
Therefore, let us use SQL as comparison basis below. The above example domain can 
be formalized as ER and physical models as the Fig. 2 shows. To use the example 
below as running one, we introduce person’s phone, age, skills, and employees as 
persons’ particular case. 

The above query should be formulated in SQL as follows:  
SELECT Task_ID FROM PersonTaskRel ptr, PersonProjectRel ppr 
WHERE ptr.Person_ID = ppr.Person_ID AND ppr.Project_ID = ‘MES’ 

In comparison with the query (Task–Person–Project=“MES”) proposed, the SQL 
query has the following complexities: a) the join predicate “ptr.Person_ID = 
ppr.Person_ID” is defined explicitly; b) the appropriate precise table names should be 
remembered; c) the query’s result signature is lacking in semantics since it consists of 
abstract columns not associated with the domain’s concepts; d) fields’ and tables’ 
names are far from natural language. 

LISA-D, SQL, and other query languages use proper relation names for 
referencing to relations. A user has to remember a lot of precise names to formulate 
queries. The reason of this lies in underlying modeling techniques: ORM, ER, and 
others. The techniques imply identification of relations by their proper names. Any 
two entities of the models can have a lot of association ways, and each of the ways 



takes its own unique name. Not all relations can be named clearly and shortly. 
Sometimes full names of relations are whole sentences, actually enumerating 
participated concepts and only. For instance, the relationship of “Person” and “Task” 
can be named like “Persons solving tasks”, “Tasks being solved by persons”, or 
“Assignments of tasks to persons”. A user cannot think about entities as they are 
merely associated. But it is not necessary to remember the association’s precise name 
if one refers to it by (Person, Task) as the proposed language implies. Another 
complexity factor is that queries’ result signatures are not based on application 
domains’ concepts, and a query’s result interpretation is completely determined by its 
structure. For instance, the result “Task_ID” in the previous SQL query can mean 
anything a priori, even phone number. Moreover, a user is not insured against 
formulation of senseless queries, for instance, joining tables with “Age = Level”. As a 
result, the languages are too complicated for end-users. 
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Fig. 2. ER and Physical Model of Project Management Domain 

Another way of query simplification is use of a GUI application concealing query 
complexity, as, for instance, Conquer-II [1] and OSM-QL [2] propose. Using 
intuitively clear interface elements like trees, an end-user can easily construct 
conceptual queries. Nevertheless, the way has the limit imposed by strong impact of a 
query language’s core on a user interface structure, for example, tree node types, node 
connectivity and node attributes. Since each operation of the language proposed 
further is completely defined by its resulting signature and nested operation’s 
signatures, we suppose that the language suites the purpose well and should be 
developed in the direction in the future. 

2. Restriction Imposed on Underlying Model 

It is known the only way of referencing to relations without explicit naming it: to use 
concept combinations as references to relations so that each concept combination gets 
identification of an appropriate relation. The identification would imply a sequence of 



concepts, but this method is acknowledged as non-transparent. The proposed 
language uses another way of relation identification: by means of application domain 
concept sets. Not any model can be used as basis for a query language not using 
proper relation names. Such model is to permit identification of relations by domain 
concept sets. The model having the property was proposed at [11, 13] and was named 
as Semantically Complete Model (SCM). SCM is a full-scale modeling technique that 
is near to natural language text (see [11, 13] for notation details). SCM model of the 
above running example is the following: 
Person solves Tasks  
Person has a Skill Level for a Skill Type 
       [(Person, Skill Type) → Skill Level]
Person is of Age → 

Person has a Phone → 
Employee is a Person ≡ 
Project consists of Tasks ← 
Project has a team of Persons  

Formally, an SCM model represents a set of associations based on sets of concepts. 
Let  be set of all SCM models, a  be set of all associations, c  be set of all 
concepts,  determine associations for models, and 

m
amma ×⊆ caac ×⊆  determine 

concepts for associations. Then the association identification constraint “a model 
cannot have two associations based on the same set of concepts” is formulated as 
follows: 
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SCM has another restriction proving its name: an association of one SCM model 
cannot be based on a concept set being proper subset of other associations’ concept 
sets. This restriction guarantees each association defines semantics of underlying 
concepts’ correlation completely. 
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The restriction is not discussed in the paper in details as it does not influence on main 
properties of the language proposed (see [12] for details). The conceptual language 
based on SCM and not using proper association names for query formulation is 
named as Semantically Complete Query Language (SCQL) [12, 13]. 

