
Method Chunk Federation

Isabelle Mirbel

Laboratoire I3S, Les Algorithmes - Route des Lucioles, BP 121

F-06903 Sophia Antipolis, Cedex - France

Abstract. Method Engineering aims at providing effective solutions
to build, improve and support evolution of development methodolo-
gies. Contributions, in the field of situational method engineering, aim
at providing techniques and tools allowing to construct project-specific
methodologies. But little research has focused on how to tailor such sit-
uational methodologies when used as organization-wide standard ap-
proaches. In this context, we propose an approach which consists in
federating the method chunks built from the different project-specific
methods in order to allow each project to share its best practices with
the other projects without imposing to all of them a new and unique
organization-wide method.

1 Introduction

Several decades of works have been spent to provide effective solutions to build,
improve and support evolution of development methodologies. Different ap-
proaches have been successively proposed to provide suitable support to Informa-
tion System and Software Development (ISSD).
Experiments show that the provided models and methods have been adapted to
each of the different situations in which they have been used. At the end, almost
every project has carried out tailoring in order to apply effectively best standard
practices. It exists now a lot of variations around a specific method, each of them
looking suitable for the project it has been customized for but not so easily trans-
latable in a somewhat different project, even inside the same company or organi-
zation.
Works in the field of Situational Method Engineering (SME) have dealt with so-
lutions to better handle and answer this need for customization at project level
[1,15,4]. But as it has been emphasized in [2] little research has focused on how
to tailor such situational methodologies when used as organization-wide standard
approaches.
One solution is to capture and understand all the situational methods used in-
side each project to built an organization-wide standard method by merging the
best practices coming from each of them. This solution requires that method
engineers (i.e. the persons in charge of the methodology in the organization) are



able to capture and understand each variation of each method in each project.
It is not an easy task, as it is emphasized in [14] : method engineers and method
users (i.e. the person applying / using the methodology) lack experience and
ability to establish ’home grown’ development methodologies or to tailor existing
methodologies. It also requires to make each method user accept and use the new
organization-wide method instead of his/her customized version of it. It is also
not easy because method users prefer lightweight processes/methodologies to
heavyweight ones in which they feel more implicated. Lightweight methodologies
increase method users involvement on the contrary of heavyweight methodologies
where the only significant choices are made by method engineers. Feedback from
users shows that methodologies are seen as too prescriptive and too rigid [13].

In this context, we propose an alternative solution which consists in federating
the different project-specific methods in order to allow each project to share its
best practices with the other projects without imposing to all of them a unique
organization-wide method.
The remainder of this paper is as follows. In Section 2, we propose a framework
for method federation. In Section 3, the Reuse Frame and the Reuse Context
making possible the federation are presented. Section 4 details and illustrates
the User Situation and the Similarity Metrics we provide to retrieve meaningful
method parts and take advantage of the federation. The conclusion and discus-
sion about our future work are proposed in Section 5.

2 A Framework for Method Chunk Federation

To handle project-specific method federation, support has to be provided to first
make the project-specific method federable and then to federate the federable
best practices. It means first to break down the method into meaningful atomic
parts. It then requires to qualify each part with meaningful keywords in order
to make it retrievable by others inside the federation.

2.1 Breaking down Methods into Atomic Parts

The notion of reusable method component has been widely studied in the field of
SME. Based on the observation that any method has interrelated aspects, prod-
uct and process, several authors proposed two types of method components: pro-
cess fragments and product fragments [5,15,6]. Other authors consider only pro-
cess aspects and provide process components [7], or process fragments [9]. In the
work of Ralyte, this two aspects are integrated in the same module called Method
Chunk [16,4,11]. This notion represents the basic block for constructing method.
Generally, Method Chunk are stored in some method repository or method base.

