
Modeling Services using Contracts

Identifying Dependencies in Service–Oriented Architectures

Thibault Estier1, Beat Michel2, and Oliver Reinhard3

1 HEC - Université de Lausanne
1015 Lausanne, Switzerland
thibault.estier@unil.ch

2 Beat Michel Conseil en Informatique
1030 Bussigny, Switzerland
michel@beatmichel.ch

3 Paranor AG
3046 Wahlendorf, Switzerland
oliver.reinhard@paranor.ch

Abstract. Design by contract is a well-established paradigm in software engi-
neering. Bertrand Meyer first introduced the rigorous distinction between the
responsibilities of service provider and service consumer for fine grain soft-
ware artifacts (classes). This paper considers service contracts in the context of
service-oriented architecture for complex enterprise information infrastructures.
Identifying dependencies between applications with service contracts may help
to master the complexity of numerous interconnected information systems and
to ease evolution towards a service-oriented architecture. This paper proposes
both a model and a methodology to systematically apply the notion of contract
for structuring relationships and identifying dependencies between applications
in a service oriented architecture.

1 Introduction

While enterprise-wide IT infrastructures face every day more complex challenges in
managing and developing application interoperability, Service-Oriented Architectures
(SOA) 4 gain progressively more and more success as an integrative paradigm. Rea-
soning about applications interfaces in terms of services seems a natural extrapolation
of software engineering concepts for components assembly: a software component, or
module, should expose a clearly defined set of operations and properties, should give
strict conditions of usage, without exposing the details of how the component executes
these operations. Decomposing software into modules was already introduced in 1972
by D. Parnas [2].

A clear separation between the purpose of a component (what) and its actual im-
plementation (how) gives interesting properties (reusability of the component, low cou-
pling between a component and its users, etc.). These are also desirable properties of

4 While it is difficult to trace a unique origin of the term SOA, it seems to have appeared
around 2000 in both IBM research papers and Gartner group reports, before being fixed by
standards [1].



related applications in an IT infrastructure. This naturally promoted the idea of unam-
biguous interface definitions for information exchanges between applications. The SOA
approach encourages the definition of exposed properties and operations available out-
side an application to be defined in terms of services. While this idea already appeared
in distributed applications and with middleware buses (like DCOM or CORBA for
instance), the recent apparition and success of web-oriented standards for information
interchanges refuelled it (Web Services and XML encoding of information). Unfortu-
nately it is generally difficult to handle an enterprise application as a “large software
component”: the definition of an appropriate and reusable interface for a large appli-
cation is generally a complex task. The model proposed in this paper helps to better
express the offered services of an application, by providing a complete and rigorous
specification of each service.

Bertrand Meyer introduced in 1992 [3] the notion of Design by Contract to help
formalizing the exposed behaviour of a software component, in terms of pre-conditions,
post-conditions and invariants. One of the extensions of a service description proposed
here includes definitions of pre- and post-conditions for each operations offered in a
service. So we take the word contract for a service in a similar meaning, rather than
the emphasis on legal involvement of both parties.

In this paper, we recognize the importance of web services for handling applica-
tions interoperability between organisations or in heterogenous contexts, but we focus
on integration inside a given IT infrastructure (Enterprise Applications Integration),
possibly but not necessarily implemented using web services. In the global map of an
IT infrastructure, applications may offer services based on very different protocols and
mechanisms, including traditional file transfers, publish/subscribe systems, etc. We
propose a service description independent of the underlying mechanism used to make
the service accessible. This description gives also important information about failures,
failure signals, how they will propagate and when they may arise.

Related Work

Heckel & Lohmann recently proposed [4] to also adopt pre- and post-conditions for
extending Web Services definitions. The behaviour of service operations is then given
by UML collaboration diagrams transformation rules. Their proposition is to use these
graphs for automatic testing of a web service.

Tosic, Pagurek and Patel [5] proposed a language called Web Service Offerings
Language (WSOL), to extend a WSDL description with formal expressions of vari-
ous constraints, including pre- and post-conditions, plus a notion of future-conditions.
The language enables declaration of several business deployment characteristics of a
service (like Quality of Service or Service Level Agreement). These definitions are ori-
ented toward management, monitoring and measurement of deployed services, when
the usage of a service available in a different organization implies some garanties for
the application willing to use it.