3. Association Referencing within SCQL Expressions 

SCQL does not use proper association names. As a result of C1, defining a concept 
set, one makes a reference to an association. SCQL provides for simple notation of 
such references: enumeration of concepts by comma in round brackets. Concept order 
in such enumerations is not important. For instance, both of the references (Person, 
Skill Level, Skill Type) and (Person, Skill Type, Skill Level) are correct. As you see, 
using SCQL, one has not to remember proper association names and should know the 
fact of concepts’ correlation only.  

A SCQL composition can be considered as a mathematical composition of 
associations based on domain concepts and not sets (see the next section for details). 
A SCQL path expression is a composition of several binary associations and is 



defined as concept chains. Each chained concept pair is considered as a concept set 
referencing to an association. A chain as a whole represents a composition of all 
associations referenced by pairs indicated with dashes. For instance, (Person–Task–
Project) selects for each task its project and assigned persons by composing the 
associations (Person, Task) and (Task, Project). As you see, chain links have no any 
attributes besides concepts themselves as opposed to, for example, LISA-D where 
names of used relations (predicators, saying more precisely) are to be defined 
explicitly. SCQL path expressions can be written starting from any edge concept, for 
example, (Project–Task–Person) is equivalent to (Person–Task–Project). A star 
expression, when binary associations of a composition are organized as a star with 
one central concept, can be formulated using the path notation as (Phone–Person–
Project), or using the star notation as (Person–[Project, Phone, …]).  

One concept can play several roles within an expression, for example, when using 
one association several times. For this purpose SCQL has the conception “role 
concept”. A role concept represents a concept extended with a role name indicating 
the concept’s role in a certain SCQL expression. Role names are placed in round 
brackets after concepts if different roles are necessary. For instance, consider the 
expression (Project(Task’s)–Task–Person–Project(Person’s)). Here the projects are 
semantically diverse columns of the expression’s result and have the role names 
“Task’s” and “Person’s”. Not using the roles, the expression becomes cyclic with one 
project column: (Project–Task–Person–Project), which reads as “select persons with 
their tasks being part of projects the persons are members”. Since the expression is 
cyclic, it can be equivalently reformulated starting from any concept, for instance, as 
(Person–Task–Project–Person). Formally, let  be set of role concepts, rn  be set of 
role names. Then the maps  and  reflect that each role 
concept pertains to a concept and can have a role name. 

rc
crcrcc →: rnrcrcrn →:

SCQL expressions can be additionally simplified by using association closures. An 
association closure is defined over one SCM model and represents a set of 
associations. When applying a closure, some indirectly associated concepts can be 
used within expressions as if they are connected directly. For example, if (Employee, 
Person) and (Person, Phone) are included to a closure, one can select data using 
(Employee, Phone) or (Employee–Phone) instead of (Employee–Person–Phone). 
Closures increase query transparency since they permit omitting transition details 
when it is obvious for users. Actually, a closure represents a predefined composition 
being used implicitly, namely a composition of all associations included to the 
closure. SCQL provides for transparent way of closure use: by enumerating concepts 
(role concepts) in round brackets, one can make a reference to an association as well 
as a projection of a closure. For a given concept set a closure is applied only if there is 
no an association based on it. For example, (Employee, Phone) is projection of the 
closure’s composition (Employee–Person–Phone), while (Person, Phone) is reference 
to the appropriate association. Formally, let ac  be set of all closures. Then 

 defines associations included to each closure. Closures serve for similar 
purpose as the abbreviated concept-based query language presented in [8, 9] which 
does not require entire query paths to be specified but only their terminal points. 

aacaca ×⊆

Closures make possible governing expression execution contexts. The simplest 
context is empty one when closures are not used and all concept enumerations refer to 
associations directly as (Person, Phone). Contexts can contain several active closures. 