In our work, we started from this notion of Method Chunk which seems the most
complete and suitable for our purpose. In this approach about Method Chunk, as-
sembly techniques have also been widely studied [11] and this is also useful in our



proposal where we help project members (method users and method engineers)
to enrich their project-specific method by discovering new guidelines through the
federation ; these new guidelines could then be assembled / integrated in project-
specific methods thanks to these operators. In Ralyte approach, a method is
viewed as a set of loosely coupled Method Chunks expressed at different levels of
granularity. A Method Chunk is an autonomous and coherent part of a method
supporting the realisation of some specific ISSD activities. Such a modular view
permits to reuse chunks of a given method in others and to federate chunks in our
approach.
As a part of a method, a Method Chunk ensures a tight coupling of some process
part of a method process model and its related product part. The interface of the
Method Chunk captures the reuse context in which the Method Chunk can be ap-
plied. Besides, a descriptor is associated to every Method Chunk. It extends the
contextual view captured in the chunk interface to define the context in which
the chunk can be reused. For more details about the structure and content of a
Method Chunk, please refer to [10,11].

2.2 Qualifying Method Atomic Parts

As it has been highlighted before, making method federable means to provide
means to break down methods into reusable autonomous and coherent parts and
also to provide means to qualify each method part with meaningful keywords
in order to make it retrievable by others. In [18] , a framework for component
reuse in meta-modelling based software development is presented. It synthe-
sizes different types of reuse in system development and requirement engineer-
ing processes. The authors emphasize the fact that reuse of system develop-
ment knowledge in terms of methods and component methods must be consid-
ered. With regards to their framework, we propose an approach to deal with
functional reuse along all the activities within system development and require-
ment engineering processes. Our focus is on method engineering activities and
knowledge and we cover the abstraction and selection steps of the reuse process.

Dedicated efforts have been made, in the field of method engineering, to provide
efficient classification and retrieving techniques to store and retrieve Method
Chunks. Classification and retrieving techniques are currently based on struc-
tural relationships among chunks (specialization, composition, alternative, etc.)
and reuse intention matching. From our point of view, current classification and
retrieving means are not fully suitable for federation of Method Chunks because
they are supported by the structure of the method they are part of. Recent work
on method component reuse combines user intention and application domain
information in order to provide alternative and richer means to organize and
retrieve components [17]. But again, domain information does not look like the
most suitable information to support federation as projects may belong to dif-
ferent application domains. The only information that will be understandable
by every project member (that is to say information which is neither application
domain oriented nor project-specific method oriented) and helpful for method



engineering is the knowledge about ISSD activities. We believe that knowledge
about organizational, technical and human factors is critical knowledge about
ISSD activities [3]. Therefore, we propose a Reuse Frame aggregating critical as-
pects useful to qualify ISSD activities in order to support reuse and federation.
The Reuse Frame can be seen as an ontology dedicated to ISSD activities. It is
shared by all the projects and project members in order to support federation.
Indeed, the descriptor associated to each Method Chunk (which extends the con-
textual view captured in the chunk interface to define the context in which the
chunk can be reused) is specified through a set of at least one keywords taken
from the Reuse Frame. It is called the Reuse Context and allows to meaningfully
qualify Method Chunks in order to allow their reuse through the federation.

2.3 Comparing Users Need and Method Chunks

Our proposal aims at federating different project-specific methods that is to say
at allowing each project to share its best practices with the other projects but
without imposing to all of them a unique organization-wide method. For this pur-
pose, we provide a mechanism to extract meaningful Method Chunk from the fed-
eration. A Method Chunk is meaningful (with regards to a project member need)
because it covers one or several ISSD activities covered by the project-specific
method and is therefore an alternative way of working which may be presented to
the project member. For this purpose, we defined a Similarity Metrics between
Method Chunks to compare a project-specific Method Chunks with the Method
Chunks of the set of federated Method Chunks.
A Method Chunk is also meaningful when it covers one or several ISSD activities
which are not (well) covered by the project-specific method but the project mem-
ber searches for guidelines on these activities. For this purpose, our Similarity
Metrics is also appliable on a User Situation and a Method Chunk to quantify
the matching between a and a Method Chunk in the set of federated Method
Chunks. The User Situation is specified through a set of at least one pertinent
keywords and a set of forbidden keywords, that is to say aspects of ISSD he/she
is not interested in. All keywords are taken from the Reuse Frame. The main
interest of the federation is the ability to propose new Method Chunks to project
members. Means have to be provided to retrieve as many Method Chunks as pos-
sible with regards to the project member needs. Therefore Method Chunks which
Reuse Contexts do not fully match the keywords provided by the project mem-
ber may be of interest and have also to be retrieved from the federation. In this
case, the similarity between the User Situation and the Reuse Context has to be
quantified. A Reuse Context which does not fully match the User Situation is for
instance a Reuse Context which keywords are included in the User Situation list
of keywords. Specification of ISSD is not something very well defined and each
person making reference to it could understand something slightly different about
it. Therefore, guidelines may be more or less detailed in the body of a Method
Chunk, and Method Chunk may be qualified by more or less precise keywords,
even if shared by all the project members. Therefore, we believe it is meaningful,
to retrieve Method Chunk qualified by more generic or more specific keywords.