In the domain of Web Services, several XML-based language extending WSDL
[6] have been proposed: WSLA (Web Services Level Agreements) from IBM [7], and
WSML (Web Service Management Language) coming from a proposition by HP [8].
Both propositions are also focused on web services and on formalization of service–level
agreements.



In the second section of this paper, we propose and illustrate a complete concept of
Service Contract, covering typical questions that a designer must handle when defining
a service: orientation, scope, structure, semantics and quality. The third section sketches
briefly a methodology applicable to migrating a traditional infrastructure to a service-
oriented architecture, using systematically this service modeling approach.

2 Service Model and Service Contracts

A service contract is a mutual agreement between the provider of a service and the
consumer (or consumers) of the service. Like a legal contract, a service contract defines
the conditions and terms under which the provider and the consumers will collaborate.
A service contract can be expressed using a service model. The model defines the
orientation and type of dependencies which exist between parties, and defines four
aspects of each service:

1. Operations and Structures – the service operations, their parameters and pa-
rameter types,

2. Semantics and Scope – the behavior of the service operations, returned results
and side effects; do they overlap the information scope of other services,

3. Failures – when the consumer-provider interaction will not succeed,
4. Quality – what non-functional requirements does the service comply to.

While the service model defines the interaction between providers and consumers, an ac-
tual service contract based on the model identifies the actual provider and consumer(s)
and is only established at deployment time or even at run time.

Quality of service, is also an important aspect of a service model, however, it is not
the focus of this paper and is not further addressed. The other aspects are presented
as sub-sections of this section.

Example illustrating the model presentation

We illustrate the various aspects of the model using an example: a DVD-rental business
with an inventory of movies and carries zero or more DVD copies of each movie. The
corresponding IT architecture consists of a server-based DVD-rental application and
two types of user-interface clients: the internet-based home client supports customers
reservation request; the staff client at the store is for reservation, rental and customer
management by the staff.

Orientation – Establishing a service relation

The relationship between service provider and consumers is asymetric: consumers ap-
plications depends on the provider application. Service model dependencies may be:

– information dependency – the consumer needs information supplied by the
service provider, in which case he addresses a request for information (RFI)

– delegation dependency – the consumer delegates part of its processing to the
service provider, in which case he addresses a request for processing (RFP).



This distinction is orthogonal to that of different modes of interaction:

– blocking mode – the consumer remains suspended until the provider has finished
processing its request, even if it has no information to return,

– non-blocking mode – the consumer may resume before the provider starts pro-
cessing its request; sometimes the consumer may wish to retrieve a possible response
or status later,

– publish-subscribe mode – the consumer subscribes to a certain type of informa-
tion supplied by the provider. The consumer is later notified by the provider each
time a corresponding information item is available.

Blocking and unblocking modes may be used for both RFI and RFP, while publish–
subscribe generally implements an RFI. We will come back in section 3 on the fact that
the service orientation cannot be derived simply from the data-flow direction. In our

DvdRental

HomeClient
Reservations

Rentals

CustomerMgmt StaffClient

Accounting
Booking

Fig. 1. Service contracts and roles

DVD-rental example, a DvdRental application is the service provider that owns and
updates the rental information. The HomeClient acts as a service consumer making
reservation requests from the user’s home. The StaffClient is another service con-
sumer, this time for the rental staff at the shop. Both client applications interact with
the server in blocking mode (see Fig. 1).

Operations and Structures – Syntax

A service is a set of closely related service operations. Operations are closely related if
they use the same parameter types and access or modify the same persistent informa-
tion. Each operation has a signature (name, formal parameters, failure signals).

The closure of all types of all parameters of all operations belonging to a given
service is the service type model (STM). The STM is part of the service model.

Semantics and Scope – About producing effects

The core type model (CTM) is the minimal set of types, attributes and associations
required to specify the service operations. Sharing a CTM between services operations
allows to specify how the side effects of one service affects another service.

Instances of CTM types have identity and persistent state, they represent the state
between operation invocations of the services sharing the CTM. They are generally



not passed around as operation parameters, and they are not accessible to service
consumers. Fig. 2 shows the CTM for the DVD-rental application.