In this case, all associations of active closures are united to one consolidated closure 
of a context. If a concept enumeration does not refer to an association, the 
consolidated closure is projected on these concepts. A special case of closures is 
default closures. A default closure of a model is used by default for expressions if the 
contrary is not indicated explicitly. A closure not being default is to be uniquely 
named. Closures can be added and removed explicitly when tuning an expression 
execution context. Contexts permit simplifying and clarifying query expressions 
significantly. For instance, all non-cycle path and star expressions can by written as 
simple enumeration of required concepts without indicating chains or stars explicitly 
as (Employee, Phone) in the example above. Formally, let  be context set, then cx

accxcxac ×⊆  defines closures constituting each context. Both default closures  
and named closures ncc  are subsets of the general closure set: , . 

dac
acdac ⊆ acnac ⊆

Query semantics can change greatly when modifying a context. It makes SCQL 
more flexible, but if one uses the context mechanism heedlessly, semantics of 
complex queries can change unpredictably; context change is to be closely controlled. 
Note that all SCQL queries stay sensible in any context, but senses differ. SCQL 
contexts can be created according to different strategies. An obvious strategy is to 
reflect users’ preferences for data browsing. This approach is suitable for simple 
queries when users go from one concept to another without writing complex 
expressions. In this case, contexts can be changed explicitly or automatically by using 
browsing statistics, for instance, a frequency of association use. Another strategy of 
context creation aims to reflection of shortenings generally accepted by a community 
or an application domain. The shortenings underlie the default closure. Additionally, 
several named closures can be created to provide for some optional shortening being 
active for some part of a community or an application domain. The options are 
activated when necessary. And the last strategy can be used in natural language 
recognition systems. The strategy implies a context changes dynamically for each 
new text part. According to this strategy, a context of previous text part is used as 
basis for a context of next text part and the last context is modified by using some 
statistics of both text parts. Context mechanism of SCQL is unique in its own. Other 
known languages have no context mechanisms at such deep architectural level: 
context change does not require query rewriting.  

4. SCQL expression properties 

The paper is focused on the following main SCQL property: it permits query 
formulation only by using application domain concepts. It is guaranteed by the fact 
that associations are identified by concept sets. The property increases transparency 
and simplicity of query expressions, especially when using closures, path and star 
expressions. Furthermore, SCQL has other interesting properties based on features of 
its operations that are considered below.  

An expression of any query language represents a tree of operations. A set of 
possible operation types varies from one language to another, but leaf operations are 
to be selections from relations of an underlying model. Let e  be set of all expressions, 

 be set of operations, o ot  be set of operation types,  determine operations eo →oe :



of each expression, and otooot →:  determine an operation type for each operation. 
Then leaf operation types are subset of all operation types ( ) and leaf 
operations are subset of all operations ( ). It is true that all and only leaf 
operations are to be of leaf operation types: 

otlot ⊂
olo ⊂
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Operations can be nested to other operations: . All and only leaf 
operations have no nested operations: 
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SCQL provides for the following operations serving as not leaf ones: composition, 
transformation, union, and minus. Let comp  be set of all composition operations, 

 be transformation operation set,  be union operation set, and  be 
minus operation set. All they are subset of the general operation set: , 

, , ; and they are not leaf operations: 

trans union minus
otrans ⊂

ounion⊂ ominus ⊂ ocomp⊂
[C5] ( ){ }loounionminustranscompo ∈/′∈′∀ UUU . 

A SCQL composition is a mathematical superposition operating on role concepts 
and not sets. A SCQL composition fulfills join-like transformation of nested 
operations: a) it selects all Cartesian product’s instances having the same values of 
identical role concepts; b) it keeps one value for each role concept within each result 
instance. For example, if we have two nested operations with signatures (Person, 
Project(1), Project(2)) and (Project(2), Task), then their composition’s result has the 
signature (Person, Project(1), Project(2), Task) as it is shown at Fig. 3. See Fig. 3. for 
illustration of how the result’s instances are formed. 
 

 
Person Project(1) Project(2)

3 5 6 
7 8 6 

19  1 

Project(2) Task 
6 5 
8 4 

Person Project(1) Project(2)
3 5 6 
7 8 6 

Task 
5 
5 

1 1 

19  1 1 

 
Fig. 3. SCQL Composition Example 

Compositions’ result signatures do not include one role concept several times 
while SQL join signatures can include several semantically identical columns. A 
composition’s signature contains union of all role concepts of nested operations’ 
signatures without duplication. For instance, the following SQL query’s result has 
two semantically identical columns “Person_ID”. 
SELECT * FROM PersonTaskRel ptr, PersonProjectRel ppr 
WHERE ptr.Person_ID = ppr.Person_ID AND ppr.Project_ID = ‘MES’ 



While the equivalent SCQL composition (Task–Person–Project=“MES”) has only one 
column for the concept “Person” in spite of the fact that both composed associations 
contain the concept.  