Looking at knowledge qualifying ISSD activities, one may observe that some of
them are ordered in time. For instance, expert designers know more about design
than medium ones, who know more than novice ones. Therefore, a Method Chunk
dedicated to an expert designer may also be interesting for a medium one, as well
as a Method Chunk dedicated to a novice designer may also be interesting for a
medium one. Borderlines between ordered aspects (expert, medium and novice
designers) are not always strictly defined. Therefore, we believe it is meaningful,
when retrieving Method Chunks to search also for Method Chunks associated to
keywords previous or next the keywords under consideration in the User Situa-
tion. In this extended kind of retrieval also the similarity between the User Situ-
ation and the Reuse Context of the retrieved Method Chunks has to be quantified.

In the following sections, we will first detail the Reuse Frame and the Reuse Con-
text making project-specific methods federable. Then, in section 4, we will show
how to take advantage of the federation with the help of the User Situation and
the Similarity Metrics.

3 Making project-specific method federable

Making method federable means to provide ways to qualify each method part
with meaningful keywords. In this section we first present the Reuse Frame
which aggregates different critical aspects useful to qualify ISSD activities with
regards to the organizational, technical and human dimensions [3]. And then,
we introduce the Reuse Context which allows to meaningfully qualify Method
Chunks with regards to the Reuse Frame in order to support their federation.

3.1 The Reuse Frame

In our approach, ISSD knowledge is described in terms of aspects, belonging
to aspect families, which are successive refinements of the three main factors
of ISSD: human, organizational and technical. Starting from these three basic
dimensions, each company may populate the Reuse Frame with its own relevant
aspects, but we also provide a Reuse Frame content that we built from various
works made on meaningful aspects for method characterization [10] . With re-
gards to the organizational dimension, we started from the work of van Slooten
and Hodes providing elements to characterize ISSD projects [12]: contingency
factors, projects characteristics, goals and assumptions as well as system engi-
neering activities. With regards to the Application Domain dimension, we started
from previous work on JECKO, a context-driven approach to software develop-
ment developed in collaboration with the Amadeus Company and proposing a
contribution to define software critical aspects in order to get suitable documen-
tation to support software development process [9]. The Application Domain
dimension also includes aspects related to source system (as legacy system are
more and more present in organizations) and application technology, which re-
quires more and more adapted development processes. And finally, about the



human dimension, means are provided to qualify the different kinds of method
users that may be involved in the ISSD project (analysts, developers, etc.) as
well as their expertise level. Indeed, the Reuse Frame is a tree in which nodes
are linked through 3 different kinds of refinement relationships: refinement into
node to specify more specific aspects, more specific and classified aspects, more
specific and exclusive aspects. The refinement into node to specify more specific
and classified aspects allows to specify some order among the different aspects
at a same refinement level. This classification information may be helpful when
retrieving Method Chunks to find Method Chunks which Reuse Contexts include
aspects classified previous or next the aspects of the Method Chunk or of the
User Situation under consideration. The refinement into node to specify exclu-
sive aspects is also another useful kind of relationship. It avoids project members
from qualifying Method Chunks or User Situation through incompatible aspects.