*1

*

1 *
1

1

1* 1

0..1
1

Account

Customer

ReservationRequest

Rental

DvdCopy

Movie

Fig. 2. Core-type model for DVD-rental application

The semantics (the behaviour) of a service operation is defined over both its pa-
rameters and the CTM. The scope of a service operation includes all the CTM types
and attributes referenced by this operation’s specification.

This approach goes one step beyond classical design by contract [3] where the
method scope is normally the class itself. In class contracts, pre- and postconditions
are specified over the method parameters and over the instance variables. For service
operations, pre- and post-conditions are specified over both the operation parameters
and the type instances of the CTM, as suggested by Cheesman and Daniels [9]. The
pre- and post-conditions specifications are declarative. Ideally a predicate language
such as OCL [10] is used for formal specification, but natural language making strict
use of the type models and the associations between types yields good results.

Failures – About not producing effects

The design-by-contract paradigm is radical and unambiguous: preconditions∧operations
⇒ postconditions. This postulate implies that the service provider is free to do anything
if preconditions are not satisfied – including rendering all of its managed information
corrupt. But service providers have a second crucial mission: ensure integrity and con-
sistency of owned information. The service model declares how preconditions failures
will be handled:

– Checked preconditions – the service model declares all preconditions of the opera-
tion as checked by the provider and defines failure signals which are raised in the
negative case. The service consumer can safely rely on the provider check.

– Unchecked preconditions – the service model explicitly declares the effect of a given
service operation as undefined if its preconditions are not satisfied. The service
consumer can only expect a correct result if it guarantees the precondition.

In practice, unchecked preconditions ideally suit RFIs, whereas checked preconditions
are a natural match for RFPs. In some cases, RFIs may also require checked precon-
ditions, if the returned information depends crucially from parameters provided and
from state informations in the provider.



3 Towards a methodology for Service Oriented Architecture
migration

Motivation for a SOA migration

The perspective of this paper with respect to SOA is that of the evolution of existing
large enterprise wide IT-infrastructure, as opposed to the implementation of a SOA
from scratch. What we have in mind is a company with multiple historically grown
applications which size may vary from an application for employees-car park and a
fully fledged ERP.

Most applications will not operate in isolation but will exchange information. Data
exchange mechanisms may use any type of technologies like: file transfer, data replica-
tion, socket communication, messaging, CORBA or SOAP. Migration to a SOA then
means implementing data exchange between applications as service relationships.

Although the final result will raise applications equipped with service interfaces,
there is more to be done for a SOA-Migration. It should start with a reverse engineering
and modelling effort before re-engineering the application landscape.

Architectural principles and migration process

A successfull SOA-Migration should be guided by following architectural principles:

– Separation of concerns : service relationships must be based on cleaarly established
responsabilities of each participating application.

– Loose coupling: service relationships necessarily couple the service consumer to the
producer. But coupling should be loose where this is possible.

– Reusability: This is the minimal requirement for services. It should be a requirement
even when a service is supposed to be used only by one consumer. Reusability
means that the producer should not expect specificities of the consumer, other
than conditions specified in the service model.

Separation of concerns implies that for each application, all the supplied services be
specified. These are not only the services for other applications but also those supplied
to business processes, typically through user interfaces. We call the latter business
services.

We suggest the following steps when applying these principles to a SOA-Migration:

1. Identify the scope of the migration effort and identify all data flows between appli-
cations in the scope.

2. Determine, clarify and optimize dependencies between applications, starting from
existing data flows.

3. Formally specify the service contracts as explained in section 2.
4. Choose the most appropriate technology for implementing each service model.
5. Implement and deploy service.