Another property of SCQL composition is implicit construction of join predicates 
while SQL requires definition of join predicates in the explicit form. Implicit join 
predicates are constructed automatically as equality of identical role concepts of 
different nested operations. Since a SCQL composition does not have any additional 
parameter besides a set of nested operations, it is written as simple enumeration of 
nested operations in round brackets as ((Person, Phone), (Person, Skill Level, Skill 
Type)), and using path notation the same query is written as (Phone–(Person, Skill 
Level, Skill Type)). Here the associations (Person, Phone) and (Person, Skill Level, 
Skill Type) are composed by the concept “Person” without an explicit predicate. Note 
that the query’s result signature is (Person, Phone, Skill Level, Skill Type) with the 
single concept “Person”.  

Also SCQL provides for outer compositions being similar to SQL outer join. By 
marking a nested operation with plus right after, one defines an outer composition as 
((Person, Phone)+, (Person, Skill Level, Skill Type)). Here the association (Person, 
Phone) is outwardly added to the result of (Person, Skill Level, Skill Type). It is true 
that any outer composition is to have at least one nested operation not marked with 
plus; all plus-marked (outer) nested operations are to have common role concepts 
with non-outer ones; and all non-outer nested operations are to form a connected 
graph within each composition. 

SCQL compositions provide for filtering as well. For this a special case of leaf 
operations named logical selection is used. A logical selection represents selection of 
all instances (combinations of role concept values) satisfying a certain predicate. Any 
logical selection is to be nested to a composition only and is described by one 
predicate. The predicate is to be based on role concepts of other operations nested to 
the same composition and not being logical selections. Superposing logical selections 
and other nested operations, a composition takes additional filtering effect: it is kept 
only those instances that satisfy predicates of all nested logical selections. Logical 
selections are written as logical predicates in round brackets as ((Person, Phone), 
(Person, Skill Level, Skill Type), (Skill Level=”Experienced”)) in full notation; in 
short notation the same query is written as (Phone–(Person, Skill 
Level=”Experienced”, Skill Type)). It reads as “select persons’ skills of the 
experienced level and persons’ phones”. In both cases two associations and one 
logical selection are composed. Formally, let  be set of predicates, ls  be logical 
selection set being subset of operation set: . Then each logical selection is 
characterized by one predicate: . It is true that all logical selections are 
leaf operations nested to compositions: 

p
ols ⊂

plslsp →:

[C6] ( ){ }{ }compoooosloolosllssl ∈′→∈′′∈′∀∧∈′∈′∀ , . 
Another leaf operation is association selection. While logical selection content is 

calculated with a predicate, instances of association selections are to be stored in a 
database explicitly. All leaf operations of SCQL expressions are to be either 
association selections or logical selections. Each association selection is 
parameterized by one concept set only and is written as role concept enumeration in 
round brackets as (Person, Task). Role concept enumerations can be both references 



to SCM associations as (Person, Phone) and closure projections as (Employee, Phone) 
(see above). Formally, let  be association selection set being subset of general 
operation set: . Then there is 

cs
ocs ⊂ rccscsrc ×⊆  determining role concepts for each 

association selection.  
SCQL minus and union have important differences from SQL analogues as well. 

SCQL permits nested operations’ signatures to be nonequivalent while SQL requires 
alignment of both nested operations to have the same field quantity and type 
sequences. The only requirement for SCQL minus is intersection of role concept sets 
of nested operations. As a result, semantics of minus and union becomes more 
transparent and order independent. For instance, selection of phones of persons 
having no “experienced” skills is written in SQL with the minus operation as  
SELECT Person_ID, Phone FROM Person  
MINUS SELECT p.Person_ID, p.Phone FROM Person p, Skill s  
WHERE p.Person_ID = s.Person_ID AND s.Level = 1 /*Experienced*/ 

The same query can be written in SCQL as ((Person, Phone) minus (Skill 
Level=”Experienced”, Skill Type, Person)). As you see, the second nested operation 
has not to be projected and correctly ordered as opposed to the above SQL query. The 
result signature of the minus is the signature of the first nested operation: (Person, 
Phone). And unions’ signatures are formed as a simple union of nested operations’ 
role concept sets. Formally, there is a restriction that any minus or union operation 
has exactly two nested operations: 
[C7] ( ) ( ){ }{ }2,| =∈′′′′′∈′∀ ooooounionminuso U . 