In the Reuse Frame, the root node, base, is mandatory, as well as the 3 nodes
specifying the main aspects: Human, Organizational and Application domain.
Nodes close to the root node deal with general aspects while nodes close to leaf
nodes (including leaf-node) deal with precise aspects. An aspect is fully defined
as a path from the root node to a node n of the Reuse Frame. If n is not a leaf
node, then it should not have exclusive relationships starting from it, otherwise
one of the ending node of the exclusive relationships has to be chosen as n. Inclu-
sion between aspects has been defined to specify when an aspect is more generic
or more specific than another one. Compatibility between aspects allows aspects
to be part of the same User Situation or Reuse Context. Figure 1 shows part of
a well-formed Reuse Frame. In this part of the Reuse Frame, Source System is
an example of wrong aspect while Legacy System is an example of right one;
Legacy System is included in Functional Domain Reuse; Strong Reuse is an
aspect more specific than Code Reuse and Legacy System is more generic than
Code Reuse; Strong Reuse is next Medium Reuse while Weak Reuse is previous
Medium Reuse; and finally, No Source System and Functional Domain Reuse
are not compatible aspects while Virtual User and Real User are compatible
ones. For the full description of the rules to build a well-formed Reuse Frame
please refer to [8].

3.2 The Reuse Context

The Reuse Context allows to meaningfully qualify Method Chunks with regards
to the aspects defined in the Reuse Frame. It is defined as a set of at least
one compatible aspect taken from the Reuse Frame. Method Chunks providing
general guidelines are usually associated to general aspects, that is to say aspects
represented by nodes close to the root node. On the contrary, specific guidelines
are provided in Method Chunks associated to precise aspects, that is to say
aspects corresponding to nodes close to leaf-nodes or leaf-nodes themselves. It is
up to the project member who enters the Method Chunk into the project-specific
method chunk repository to select the most meaningful aspects to qualify the
Method Chunk.



Fig. 1. The Reuse Frame - An example

4 Supporting Method Chunk Federation

In this section we present the User Situation allowing project members to spec-
ify their need and the Similarity Metrics to compare project member need or
project-specific method chunk with the whole set of federated Method Chunks.
Then, we detail how we extended our Similarity Metrics to allow to retrieve
Method Chunks which Reuse Context includes more generic or more specific as-
pects, as well as aspects classified as previous or next the aspects of the Method
Chunk under consideration.

4.1 User Situation

The User Situation allows project members to retrieve Method Chunks from the
repository by selecting aspects among thus stored in the Reuse Frame in order
to express the main features of the Method Chunks he/she is interested in. In
the User Situation, in addition to the pertinent aspects, called necessary aspects,
project members may give forbidden aspects, that is to say aspects he/she is not
interested in. It could be helpful in some cases to be sure the Method Chunks
including these (forbidden) aspects will not appear in the retrieved set of Method
Chunks answering the methodological need. All aspects must be compatible
among each others inside each set.
If the project member searches for general guidelines, he/she should select neces-
sary aspects which are less refined, that is to say aspects corresponding to nodes
close to the root node of the Reuse Frame. On the contrary, if the project mem-
ber searches for specific guidelines, he/she may specify his/her need by selecting



aspects which are more refined, that is to say aspects corresponding to nodes
close to the leaf nodes or leaf nodes themselves in the Reuse Frame.