Design decisions in SOA reengineering

Separation of concerns is an important aspect of step 2. In fact the direction of depen-
dency is not immediately given by the direction of the data flow. A data flow from
application A to B may as well be the interpreted as an information dependency of
B from A than as a delegation dependency of A from B. Suppose a file of customer
transactions being transferred from DvdRental to Accounting. Does this represent an
information dependency of Accounting on DvdRental or rather a delegation depen-
dency of DvdRental on Accounting? It may well be that John in charge of DvdRental
thinks that the Accounting application needs his data to do their accounting, whereas
Mary in charge of Accounting argues that DvdRental needs her processing to have
their accounts settled.
How a dependency is modelled at this step is an important decision for the separation
of concerns. In our example (see Fig. 3) one model would mean that DvdRental pro-
vides the business service of handling and billing rental events including book keeping,
but the latter is delegated to accountability. In this perspective DvdRental is delega-
tion dependent from Accounting. An other way is to consider Accounting as providing
book keeping services to the business. To do so it needs information from DvdRental
and thus is now information dependent from this application.

DvdRental

Sell and keep
Accounts

Accounting

Booking
RFP

DvdRental

Sell

Accounting

Give sales
informations

RFI

Settle
accounts

Fig. 3. Orientation: two different ways to associate applications by service

In step 3 loose coupling may be achieved by avoiding blocking RPC each time
it makes sense. The alternative to blocking RPC depends on the kind of service de-
pendency: RFI or RFP. In the case of RFI, an RPC mechanism may be replaced by a
publish subscribe protocol, where the service provider notifies events to the service con-
sumer. In the case of RFP loosest coupling may be achieved when the service provider
does not return any information about the success of the processing. This means that
the service contract garantees processing for all data delivered that conforms to the
pre-conditions and all possible failures are handled by the service provider. This re-
quires careful specification of the service contract.
It appears that the case where delegation dependency is realized with a service that
does not return any success confirmation looks very similar to a publish/subscribe type
information dependency (in reverse direction). Thus, one might suggest that a typical
pattern consists in replacing a blocking delegation dependency by an publish/subscribe
type information dependency in reverse direction. This may well be interpreted as a
argument for event driven service architecture where autonomous applications with



clear responsibilities, providing well defined business services, publish events that are
used by others.
Choosing the most appropriate technical implementation should be a consequence of
the design decisions discussed so far, of available technologies and feasablity in a given
environment. Web services is definitely not the only way of implementig SOA. Message
oriented middleware (possibly combined with SOAP) may be an excellent solution for
RFP but also to implement publish/subscribe style RFI. However we think that even
file transfer may still have its role to play in a service architecture.

4 Conclusion

Service models and contracts encourage designers and maintainers of a Service–Oriented
Architecture to make explicit descriptions of their services functionalities. The model
proposed in section 2 shows that this may go well beyond definition of services sig-
natures and parameters types. Analysis of interfaces between applications in terms of
service contracts may help to master crucial issues of enterprise-wide systems inte-
gration. While migrating an architecture towards a SOA approach, we recommend a
process where service models and contracts are used as a formalism organize at best
the overall dependencies between existing applications before making any change in
the technology used for the implementation of services.

Further research need being made on migration projects of different scales to mea-
sure the impact of this approach and its effect on time, when evolution of information
systems become necessary without missing out on the benefits of existing and running
services. The hypothesis we would like to verify is that this approach lowers the effort
and cost of evolution of an IT infrastructure.

References

1. OASIS: Reference model for service oriented architectures. Working draft, OASIS open
group (2005)

2. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15(12) (1972) 1053–1058

3. Meyer, B.: Applying ”Design by Contract”. IEEE Computer 25(10) (1992) 40–51
4. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. ENTCS 82(6)

(2004)
5. Tosic, V., Pagurek, B., Patel, K.: WSOL - a language for the formal specification of classes

of service for web services. In Zhang, L.J., ed.: ICWS, CSREA Press (2003) 375–381
6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description

language (WSDL), http://www.w3.org/TR/wsdl (2001)
7. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level

agreements for web services. J. Network Syst. Manage. 11(1) (2003)
8. Sahai, A., Durante, A., Machiraju, V.: Towards automated SLA management for web

services. Technical report, Software Technology Laboratory, HP Laboratories Palo Alto
(2002)

9. Cheesman, J., Daniels, J.: UML Components, A Simple Process for Specifying
Component-Based Software. Addison-Wesley (2001)

10. OMG: Unified modeling language (UML), version 2.0,
http://www.omg.org/technology/documents/formal/uml.htm (2004)