The last SCQL operation used as not leaf one is a transformation. Signatures of all 
operations described above are completely calculated from nested operations’ 
signatures. SCQL transformations cover all cases concerned with controlled 
modification of a single nested operation’s signature by means of projection, 
grouping, and calculation of both aggregate and non-aggregate functions. To define a 
transformation, one should specify result role concepts on basis of a nested 
operation’s role concepts perhaps using functions. SCQL provides for two alternative 
notations of result signature definition: in round brackets after dot and between 
‘SELECT … FROM’ words. Both ways are equivalent, but the first one is used after 
nested operation notation, and the second one is used before it. The way to use is 
determined by a user’s preferences. SCQL does not require specifying role concepts 
to be grouped in an explicit form. Grouping is fulfilled implicitly by role concepts not 
participated in aggregate functions. For instance, the average age of persons working 
on a project can be calculated as (Project–Person–Age).(Project, AVG(Age)) or as 
SELECT Project, AVG(Age) FROM (Project–Person–Age). Here grouping on the 
concept “Project” is implicitly done because the aggregate function AVG is used. The 
same query in SQL is the following: 
SELECT p.Person_ID,AVG(p.Age) FROM PersonProjectRel ppr,Person p 
WHERE ppr.Person_ID = p.Person_ID GROUP BY ppr.Project_ID 

As you can see, the SQL query contains tables’ names, a join criterion, and a 
grouping column specified unlike the SCQL query. 

The last formal constraint that should be imposed on SCQL expressions reads “any 
transformation has only one nested operation”: 



[C8] ( ){ }{ }1,| =∈′′′′′∈′∀ oooootranso . 
Note that signatures of all SCQL operations represent unordered sets of role 

concepts. Signatures of all not leaf operations, besides transformation operations, are 
calculated on basis of nested operation’s signatures. Only transformation operations’ 
signatures are to be specified explicitly as rctranstransrc ×⊆ . 

5. Conclusion 

Summing all foresaid, we conclude the following. Semantically Complete Query 
Language (SCQL) is a declarative conceptual language not using proper relation 
names and based on Semantically Complete Model (SCM). All not leaf operations of 
SCQL expressions, besides transformations, are merely parameterized by nested 
operation sets and have no any additional parameters; and transformations have the 
only additional parameter that is a result signature. Signatures of all SCQL operations 
are unordered, and SCQL compositions do not require join predicates in an explicit 
form. As a result, SCQL is more semantically transparent and simple for end-users 
than other conceptual and data languages since the last require more detailed 
specification of the query execution way: proper relation names, join predicates, 
grouping fields, and other details. 

As opposed to other query languages, signatures of all SCQL queries have 
semantic nature as they are sets of semantic role concepts, and not sequences of 
abstract columns being not associated with an underlying model’s concepts. In 
addition, SCQL does not permit creation of senseless queries unlike other languages 
(see examples above). Path expressions are written as role concept chains without any 
additional parameters. Also, SCQL has introduced conceptions of closures and 
contexts. Closure mechanism permits querying some indirectly associated concepts as 
if they are associated directly. Context mechanism based on closures permits adopting 
SCQL queries to users’ needs without query rewriting and permits browsing SCM 
models by end-users in the more transparent way. As a result, SCQL is useful both for 
end-users and for professionals. 

Now SCQL is used as foundation for SCM-based client/server technology which 
permits to client programs to communicate with SCM servers in terms of SCQL 
queries. At the moment, the SCM server is backed by any existing RDBMS system, 
and it will support other DBMS types in the future. The technology permits creating 
client/server applications interacting with end-users in terms of application domain 
concepts and their unique associations. Any existing RDBMS of a certain version or 
higher can be now overbuilt with SCM server to create SCM-based client/server 
applications [13]. The next stage of SCM-based technologies’ development is creation 
of a data integration system providing for a general access interface as a single SCM 
model queried by means of SCQL. It will permit using SCQL in a distributed and 
heterogeneous environment in the same way as in localized one. Embedding the 
technology to Internet will permit for users browsing structured data just as, the way 
semi-structured data are browsing now by means of HTML. 
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