4.2 Similarity Metrics

The main goal of our work is to provide means to federate different project-
specific methods in order to allow each project member to share the best prac-
tices of his/her project with the members of the other projects without imposing
to all of them a new and unique organization-wide method built from all the
project-specific methods. In this context, our contribution aims more precisely
at providing means to retrieve meaningful Method Chunks from the federation. A
Method Chunk may be meaningful because it deals with one or several ISSD ac-
tivities covered by the project-specific method and is therefore an alternative way
of working which may be presented to the project member. The Reuse Context
of the two Method Chunks under consideration (the one from the project-specific
Method Chunk and the one from the Method Chunk from the federation) are com-
pared. By looking at the number of common aspects in their Reuse Contexts,
a Similarity Metrics, varying between 0 and 1, is computed to indicate to the
project member how much the Method Chunk from the federation matches the
project-specific Method Chunk.
A Method Chunk may also be meaningful because it deals with one or several
ISSD activities which are not (well) covered by the project-specific method but
the project member searches for guidelines on these activities. In this case, the
retrieval is done by comparing the Reuse Context of the Method Chunk from the
federation with the User Situation specifying the project member need. In this
case, the Similarity Metrics is based on (i) the number of common aspects be-
tween the necessary aspects from the User Situation and the Reuse Context, (ii)
the number of common aspects between the forbidden aspects from the User Sit-
uation and the Reuse Context, (iii) the number of necessary aspects in the User
Situation. A positive value of the Similarity Metrics indicates that there are more
necessary aspects than forbidden ones in the Reuse Context with regards to the
User Situation. On the contrary, a negative value indicates that there are less nec-
essary aspects than forbidden ones. The perfect adequation is represented by the
value 1.
Examples of Reuse Contexts and User Situations are given in Figure 2. Similar-
ity metrics have been computed and show that the two Method Chunks under
consideration better match the first User Situation than the second one. The
first Method Chunks fully matches the User Situation A.

4.3 Extended Similarity Metrics

When searching for Method Chunks inside the federation, Method Chunks in-
cluding more specific aspects in their Reuse Contexts may also be of interest:
They usually provide more specific guidelines. They may better cover part of



Fig. 2. Examples of Similarity Metrics between User Situation and Reuse Context

the methodological problem the project member is interested in. Project mem-
ber may also be interested in Method Chunks associated to more general aspects
usually providing more general-purpose guidelines which could also be useful. In
the same way, the classification dimension of refinement relationships may be ex-
ploited to enlarge the set of Method Chunk retrieved with Method Chunks which
Reuse Contexts include previous or next aspects.
Exploiting Reuse Frame refinement relationships may also be interesting with
regards to forbidden aspects. Indeed, enlarging the set of forbidden aspects to
more general ones means to forbid full branches of the Reuse Frame; and en-
larging the set of forbidden aspects to more specific aspects means to forbid
Method Chunks associated to too specific aspects, most probably qualifying
Method Chunks providing too specific guidelines. In the same way, enlarging
the set of forbidden aspects to aspects previous or next the aspects under con-
sideration (through classified refinement relationship) means to avoid retrieving
Method Chunks whose scope overcomes the aspects given by the project member.

Extending the selection by allowing or not more general, more specific, previous
or next aspects to be included in the necessary and/or forbidden aspects given
in the User Situation provides a way for the project member to reduce or enlarge
the number of Method Chunks retrieved. If one feel he/she did not find enough
Method Chunks with regards to his/her methodological need, he/she may allow
more general, more specific, previous and/or next aspects in order to find more
Method Chunks. On the contrary, if the set of Method Chunks provided as an
answer to his/her need is too large, he/she may enlarge the set of forbidden as-
pects by allowing more general, more specific, previous and/or next aspects and



this way reduce the number of retrieved Method Chunks. The table presented in
figure 3 summarizes the extension possibilities.

Fig. 3. Similarity Metrics - Extension possibilities

When the Similarity Metrics is computed with extended necessary and forbid-
den aspects, a distance has to be provided to quantify the closeness between
the aspects under study and the more generic, more specific, previous or next
aspects. Therefore, we propose 4 distances to qualify the closeness between two
aspects. A perfect matching between the 2 aspects leads to the value 1 of the
Closeness distance, which tends to 0 as far as the ratio decreases. Figure 4 shows
the different situations of Closeness Distance computation. Examples of aspects
more generic, more specific, previous and next may be found in Figure 1.

Fig. 4. Closseness Distance computation

The similarity Metrics is expendable thanks to this Closeness distance. When
the aspect which is present in the Reuse Context of the Method Chunk under
consideration is not identical to one of the aspects of the User Situation but



only close to it, the Closeness distance is used instead of the value 1 in the
computation of the Similarity Metric. For the full description of the Closeness
Distance and the Similarity Metrics, please refer to [8].

5 Concluding Remarks and Future Works

In this paper we presented an approach to support federation of project-specific
methods in order to allow each project to share its best practices with the other
projects without imposing to all of them a unique and new organization-wide
method. We started from the work of Ralyte about Method Chunk to break down
project-specific methods into atomic and reusable parts [11,10]. Our contribution
focusses on the specification and use of a Reuse Frame to retrieve meaningful
Method Chunks. For this purpose, we provide means to:

– Make the federation possible by introducing the Reuse Frame in order to
capture and share knowledge about ISSD activities and the Reuse Context
to allow project members to qualify the content of each atomic and reusable
part of the project-specific methods.

– Support the federation by providing means for the project members to ex-
press their need through a User Situation and by proposing a Similarity
Metrics and a Closeness Distance to retrieve Method Chunks not strictly
matching the User Situation by exploiting the genericity and classification
relationships which exist in the knowledge qualifying ISSD activities.

In the future, we would like first to try our approach on a real case study and
then to improve it by enriching the Reuse Frame with a view or tag mechanism
allowing each project or each project member to associate its own vocabulary to
the aspects defined in the Reuse Frame, and this way to provide better means
to exploit ISSD knowledge.

References

1. A.F. Harmsen. Situational Method Engineering. Moret Ernst Young, 1997.
2. B. Fitzgerald, N.L. Russo, T. O’Kane:. Software development method tailoring

at Motorola. Communications of the ACM, 46(4), 2003, pp. 64-70.
3. C. Cauvet and C. Rosenthal-Sabroux. Ingenierie des systemes d’information.

Hermes, 2001.
4. C. Rolland, V. Plihon, J. Ralyté. Specifying the Reuse Context of Scenario

Method Chunks. International Conference on Advanced Information System
Engineering, 1998.

5. F. Harmsen, S. Brinkkemper, J. L. Han Oei. Situational method engineering for
informational system project approaches. IFIP WG8.1 Working Conference on
Methods and Associated Tools for the Information Systems Life Cycle, 1994.

6. H.T. Punter, K. Lemmen. The MEMA model: Towards a new approach for
Method Engineering. Information and Software Technology, 38(4), 1996, pp.
295-305.



7. I. Graham, B. Henderson-Sellers, H. Younessi. The OPEN Process Specification.
Addison-Wesley, 1997.

8. I. Mirbel. Method Engineering: A user-centric contribution. I3S/RR-2006, I3S
Laboratory, 2006.

9. I. Mirbel and V. de Rivieres. Adapting Analysis and Design to Software
Context: The JECKO Approach. OOIS 2002, Montpellier, France, September,
2002, pp. 223-228.

10. I. Mirbel, J. Ralyte. Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirement Engineering Journal, 11(1), 2006,
pp. 58-78.

11. J. Ralyte. Ingenierie des methodes a base de composants. Universite Paris I -
Sorbonne, January, 2001.

12. K. van Slooten and B. Hodes. Characterizing IS Development Projects. IFIP
TC8, WG 8.1/8.2, August, 1996, pp. 29-44.

13. M. Bajec, D. Vavpotic, M. Kirsper. The scenario and tool-support for
constructing flexible, people-focused system developement methodologies. ISD
2004, Vilnius, Lituania, September, 2004.

14. M. Rossi and B. Ramesh and K. Lyytinen and J. Tolvanen. Managing
evolutionary method engineering by method rationale. Journal of the association
for information systems, 5(9), 2004, pp. 356-391.

15. S. Brinkkemper, M. Saeki, F. Harmsen. Assembly Techniques for Method
Engineering. International Conference on Advanced Information Systems
Engineering, 1998.

16. V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E. Dubois, P.
Heymans. A Reuse-Oriented Approach for the Construction of Scenario Based
Methods. International Conference on Software Process, 1998.

17. V. Pujalte, P. Ramadour. Réutilisation de composants: un processus interactif de
recherche. Majestic’05, 2004.

18. Z. Zhang, K. Lyytinen. A Framework for Component Reuse in a
Metamodelling-Based Software Development. Requirement Engineering Journal,
6(2), 2001, pp. 116-131.


